Title: Quantum matter from algebraic geometry

Speakers: Steven Rayan

Series: Mathematical Physics

Date: April 28, 2023 - 1:30 PM

URL: https://pirsa.org/23040161

Abstract: The advent of topological materials has brought with it unexpected new connections between physics and pure mathematics. In particular, algebraic topology has played a significant role in the classification of topological materials. In this talk, I will offer a brief look at an emerging chapter in this story in which algebraic geometry -- in particular the algebraic geometry of moduli spaces associated with complex curves -- is used to anticipate new forms of quantum matter arising from 2-dimensional hyperbolic lattices. In the process, I will explain my recent joint works with each of J. Maciejko, E. Kienzle, and A. Nagy that establishes an electronic band theory for 2-dimensional hyperbolic matter.

Zoom link: https://pitp.zoom.us/j/98074477672?pwd=bmVScWx1M09EaGx2ZXZrRit6NXF5dz09

Pirsa: 23040161 Page 1/55

Quantum Matter from Algebraic Geometry

Mathematical Physics Seminar Perimeter Institute

Steven Rayan quanTA Centre / Math & Stats, USask rayan@math.usask.ca April 28, 2023

Pirsa: 23040161 Page 2/55

Algebraic Geometry in Physics

- AG enjoys fruitful interactions with physics, particularly around high-energy physics, often in the form of mirror symmetry
- Algebraic and arithmetic perspectives have led to robust programs for constructing and interpreting mirror pairs in both the Calabi-Yau and Fano settings (e.g. Batyrev-Borisov mirror symmetry, Landau-Ginzburg models, Gross-Schubert program), as well as quiver-theoretic descriptions of gauge theories
- What about solid-state physics?

quanTA

Pirsa: 23040161 Page 3/55

Quantum Materials

- Traditionally, strongly-correlated systems of electrons
- Perhaps best defined by what they are not
- They are materials that exhibit behaviours with no counterpart in the macroscopic world
- These behaviours are emergent ones, resulting from an atypical dependence of the 4 fundamental quantum degrees of freedom: charge, spin, orbit, and lattice
- This dependence is induced under precise and/or extreme conditions (thin highly-engineered crystalline films, supercooling, strong transverse magnetic fields)

quanTA

Pirsa: 23040161 Page 4/55

Examples

- Spin liquids: crystalline materials in which the spin of atomic components are disordered and dynamically fluctuating
- E.g. titanate pyrochlores (such as Yb₂Ti₂O₇)
- Spin glasses: magnetic materials in which spins are random
- E.g. IrMnGa

quanTA

Pirsa: 23040161 Page 5/55

quanTA

Pirsa: 23040161 Page 6/55

Pirsa: 23040161 Page 7/55

quanTA

Examples

- Topological materials: materials with robust band-gap phenomena manifesting in protected insulating or conducting states
- E.g. 2D Mercury telluride sandwiched in cadmium telluride
- E.g. 3D Bismuth antimony
- Hundreds of such materials are known and governed by an algebro-topological periodic table

quanTA

Pirsa: 23040161 Page 8/55

Symmetry				Dimension							
AZ	Т	С	S	1	2	3	4	5	6	7	8
Α	0	0	0	0	Z	0	Z	0	Z	0	Z
AIII	0	0	1	Z	0	Z	0	Z	0	Z	0
AI	1	0	0	0	0	0	Z	0	\mathbb{Z}_2	\mathbb{Z}_2	Z
BDI	1	1	1	Z	0	0	0	Z	0	\mathbb{Z}_2	\mathbb{Z}_2
D	0	1	0	\mathbb{Z}_2	Z	0	0	0	Z	0	\mathbb{Z}_2
DIII	-1	1	1	\mathbb{Z}_2	\mathbb{Z}_2	Z	0	0	0	Z	0
All	-1	0	0	0	\mathbb{Z}_2	\mathbb{Z}_2	Z	0	0	0	Z
CII	-1	-1	1	Z	0	\mathbb{Z}_2	\mathbb{Z}_2	Z	0	0	0
С	0	-1	0	0	Z	0	\mathbb{Z}_2	\mathbb{Z}_2	Z	0	0
CI	1	-1	1	0	0	Z	0	\mathbb{Z}_2	\mathbb{Z}_2	Z	0

A. Kitaev, AIP Conference Proceedings 1134, 22 (2009)

 ${\bf quanT}\!{\bf A}$

Pirsa: 23040161 Page 9/55

Periodic Media

- Waves propagating in a periodic medium with a symmetric potential are determined, up to phase, by their behaviour in the fundamental cell
- Felix Bloch (1928)
- Describes behaviour of any type of wave in any periodic medium, but application to electron motion in crystalline solids anticipates the band theory of electrical conduction and various quantum Hall-type phenomena

quanTA

Pirsa: 23040161 Page 10/55

Bloch's Theorem

- Tile Euclidean space \mathbb{R}^n with a regular lattice Λ
- Can obtain any cell by translating the fundamental one
- We wish to consider eigenvalue problems that respect the symmetry of the lattice
- If $V: \mathbb{R}^n \to \mathbb{R}$ is a Λ -invariant function, then we consider the operator $H = -\nabla^2 + V$ and the eigenvalue problem

$$H\phi = E\phi$$

quanTA

Bloch's Theorem

- Hilbert space $\mathbb{L} = L^2(\mathbb{R}^n)$ has an induced action of Λ via translation of coordinates, i.e. $T_{\lambda}\phi(x) = \phi(x+\lambda)$
- \mathbb{L} splits into irreducible representations \mathbb{L}_k of Λ , each of which is 1-dimensional and generated by a quasi-invariant function $\boldsymbol{\varphi}_k(\boldsymbol{X})$ satisfying

$$\varphi_k(\lambda + x) = e^{ik(\lambda)} \varphi_k(x)$$

for some $k : \Lambda \rightarrow U(1)$

- Translation by λ is an isometry and so T_{λ} is unitary and commutes with ∇^2 , while T_{λ} and V commute by definition

quanTA

Pirsa: 23040161 Page 12/55

Pirsa: 23040161 Page 13/55

Bloch's Theorem

- When the eigenvalue problem is regarded as a Schrödinger equation for electrons propagating in a periodic medium with a symmetric potential, Bloch's theorem gives us a description of their wavefunctions in terms of data that depends only on the lattice
- Equivalently, only on the topology of the quotient \mathbb{R}^n/Λ , which is the effective space where the electrons are propagating

quanTA

Pirsa: 23040161 Page 14/55

Bloch's Theorem in 2D

- Consider the Euclidean plane $\mathbb{R}^2 = \mathbb{C}$ with lattice Λ
- Equip with Λ -periodic potential $\mathbf{V}: \mathbb{C} \to \mathbb{R}$
- The eigenvalue problem is solved in the basis of representations

$$k: \Lambda \rightarrow U(1)$$

which are parametrized by the dual torus $(\mathbb{C}/\Lambda)^*$

Can Fourier transform so that the problem is written in k
coordinates on the dual torus, known as the (crystal) momentum
space or the Brillouin zone, where the spectra or energy bands
of H are studied

quanTA

Pirsa: 23040161 Page 15/55

Pirsa: 23040161 Page 16/55

Pirsa: 23040161 Page 17/55

Pirsa: 23040161 Page 18/55

 ${\bf quan} {\bf T} {\mathbb A}$

Pirsa: 23040161 Page 19/55

Pirsa: 23040161 Page 20/55

Naïve Question

• Can the position space be a curve of genus g > 1?

quanTA

Pirsa: 23040161 Page 21/55

Credit: © MPI CPfS

 ${\bf quanT}\!{\mathbb A}$

Pirsa: 23040161 Page 22/55

Naïve Question

• Can the position space be a curve of genus g > 1?

quanTA

Pirsa: 23040161 Page 23/55

Pirsa: 23040161 Page 24/55

Higher-Genus Band Theory?

- Can we engineer a higher-genus position space?
- Is there a corresponding crystal momentum?
- Is there a band theory?

quanTA

Pirsa: 23040161 Page 25/55

Higher-Genus Band Theory?

 To produce a genus g > 1 position space, we need a tiling with a higher gonality

quanTA

Pirsa: 23040161 Page 26/55

Higher-Genus Band Theory

- To produce a genus g position space, we must tile 2D space by 4g-gons
- E.g. genus g=2: tile space by regular octagons

quanTA

Pirsa: 23040161 Page 27/55

Pirsa: 23040161 Page 28/55

Hyperbolic Matter

- Tile the hyperbolic plane ℍ by 4g-gons and choose a periodic potential V
- Translation group is now nonabelian (a Fuchsian group Γ)

quanTA

Pirsa: 23040161 Page 29/55

Pirsa: 23040161 Page 30/55

Hyperbolic Matter

- Tile the hyperbolic plane ℍ by 4g-gons and choose a periodic potential V
- Translation group is now a nonabelian Fuchsian group Γ
- Consider $H_p = -\nabla_p^2 + V$ where

$$4\nabla_{p} = (1-|z|^{2})^{2}\nabla$$

is the Laplacian is adapted to the hyperbolic metric

Do there exist Bloch waves?

quanTA

Hyperbolic Bloch Waves

Yes: there exist states

$$\varphi(\mathbf{y}(\mathbf{x})) = \mathbf{\chi}(\mathbf{y}) \; \varphi(\mathbf{x})$$

where $\gamma \in \Gamma$ and χ is a U(1)-valued function

- These are simply Γ-automorphic forms of weight 0
- The reduced position space is the genus-g surface \mathbb{H}/Γ and the (abelian) Brillouin zone is the space of representations χ
- ℍ/Γ carries a complex structure, dependent on Γ
- $\chi : \Gamma \to U(1)$ generalizes the crystal momentum

quanTA

Pirsa: 23040161 Page 32/55

Crystal Momentum

- The space of maps $\chi : \Gamma \to U(1)$ is a 2g-dimensional torus, namely the Jacobian of \mathbb{H}/Γ
- Jacobian has a distinguished complex structure inherited from ℍ/Γ and is a moduli space of holomorphic line bundles on ℍ/Γ
- Momentum space of a 2D hyperbolic material is higher dimensional in general
- Maciejko-R: Sci. Adv. 7 (2021), no. 36

quanTA

Pirsa: 23040161 Page 33/55

Hyperbolic Band Structures

- Automorphic states give rise to energy bands that can be plotted over the Jacobian
- Studied numerically for a tight-binding model on the Bolza surface, with both the empty lattice (V=0) and with a generalized Eisenstein series for V (using FreeFEM++)
- Also in Maciejko-R: Sci. Adv. 7 (2021), no. 36

quanTA

Pirsa: 23040161 Page 34/55

Pirsa: 23040161 Page 35/55

Pirsa: 23040161 Page 36/55

Pirsa: 23040161 Page 37/55

Pirsa: 23040161 Page 38/55

Pirsa: 23040161 Page 39/55

- Can we decompose any wavefunction for the hyperbolic crystal into automorphic Bloch waves?
- In other words, can we diagonalize H_p using quasiperiodic functions?
- We characterize the spectrum for arbitrary symmetric V on finite lattices

quanTA

Pirsa: 23040161 Page 40/55

Consider a tight-binding model with finitely-many cells

quanTA

Pirsa: 23040161 Page 41/55

Pirsa: 23040161 Page 42/55

- Consider a tight-binding model with finitely-many cells
- We construct by hand a complete basis of quasi-periodic wavefunctions in this case, but see matrix-valued phase factors
- Roughly speaking, these arise from normal subgroups of Γ of different orders
- In general, the phase factor $\chi(\gamma)$ is a U(r)-valued function

quanTA

Pirsa: 23040161 Page 43/55

- All possible ranks r of phase factors are possible as number of cells grows
- Infinitely-many Brillouin zones for a single material: one for each r
- For $\Sigma = \mathbb{H}/\Gamma$, these spaces of Γ -representations inherit complex structures that recast them as moduli spaces of stable holomorphic bundles
- Maciejko-R: PNAS 119 (2022), no. 9 (physics approach, finite)
- Nagy-R: arXiv: 2208.02749 (math approach, infinite)

quanTA

Pirsa: 23040161 Page 44/55

Pirsa: 23040161 Page 45/55

Nonabelian Brillouin Zones

- E.g. For Σ of genus 2, the rank-2 Brillouin zone is homeomorphic to CP³ (Narasimhan-Seshadri 1969)
- For general rank, these are compact but typically singular

quanTA

Pirsa: 23040161 Page 46/55

Nonabelian Brillouin Zones

- E.g. For Σ of genus 2, the rank-2 Brillouin zone is homeomorphic to CP³ (Narasimhan-Seshadri 1969)
- For general rank, these are compact but typically singular
- Higher-rank bundles can be treated as infinitesimal corrections to the Bloch data

quanTA

Pirsa: 23040161 Page 47/55

Implications

- Hyperbolic materials inhabit a rich (3g-3)-dimensional complex moduli space of algebraic curves
- Coordinates on the moduli space provide new, non-topological invariants
- Compactifications of the moduli space may correspond to materials with enhanced symmetries / degeneracies
- Fourier-Abel-Jacobi map from ℍ/Γ to Jac(ℍ/Γ) is never an isomorphism
- However, $Sym^g(\mathbb{H}/\Gamma)$ and $Jac(\mathbb{H}/\Gamma)$ are birational
- Blown-down loci anticipate high-symmetry regions in the hyperbolic Brillouin zone

quanTA

Pirsa: 23040161 Page 48/55

Integrable Systems

- Restricting to the abelian Brillouin zone, we note that first-order deformations of the complex structure of \mathbb{H}/Γ correspond with those of $\text{Jac}(\mathbb{H}/\Gamma)$
- Hyperelliptic ℍ/Γ arise as double covers of P¹, given by degree
 2g+2 polynomials in a coordinate on ℂ ⊂ P¹
- Polynomials comprise an affine space that supports a nontrivial fibration by tori corresponding to $Jac(\mathbb{H}/\Gamma)$
- Pushforward to P^1 of line bundles L in $Jac(\mathbb{H}/\Gamma)$ produces not only a rank-2 vector bundle E but also a map $E \to E \otimes O(g+1)$ whose spectrum is precisely \mathbb{H}/Γ

quanTA

Pirsa: 23040161 Page 49/55

Integrable Systems

- Restricting to the abelian Brillouin zone, we note that first-order deformations of the complex structure of \mathbb{H}/Γ correspond with those of $\text{Jac}(\mathbb{H}/\Gamma)$
- Hyperelliptic ℍ/Γ arise as double covers of P¹, given by degree
 2g+2 polynomials in a coordinate on ℂ ⊂ P¹
- Polynomials comprise an affine space that supports a nontrivial fibration by tori corresponding to $Jac(\mathbb{H}/\Gamma)$
- Pushforward to P^1 of line bundles L in $Jac(\mathbb{H}/\Gamma)$ produces not only a rank-2 vector bundle E but also a map $E \to E \otimes O(g+1)$ whose spectrum is precisely \mathbb{H}/Γ

quanTA

Pirsa: 23040161 Page 50/55

Pirsa: 23040161 Page 51/55

Making Hyperbolic Matter

• Is it possible to artificially engineer hyperbolic states in circuits or devices?

quanTA

Pirsa: 23040161 Page 52/55

Yes!

• Kollár, Fitzpatrick, Houck, Nature 571 (2019): 45–50 (Copyright Springer-Nature 2019)

 ${\bf quan} {\bf T} {\bf A}$

Pirsa: 23040161 Page 53/55

Problems in Hyperbolic Matter

- Is there a full Bloch theorem for the hyperbolic crystal spectrum?
- What is the meaning of the various symmetries induced by moduli spaces?
- Is there a hyperbolic crystallography? (Boettcher-Gorshkov-Kollár-Maciejko-R-Thomale: *Phys. Rev.* B 105 (2022), no. 12)
- Can electronic hyperbolic circuits can be engineered?
- Can they be grown or printed as films (2D) or other structures (3D)?

quanTA

Pirsa: 23040161 Page 54/55

Thank You

Pirsa: 23040161 Page 55/55