Title: Hidden patterns in the standard model of particle physics: the geometry of $\mathrm{SO}(10)$ unification
Speakers: Kirill Krasnov

Series: Colloquium

Date: April 26, 2023-2:00 PM
URL: https://pirsa.org/23040160
Abstract: The aim of the presentation is to review the beautiful geometry underlying the standard model of particle physics, as captured by the framework of "SO(10) grand unification." Some new observations related to how the Standard Model (SM) gauge group sits inside SO(10) will also be described.

I will start by reviewing the SM fermion content, organising the description in terms of 2-component spinors, which give the cleanest picture.
I will then explain a simple and concrete way to understand how spinors work in 2 n dimensions, based on the algebra of differential forms in n dimensions.

This will be followed by an explanation of how a single generation of standard model fermions (including the right-handed neutrino) is perfectly described by a spinor in a 10 ("internal") dimensions.

I will review how the two other most famous "unification" groups -- the $\mathrm{SU}(5)$ of Georgi-Glashow and the $\mathrm{SO}(6) \mathrm{xSO}(4)$ of Pati-Salam -- sit inside $\mathrm{SO}(10)$, and how the SM symmetry group arises as the intersection of these two groups, when they are suitably aligned.

I will end by explaining the more recent observation that the choice of this alignment, and thus the choice of the SM symmetry group inside SO (10), is basically the choice of two Georgi-Glashow $\mathrm{SU}(5)$ such that the associated complex structures in $\mathrm{R}^{\wedge}\{10\}$ commute. This means that the SM gauge group arises from $\mathrm{SO}(10)$ once a "bihermitian" geometry in $\mathrm{R}^{\wedge}\{10\}$ is chosen. I will end with speculations as to what this geometric picture may be pointing to.

Zoom link: https://pitp.zoom.us/j/95984379422?pwd=SE1ybktzQzcreWREblhEUkZWWEIMUT09

Hidden patterns in the Standard Model of particle physics:

The geometry of SO(10) unification

Kirill Krasnov (Nottingham)

Standard Model Timeline

Murray Gell-Mann

George Zweig

1967: Electroweak $\operatorname{SU}(2) \mathrm{xU}(1)$ theory proposed

Steven Weinberg

Abdus Salam

Harald Fritzsch

1973: $\mathrm{SU}(3)$ gauge theory of quarks and gluons proposed - QCD

1973: Discovery of asymptotic freedom in QCD

David Politzer

David Gross

Frank Wilczek

Beyond the Standard Model

Howard Georgi

Harald Fritzsch

Sheldon Glashow

Peter Minkowski

1973-4: SO(4)xSO(6), SO(10) and SU(5) Grand Unified Theories discovered

Intriguingly, Georgi discovers $\mathrm{SO}(10)$ GUT before $\mathrm{SU}(5)$, and pursues the latter with Glashow because it is simpler

See e.g. Howard Georgi, "The future of grand unification", 2007

Current status of GUT

The minimal $\operatorname{SU}(5)$ GUT is ruled out experimentally (proton decay)
SUSY GUT models have now less appeal, after no low energy SUSY was seen by the LHC. No SUSY in this talk

Many GUT models can be constructed - the choice is in the Higgs field content, renormalizable vs. higher dimension operators

Models are complicated (need several different Higgs fields)

Many (but not all) simply predict no new physics till very high energies - and so not testable

After no convincing progress in this direction over the last 50 years, there is certain fatigue and loss of interest
As the result, what was universally known by the community in the 70 's and 80 's is no longer transferred to the younger generation of researchers. One of the goals of this talk is an attempt to rectify this - here in PI.

Aims of the talk

- Describe the basics of $\mathrm{SO}(10) \mathrm{GUT}$, concentrating on explaining known facts in as simple terms as possible
- This is not a phenomenology talk - I will concentrate on math (geometry) rather than physics
- Factually, very little if anything is new in my presentation
- The point of view is not the standard one. Symmetry breaking in geometric terms rather than in terms of Higgs fields.

Geometry of $\mathrm{SO}(10)$ symmetry breaking

Standard Model fermions

The goal of the talk is to explâin what SM fermions are and how they are described. I will ignore the part of the SM describing the dynamics of the gauge fields.

I will mostly concentrate on one (first) generation

Dirac Fermions-Lorentz spinors

Every fermionic particle in the table is a Dirac fermion = Lorentz spinor, which is described by the Dirac Lagrangian

The Standard Model gauge group

Every particle transforms in a representation of this gauge group
The complication is that each particle has two components (left-handed and right-handed) and these transform as different representations - one says that SM is chiral

To understand this, we need to describe a Dirac fermion in more detail

Spinors - first encounter

Gamma-matrices

$$
\gamma_{0}=\left(\begin{array}{cc}
0 & -\mathbb{I} \\
\mathbb{I} & 0
\end{array}\right), \quad \gamma_{i}=\left(\begin{array}{cc}
0 & \sigma_{i} \\
\sigma_{i} & 0
\end{array}\right), \quad i=1,2,3
$$

$$
\mathbb{I}=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right) \quad \sigma_{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \quad \text { Pauli matrices }
$$

Satisfy the Clifford algebra relations $\quad \gamma_{\mu} \gamma_{\nu}+\gamma_{\nu} \gamma_{\mu}=2 \eta_{\mu \nu}$

$$
\eta_{\mu \nu}=\operatorname{diag}(-1,1,1,1)
$$

Minkowski metric
Dirac spinor $\quad \Psi=\binom{\xi}{\tilde{\eta}} \quad \xi, \tilde{\eta} \in \mathbb{C}^{2} \quad$ two component columns with complex entries
We will say that

$$
\begin{aligned}
& \xi \in S_{+} \text {is a left-handed } 2 \text {-component spinor } \\
& \tilde{\eta} \in S_{-} \text {is a right-handed } 2 \text {-component spinor }
\end{aligned}
$$

Lie algebra of the Lorenz group $\mathfrak{s o}(1,3)$ is generated by the products of distinct gamma-matrices

$$
X(A):=\frac{1}{4} A^{\mu \nu} \gamma_{\mu} \gamma_{\nu} \quad[X(A), X(B)]=X_{[A, B]} \quad([A, B])^{\mu \nu}:=A^{\mu \rho} \eta_{\rho \sigma} B^{\sigma \nu}-B^{\mu \rho} \eta_{\rho \sigma} A^{\sigma \nu}
$$

Gamma-matrices are off-diagonal $\quad \gamma: S_{+} \rightarrow S_{-} \quad \gamma: S_{-} \rightarrow S_{+}$
Products of an even number of gamma-matrices preserve the spaces $S_{ \pm}$
In particular the Lie algebra $\stackrel{\mathfrak{s o}}{ }(1,3)$ preserves $S_{ \pm}$
We will say that the 2-component spinors in $S_{ \pm}$are Weyl spinors (to distinguish them from 4-component Dirac spinors)
Weyl spinors are irreducible representations of the Lorentz group. The Dirac spinor is a reducible representation

Inner product: (Lorentz) invariant inner product on $S_{ \pm}$is anti-symmetric

Charge conjugation:
There is an invariant anti-linear (i.e. involving complex conjugation) map $\quad *: S_{+} \rightarrow S_{-}$

$$
\left\langle\xi_{1}, \xi_{2}\right\rangle=\xi_{1}^{T}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \xi_{2}, \quad \xi_{1,2} \in S_{+}
$$

(1.

$$
S_{-} \ni \xi^{*}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \bar{\xi}, \quad \xi \in S_{+}
$$

Remark: the notions of invariant
inner product and charge
conjugation have analogs in any dimension and in any signature

Weyl Lagrangian

The Dirac Lagrangian is the kithetic term for a Dirac fermion
A Dirac spinor is a pair of Weyl spinors $\Psi=\binom{\xi}{\tilde{\eta}} \quad \xi \in S_{+}, \tilde{\eta} \in S_{-}$
Given that we have the charge conjugation operation $*: S_{+} \rightarrow S_{-}$

It is very convenient to parametrise all right-handed spinors as charge conjugates of left-handed ones

$$
\text { can always parametrise } \quad \tilde{\eta}=\eta^{*} \quad \text { so that } \quad \Psi=\binom{\xi}{\eta^{*}}, \quad \xi, \eta \in S_{+}
$$

The Dirac Lagrangian then splits as the sum of two kinetic terms for the Weyl spinors $\xi, \eta \in S_{+}$
Define $\quad Q: S_{+} \rightarrow S_{-} \quad Q:=-\mathbb{I} \partial_{t}+\sigma_{i} \partial_{i} \equiv \sigma^{\mu} \partial_{\mu}$

$$
S[\xi]:=i \int_{\mathbb{R}^{1,3}}\left\langle\xi^{*}, \not \xi\right\rangle \quad \begin{aligned}
& \text { Lorentz and translation invariant. Can be seen } \\
& \text { to be real by the integration by parts argument }
\end{aligned}
$$

When the spinor also transforms in some representation of some gauge group, we make the Lagrangian gauge-invariant
by extending the derivative to the covariant derivative

$$
S[\xi, A]:=i \int_{\mathbb{R}^{1}, 3}\left\langle\xi^{*}, \sigma^{\mu}\left(\partial_{\mu}+A_{\mu}\right) \xi\right\rangle
$$

This describes how fermions interact with gauge fields

Particles of the SM

We now describe the particle consent of one (first) generation of the SM
We describe everything in terms of 2-component (Weyl) spinors, and use left-handed spinors to parametrise all particles

Representations of $G_{S M}=\mathrm{SU}(3) \times \mathrm{SU}(2)_{L} \times \mathrm{U}(1)_{Y}$ needed to describe one generation

Particles	$\mathrm{SU}(3)$	$\mathrm{SU}(2)$	Y	T^{3}	$Q=T^{3}+Y$
$Q=\binom{u}{d}$	triplet	doublet	$1 / 6$	$1 / 2$	$2 / 3$
			$-1 / 2$	$-1 / 3$	
\bar{d}	anti-triplet	singlet	$-2 / 3$	0	$-2 / 3$
$L=\binom{\nu}{e}$			$1 / 3$	$1 / 2$	$1 / 3$
\bar{e}	singlet	doublet	$-1 / 2$	$1 / 2$	0
	singlet	singlet	1	$-1 / 2$	-1
0	1				

This is impossible to remember unless you work with it every day. SO(10) GUT provides the organising principle, from which this table can be derived

15 particles here, counting those of different colour separately

Spinors in higher D and Clifford Algebras

Clifford algebras are algebras generated by the higher D analogs of the already encountered gamma-matrices
Spinors are "columns" on which gamma-matrices act
Definition: Given a (real) vector space V , with a metric (\cdot, \cdot) on it , the Clifford algebra $\mathrm{Cl}(\mathrm{V})$ is the algebra generated by vectors from V subject to the relation $u v+v u=2(u, v)$

Or, more concretely, assuming the metric on V is positive definite and choosing an orthonormal basis, the Clifford algebra is the one generated by the gamma-matrices satisfying $\gamma_{i} \gamma_{j}+\gamma_{j} \gamma_{i}=\delta_{i j} \mathbb{I}$

As a vector space, Clifford algebra is spanned by products of distinct gamma-matrices, and has dimension 2^{n}
where n is the dimension of V
The deep classification result states that Clifford algebras are matrix algebras over $\mathbb{R}, \mathbb{C}, \mathbb{H}$
or sometimes direct sum of two such algebras, depending on dimension and signature
Spinors are "columns" on which these matrix algebras act, or irreducible representations of Cl
Group $\operatorname{Spin}(\mathrm{V})$ is the group generated by the products of an even number of Clifford elements of squared norm one
It is the double cover of the special orthogonal group $\mathrm{SO}(\mathrm{V})$

Spinors in higher D and Clifford Algebras

Clifford algebras are algebras generated by the higher D analogs of the already encountered gamma-matrices
Spinors are "columns" on which gamma-matrices act
Definition: Given a (real) vector space V , with a metric (\cdot, \cdot) on it , the Clifford algebra $\mathrm{Cl}(\mathrm{V})$ is the algebra generated by vectors from V subject to the relation $u v+v u=2(u, v)$

Or, more concretely, assuming the metric on V is positive definite and choosing an orthonormal basis, the Clifford algebra is the one generated by the gamma-matrices satisfying $\gamma_{i} \gamma_{j}+\gamma_{j} \gamma_{i}=\delta_{i j} \mathbb{I}$

As a vector space, Clifford algebra is spanned by products of distinct gamma-matrices, and has dimension 2^{n}
where n is the dimension of V
The deep classification result states that Clifford algebras are matrix algebras over $\mathbb{R}, \mathbb{C}, \mathbb{H}$
or sometimes direct sum of two such algebras, depending on dimension and signature
Spinors are "columns" on which these matrix algebras act, or irreducible representations of Cl
Group $\operatorname{Spin}(\mathrm{V})$ is the group generated by the products of an even number of Clifford elements of squared norm one
It is the double cover of the special orthogonal group $\mathrm{SO}(\mathrm{V})$

Spinors of Spin(2n)

The goal now is to present a concrete and efficient model for $\mathrm{Cl}(\mathbf{2 n})$ and the Spin group in Euclidean space $\mathbb{R}^{2 n}$ of an arbitrary (even) dimension.
$\operatorname{Spin}(2 n)$ is the double cover of $\mathrm{SO}(2 \mathrm{n})$

$$
\mathrm{SO}(2 n)=\operatorname{Spin}(2 n) / \mathbb{Z}_{2}
$$

This model arises if one chooses a complex structure in $\mathbb{R}^{2 n}$
Definition: An (orthogonal) complex structure in $\mathbb{R}^{2 n}$ is a map $J: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$ such that $J^{2}=-\mathbb{I}$

$$
\text { and }(J u, J v)=(u, v), \forall u, v \in \mathbb{R}^{2 n} \quad \text { Example: } \mathbb{R}^{2} \quad J\binom{x}{y}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\binom{x}{y}=\binom{-y}{x}
$$

There are no real eigenvectors. But any real vector can be split into a complex eigenvector, plus its complex conjugate

The $+i$ eigenspace of J. Can be seen to be totally null

Example: $\mathbb{R}^{2} \quad$ The +i eigenspace of J is spanned by $\binom{1}{-i}$ $\binom{x}{y}=\frac{x+i y}{2}\binom{1}{-i}+\frac{x-i y}{2}\binom{1}{i}$

Complex structures are very important because they provide a real viewpoint on various complex Lie groups Proposition: The subgroup of $\operatorname{GL}(2 n, \mathbb{R})$ that commutes with a fixed complex structure on $\mathbb{R}^{2 n}$ is $\mathrm{GL}(n, \mathbb{C})$ The subgroup of $\mathrm{SO}(2 n, \mathbb{R})$ that commutes with a fixed orthogonal complex structure on $\mathbb{R}^{2 n}$ is $\mathrm{U}(n)$

Rephrasing this, the choice of $U(n)$ subgroup of $S O(2 n)$ is the choice of an orthogonal complex structure on $\mathbb{R}^{2 n}$

Fundamental fact about spinors:
$U(n)$ is also a subgroup of $\operatorname{Spin}(2 n)$, and the restriction of the spinor representation S of $\operatorname{Spin}(2 n)$ to $U(n)$ is

$$
\left.S\right|_{\mathrm{U}(n)}=\Lambda \mathbb{C}^{n} \ldots \begin{gathered}
\text { All anti-symmetric complex tensors } \\
\text { in } \mathrm{n} \text { dimensions, or all complex } \\
\text { differential forms }
\end{gathered}
$$

Rephrasing, restricting to $U(n)$, we get a very concrete and powerful model of $\operatorname{Spin}(2 \mathrm{n}), \mathrm{Cl}(2 \mathrm{n})$ and spinors

Spinors concretely

Spinor is a general "inhomogeneous" differential form

$$
\operatorname{dim}(S)=2^{n}
$$

$$
S \equiv \Lambda \mathbb{C}^{n} \ni \psi=a+\sum_{i=1}^{n} a_{i} d z^{i}+\sum_{i<j} a_{i j} d z^{i} \wedge d z^{j}+\ldots+a_{1 \ldots n} d z^{1} \wedge \ldots \wedge d z^{n}
$$

We introduce the creation/annihilation operators
where all the coefficients are complex

$$
\begin{array}{lrl}
a_{i}^{\dagger} \psi:=d z^{i} \wedge \psi & \text { These satisfy the fermionic algebra } \\
\left.a_{i} \psi:=\left(d / d z^{i}\right)\right\lrcorner \psi & a_{i}^{\dagger} a_{j}+a_{j} a_{i}^{\dagger}=\delta_{i j} \quad i, j=1, \ldots, n
\end{array}
$$

We now define $\quad \gamma_{i}=i\left(a_{i}-a_{i}^{\dagger}\right), \quad \gamma_{i+n}=a_{i}+a_{i}^{\dagger}$
Can easily check that satisfy the Clifford defining relations $\gamma_{I} \gamma_{J}+\gamma_{J} \gamma_{I}=2 \delta_{I J} \quad I, J=1, \ldots, 2 n$
And so we get a concrete model of the Clifford algebra, the space of spinors, and the Spin group

Complex structures are very important because they provide a real viewpoint on various complex Lie groups Proposition: The subgroup of $\mathrm{GL}(2 n, \mathbb{R})$ that commutes with a fixed complex structure on $\mathbb{R}^{2 n}$ is $\mathrm{GL}(n, \mathbb{C})$ The subgroup of $\mathrm{SO}(2 n, \mathbb{R})$ that commutes with a fixed orthogonal complex structure on $\mathbb{R}^{2 n}$ is $\mathrm{U}(n)$

Rephrasing this, the choice of $U(n)$ subgroup of $S O(2 n)$ is the choice of an orthogonal complex structure on $\mathbb{R}^{2 n}$

Fundamental fact about spinors:
$U(n)$ is also a subgroup of $\operatorname{Spin}(2 n)$, and the restriction of the spinor representation S of $\operatorname{Spin}(2 n)$ to $U(n)$ is

$$
\left.S\right|_{\mathrm{U}(n)}=\Lambda \mathbb{C}^{n} \ldots \begin{gathered}
\text { All anti-symmetric complex tensors } \\
\text { in } \mathrm{n} \text { dimensions, or all complex } \\
\text { differential forms }
\end{gathered}
$$

Rephrasing, restricting to $U(n)$, we get a very concrete and powerful model of $\operatorname{Spin}(2 n), \mathrm{Cl}(2 n)$ and spinors

Spinors concretely

Spinor is a general "inhomogeneous" differential form

$$
\operatorname{dim}(S)=2^{n}
$$

$$
S \equiv \Lambda \mathbb{C}^{n} \ni \psi=a+\sum_{i=1}^{n} a_{i} d z^{i}+\sum_{i<j} a_{i j} d z^{i} \wedge d z^{j}+\ldots+a_{1 \ldots n} d z^{1} \wedge \ldots \wedge d z^{n}
$$

We introduce the creation/annihilation operators
where all the coefficients are complex

$$
\begin{array}{lrl}
a_{i}^{\dagger} \psi:=d z^{i} \wedge \psi & \text { These satisfy the fermionic algebra } \\
\left.a_{i} \psi:=\left(d / d z^{i}\right)\right\lrcorner \psi & a_{i}^{\dagger} a_{j}+a_{j} a_{i}^{\dagger}=\delta_{i j} \quad i, j=1, \ldots, n
\end{array}
$$

We now define $\quad \gamma_{i}=i\left(a_{i}-a_{i}^{\dagger}\right), \quad \gamma_{i+n}=a_{i}+a_{i}^{\dagger}$
Can easily check that satisfy the Clifford defining relations $\gamma_{I} \gamma_{J}+\gamma_{J} \gamma_{I}=2 \delta_{I J} \quad I, J=1, \ldots, 2 n$
And so we get a concrete model of the Clifford algebra, the space of spinors, and the Spin group

Additional information about spinors

Differential forms split into even anid odd degree ones

$$
S=\Lambda \mathbb{C}^{n}=\Lambda^{\text {even }} \oplus \Lambda^{\text {odd }} \equiv S_{+} \oplus S_{-}
$$

Creation/annihilation operators and thus gamma-matrices map even into odd and vice versa
But elements of Spin(2n) preserve the "chirality"
$S_{ \pm}$are irreducible representations of $\operatorname{Spin}(2 n)$.
Known as chiral, or Weyl spinors
Proposition: $\quad\left\langle\psi_{1}, \psi_{2}\right\rangle:=\left.\tilde{\psi}_{1} \wedge \psi_{2}\right|_{\text {top }}$
is the $\operatorname{Spin}(2 n)$ invariant bilinear inner product on S
Here tilde is the operation that reverses the order of all elementary 1 -forms $d z^{i}$
To get a number one restricts to the top form
Proposition: The product of n gamma-matrices containing the imaginary unit, followed by the complex conjugation, or the product of all gamma-matrices not containing i, again followed by complex conjugation, are invariant anti-linear maps on S . They agree on $S_{ \pm}$modulo sign.
Rephrasing, there exists "charge conjugation", an anti-linear map that either preserves $S_{ \pm}$
or sends one to the other, depending on the dimension. When $\mathrm{n}=\mathrm{omod}(4)$ there exist Majorana-Weyl spinors.

Spinors of Spin(10)

Particles of one generation of the $\stackrel{\star}{\text { SM }}$ can be fit into a single Weyl spinor representation of Spin(10)
For concreteness, we will work with that of odd degree differential forms. Bit easier to see how particles fit here

SM particles will fit here
This is where the right-handed neutrino lives
$\mathrm{U}(5) \subset \operatorname{Spin}(10)$ preserves this decomposition
The subgroup of $\mathrm{U}(5)$ that also fixes a given vector in $\Lambda^{5} \mathbb{C}^{5}$ is $\mathrm{SU}(5)$
Rephrasing, we can break Spin(10) to Georgi-Glashow SU(5) by taking the Higgs field $\mathbf{1 6}_{H}$
and selecting it to point in the direction of the right-handed neutrino
Alternatively, the same is achieved by choosing a complex structure on \mathbb{R}^{10}
as well as a top form in \mathbb{C}^{5}

There is a connection to socalled pure spinors here that I don't have time to discuss

Particles of the SM

We now describe the particle consent of one (first) generation of the SM
We describe everything in terms of 2-component (Weyl) spinors, and use left-handed spinors to parametrise all particles

Representations of $G_{\mathrm{SM}}=\mathrm{SU}(3) \times \mathrm{SU}(2)_{L} \times \mathrm{U}(1)_{Y}$ needed to describe one generation

Particles	$\mathrm{SU}(3)$	$\mathrm{SU}(2)$	Y	T^{3}	$Q=T^{3}+Y$
$Q=\binom{u}{d}$	triplet	doublet	$1 / 6$	$1 / 2$	$2 / 3$
			$-2 / 3$	$-1 / 2$	$-1 / 3$
\bar{d}	anti-triplet	singlet	$1 / 3$	0	$-2 / 3$
$L=\binom{\nu}{e}$				$1 / 3$	
\bar{e}	singlet	doublet	$-1 / 2$	$1 / 2$	0
	singlet	singlet	1	$-1 / 2$	-1

This is impossible to remember unless you work with it every day. SO(10) GUT provides the organising principle, from which this table can be derived

> 15 particles here, counting those of different colour separately

Spinors of Spin(10)

Particles of one generation of the $\stackrel{\star}{\text { SM }}$ can be fit into a single Weyl spinor representation of Spin(10)
For concreteness, we will work with that of odd degree differential forms. Bit easier to see how particles fit here

SM particles will fit here
This is where the right-handed neutrino lives
$\mathrm{U}(5) \subset \operatorname{Spin}(10)$ preserves this decomposition
The subgroup of $\mathrm{U}(5)$ that also fixes a given vector in $\Lambda^{5} \mathbb{C}^{5}$ is $\mathrm{SU}(5)$
Rephrasing, we can break Spin(10) to Georgi-Glashow SU(5) by taking the Higgs field $\mathbf{1 6}_{H}$
and selecting it to point in the direction of the right-handed neutrino
Alternatively, the same is achieved by choosing a complex structure on \mathbb{R}^{10}
as well as a top form in \mathbb{C}^{5}

There is a connection to socalled pure spinors here that I don't have time to discuss

SM gauge group as subgroup of SU(5)

The key observation is that $G_{\mathrm{SM}}=\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$
is precisely the subgroup of $\operatorname{SU}(5)$ that preserves the split $\mathbb{C}^{5}=\mathbb{C}^{3} \oplus \mathbb{C}^{2}$
Indeed, having made a choice of such a split, the subgroup that preserves it consists of matrices

$$
\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1) \ni\left(g_{3}, g_{2}, e^{i \phi}\right) \rightarrow\left(\begin{array}{cc}
e^{-i \phi / 3} g_{3} & 0 \\
0 & e^{i \phi / 2} g_{2}
\end{array}\right) \in \mathrm{SU}(5)
$$

The only choice made here was that of the overall factor in front of ϕ on the right-hand-side With this choice vectors in \mathbb{C}^{3} will have fractional $1 / 3$ charges, which is correct for quarks and those in \mathbb{C}^{2} will have half-integer Y charges, which is again correct Now let's try to match components of the spinor with particles. We start with $\Lambda^{1} \mathbb{C}^{5}=\Lambda^{1} \mathbb{C}^{3} \oplus \Lambda^{1} \mathbb{C}^{2}$
The only particles that can be identified with the $\mathrm{SU}(2)$ doublet are $L=\binom{\nu}{e}$ of Y charge $-1 / 2$
The $\operatorname{SU}(3)$ triplet will then have the Y charge of $1 / 3$, and so must be identified with \bar{d}
But it is anti-triplet, and so we must correct the identification

$$
\Lambda^{1} \overline{\mathbb{C}}^{5}=\Lambda^{1} \overline{\mathbb{C}}^{3} \oplus \Lambda^{1} \overline{\mathbb{C}}^{2}=\bar{d} \oplus L
$$

SM gauge group as subgroup of SU(5)

The key observation is that $G_{\mathrm{SM}}=\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$
is precisely the subgroup of $\operatorname{SU}(5)$ that preserves the split $\mathbb{C}^{5}=\mathbb{C}^{3} \oplus \mathbb{C}^{2}$
Indeed, having made a choice of such a split, the subgroup that preserves it consists of matrices

$$
\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1) \ni\left(g_{3}, g_{2}, e^{i \phi}\right) \rightarrow\left(\begin{array}{cc}
e^{-i \phi / 3} g_{3} & 0 \\
0 & e^{i \phi / 2} g_{2}
\end{array}\right) \in \mathrm{SU}(5)
$$

The only choice made here was that of the overall factor in front of ϕ on the right-hand-side With this choice vectors in \mathbb{C}^{3} will have fractional $1 / 3$ charges, which is correct for quarks and those in \mathbb{C}^{2} will have half-integer Y charges, which is again correct Now let's try to match components of the spinor with particles. We start with $\Lambda^{1} \mathbb{C}^{5}=\Lambda^{1} \mathbb{C}^{3} \oplus \Lambda^{1} \mathbb{C}^{2}$ The only particles that can be identified with the $\mathrm{SU}(2)$ doublet are $L=\binom{\nu}{e}$ of Y charge $-1 / 2$ The $\operatorname{SU}(3)$ triplet will then have the Y charge of $1 / 3$, and so must be identified with \bar{d}

But it is anti-triplet, and so we must correct the identification

$$
\Lambda^{1} \overline{\mathbb{C}}^{5}=\Lambda^{1} \overline{\mathbb{C}}^{3} \oplus \Lambda^{1} \overline{\mathbb{C}}^{2}=\bar{d} \oplus L
$$

It is then an exercise to compute the decomposition

To summarise, the subgroup of $\mathrm{SU}(5)$ that preserves the $3+2$ split is $G_{\mathrm{SM}}=\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$
And the Weyl spinor of $\operatorname{Spin}(10)$ splits as

$$
\Lambda^{\text {odd }} \overline{\mathbb{C}}^{5}=\Lambda^{1}\left(\overline{\mathbb{C}}^{3} \oplus \overline{\mathbb{C}}^{2}\right) \oplus \Lambda^{3}\left(\overline{\mathbb{C}}^{3} \oplus \overline{\mathbb{C}}^{2}\right) \oplus \Lambda^{5}\left(\overline{\mathbb{C}}^{3} \oplus \overline{\mathbb{C}}^{2}\right)=(\bar{d} \oplus L) \oplus(\bar{e} \oplus Q \oplus \bar{u}) \oplus \bar{\nu}
$$

All particles fit perfectly, and after fitting the first pair the Y -charges of the rest are correctly predicted!
Surely, the mother Nature is telling us that we are on the right track here!

All this was known already 50 years ago, to Howard Georgi in particular
Except that he thought about spinors of Spin(10) differently - weights

The machinery of roots and weights is very powerful, and allows to talk about any representation of any simple Lie algebra

But one needs much more preparatory steps to see how the particles fit into a single Weyl spinor of Spin(10)

In contrast, with our method that describes only simplest representations spinor, vector, adjoint - we derived the fit by completely elementary means

We don't need to remember the particle content of the SM - it can be derived

One only needs to remember that the $\mathrm{SU}(2)$ doublet L of leptons has Y charge of $-1 / 2$
And this is easy to remember because $Q=Y+T_{3}$ eigenvalues of $T_{3}= \pm 1 / 2$
and we want the electric charges to be $Q_{\nu}=0, Q_{e}=-1 \quad \mathrm{Y}$ charges of all other particles arising are fixed.

Symmetry breaking

The key elements of the symmetry Dreaking that led to $G_{\mathrm{SM}}=\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$ were

1) Choice of a spinor pointing in the direction of the right-handed neutrino, to break to $\operatorname{SU}(5)$
2) Choice of $\mathbb{C}^{5}=\mathbb{C}^{3} \oplus \mathbb{C}^{2}$ split

In model building with smallest Higgs representations one chooses
$\mathbf{1 6}_{H}$ to effect the first step of this symmetry breaking
$\operatorname{Adj} \equiv \mathbf{4 5}{ }_{H}$ for the second step. These two must be appropriately aligned, which is dynamically non-trivial

Finally, one usually takes the SM Higgs to reside in $\mathbf{1 0}_{H}$
This minimal model is not phenomenologically viable, for it cannot give the right Yukawa couplings
Options are bigger Higgs representations and/or non-renormalizable, higher dimension operators
This is why no convincing Spin(10) GUT model emerges

New observation

The choice of a split $\mathbb{C}^{5}=\mathbb{C}^{\star} \oplus \mathbb{C}^{2}$ is nothing else but a choice of a second complex structure \tilde{J} on \mathbb{R}^{10} that commutes with J that gives $\mathrm{U}(5)$
To see this, we need to introduce the notion of (an orthogonal) product structure
Definition: An orthogonal product structure K on $\mathbb{R}^{2 n}$ is a linear map $K: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$ such that $K^{2}=\mathbb{I}$ and $(K u, K v)=(u, v)$
Proposition: An orthogonal product structure K on splits $\mathbb{R}^{2 n}$ orthogonally into the two eigenspaces of K

$$
\mathbb{R}^{2 n}=V^{+} \oplus V^{-} \text {where } K V^{ \pm}= \pm V^{ \pm} \text {and }\left(V^{+}, V^{-}\right)=0
$$

Proposition: The subgroup of $\operatorname{Spin}(2 n)$ that commutes with an orthogonal complex structure K is

$$
\operatorname{Spin}(k) \times \operatorname{Spin}(2 n-k) \text { with any } k=0, \ldots, 2 n \text { possible }
$$

Definition: We call an orthogonal product structure K on $\mathbb{R}^{2 n}$ and an orthogonal complex structure J on $\mathbb{R}^{2 n}$ compatible if they commute $[K, J]=0$

Summary

- SM was proposed exactly 50 years ago, and almost immediately all GUT's were discovered.
- Spin(10) GUT is provides ultimate unification, where both forces and particles (of one generation) are unified. Also predicts the right-handed neutrino.
- There is not yet a convincing concrete Spin(10) GUT. But the representation theory provides a welcome organising principle. One needs to know very little to derive the SM particle content with all the charges.
- The only thing to remember is that one needs to choose $\operatorname{SU}(5)$ and then $\mathbb{C}^{5}=\mathbb{C}^{3} \oplus \mathbb{C}^{2}$

Outlook

- I argued that the best way to think about the symmetry breaking is in terms of commuting complex structures.
- One needs two commuting complex structures to see $G_{\mathrm{SM}}=\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$
- Geometry with two commuting complex structures is known under the name of biHermitian geometry.
- Complex structures are naturally parametrised by spinors of special algebraic type pure spinors.
- Where all this points to: An overlooked Spin(10) GUT that only has Higgs fields in $\mathbf{1 6}_{H}$

Final remarks

When both structures $\mathbb{C}^{5}=\mathbb{C}_{\star}^{3} \oplus \mathbb{C}^{2}$ and $\mathbb{C}^{5}=\mathbb{C}^{4} \oplus \mathbb{C}^{1}$ are present
we get the split $\mathbb{C}^{5}=\mathbb{C}^{3} \oplus \mathbb{C}^{1} \oplus \mathbb{C}^{1}$ which is the structure relevant to the SM after the EW symmetry breaking

So, we can effect all of the symmetry breaking from $\operatorname{Spin}(10)$ to $\mathrm{SU}(3) \mathrm{xU}(1)$ by a collection of commuting complex structures with their holomorphic top forms, or just complex structures

Complex structures with their holomorphic top forms are described by pure spinors. Complex structures are described by projective pure spinors. Conditions that associated complex structures commute are easy to impose as potential minimising conditions on the pure spinors. Even the types of arising splitting $\mathbb{C}^{5}=\mathbb{C}^{3} \oplus \mathbb{C}^{2}$ or $\mathbb{C}^{5}=\mathbb{C}^{4} \oplus \mathbb{C}^{1}$ can be controlled by the potentials. See the paper cited.

Conclusion: There exists a Spin(10) GUT model whose Higgs fields is a collection of $\mathbf{1 6}_{H}$
Two is not enough, three is sufficient, but probably the nicest model arises when one takes four.

New observation

The choice of a split $\mathbb{C}^{5}=\mathbb{C}^{\star} \oplus \mathbb{C}^{2}$ is nothing else but a choice of a second complex structure \tilde{J} on \mathbb{R}^{10} that commutes with J that gives $\mathrm{U}(5)$
To see this, we need to introduce the notion of (an orthogonal) product structure
Definition: An orthogonal product structure K on $\mathbb{R}^{2 n}$ is a linear map $K: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$ such that $K^{2}=\mathbb{I}$ and $(K u, K v)=(u, v)$
Proposition: An orthogonal product structure K on splits $\mathbb{R}^{2 n}$ orthogonally into the two eigenspaces of K

$$
\mathbb{R}^{2 n}=V^{+} \oplus V^{-} \text {where } K V^{ \pm}= \pm V^{ \pm} \text {and }\left(V^{+}, V^{-}\right)=0
$$

Proposition: The subgroup of $\operatorname{Spin}(2 n)$ that commutes with an orthogonal complex structure K is

$$
\operatorname{Spin}(k) \times \operatorname{Spin}(2 n-k) \text { with any } k=0, \ldots, 2 n \text { possible }
$$

Definition: We call an orthogonal product structure K on $\mathbb{R}^{2 n}$ and an orthogonal complex structure J on $\mathbb{R}^{2 n}$ compatible if they commute $[K, J]=0$

Summary

- SM was proposed exactly 50 years ago, and almost immediately all GUT's were discovered.
- Spin(10) GUT is provides ultimate unification, where both forces and particles (of one generation) are unified. Also predicts the right-handed neutrino.
- There is not yet a convincing concrete $\operatorname{Spin}(10)$ GUT. But the representation theory provides a welcome organising principle. One needs to know very little to derive the SM particle content with all the charges.
- The only thing to remember is that one needs to choose $\operatorname{SU}(5)$ and then $\mathbb{C}^{5}=\mathbb{C}^{3} \oplus \mathbb{C}^{2}$

