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Abstract: We develop the reduced phase space quantization of causal diamonds in $2+1$ dimensional gravity with a nonpositive cosmological
constant. The system is defined as the domain of dependence of a spacelike topological disk with fixed (induced) boundary metric. By solving the
constraints in a constant-mean-curvature time gauge and removing all the spatial gauge redundancy, we find that the phase space is the cotangent
bundle of $Diff*+(SM1)/PSL (2, \mathbb{ R})$, i.e., the group of orientation-preserving diffeomorphisms of the circle modulo the projective special
linear subgroup. Classically, the states correspond to causal diamonds embedded in $AdS 3$ (or $Mink_3% if $\Lambda = 0$), with a fixed corner
length, that have the topological disk as a Cauchy surface. Because this phase space does not admit a global system of coordinates, a generalization
of the standard canonical (coordinate) quantization is required --- in particular, since the configuration space is a homogeneous space for a Lie
group, we apply Isham's group-theoretic quantization scheme. The Hilbert space of the associated quantum theory carries an irreducible unitary
representation of the $BMS_33$ group, and can be realized by wavefunctions on a coadjoint orbit of Virasoro with labels in irreducible unitary
representations of the corresponding little group. A surprising result is that the twist of the diamond boundary loop is quantized in terms of the ratio
of the Planck length to the corner length.

Zoom link: https://pitp.zoom.us/j/943693722012pwd=NWNSsY no3RmMZIWUXOL ytWZ09PVDVVQT09
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Challenges of canonical quantum gravity

- Non-linear constraints/phase space
- Absence of local observables
- Perturbatively non-renormalizable in d>3

- Problem of time

It is worth to explore the non-perturbative quantization of gravity in simplified settings
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The system: causal diamonds

2+1 dimensional Einstein-Hilbert gravity with A < 0
Spacetime: domain of dependence of a topological disc D

Dirichlet condition for the induced boundary metric
(corresponds to fixing the total boundary length )

n® = Vdeth (K% — Khe?) -
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Two approaches in gauge theory

Pre-Quantum theory

impose constraints

quantize

Classical gauge theory
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impose constraints
remove ambiguities

Quantum theory

Quantum theory

quantize

Reduced theory
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Motivation

* Similar approaches have been considered for closed spacetimes. This leads to a
finite-dimensional reduced phase space. [Moncrief, Fischer, Carlip, Witten, ...]

* The causal diamonds are natural system to consider if we wish to understand
quantum gravity in a quasi-local setting.

* The low-dimensionality gives us great control of the problem, without making it
too trivial (the phase space is infinite-dimensional due to “boundary gravitons”).
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Contents

Constant-mean-curvature (CMC) time

* Solving constraints and removing gauge
* Reduced Hamiltonian

* Canonical quantization, Isham’s method

* Representation theory, spin/twist quantization
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Constant-mean-curvature time

In GR, there is gauge associated with
both time and space diffeomorphisms.

When there are corners/boundaries, we
need to be particularly careful to say
something is gauge or not.

The condition of fixing the induced
metric on the corner, hy, |5 = v, implies
that all refoliations are in fact gauge.
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Constant-mean-curvature time

The diamond can be nicely foliated by CMC
slices (A < 0 ensures this).

&
\

CMC = Constant-mean-curvature surface
K = h;, K*? = constant

where K2P is the extrinsic curvature.

This provides a convenient “gauge-fixing” for

time, the York time T = —K
[York 72]
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Constant-mean-curvature time

Writing KP as

&
\

Kab — sab D %Khab

where 0P is the trace-free part of K4,
the initial value constraints become

Momentum constraint: Vg‘)gab —

Hamiltonian constraint: —R(h) + g9b Ogp — X =10

1,
where Y = —2A+ ET
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Solving the constraints — Lichnerowicz method Sl

Start with “seed data” (hab, P ) satisfying

momentum constraint Vaaab =0 (But not necessarily the
Hamiltonian constraint)
boundary condition hlagp =y
Apply Weyl transformation (hab, aab) — (ﬁab, 5ab) — (e¢hab, e_z‘paab)
Momentum constraint V.62 =0 < Y.0%0=0
Boundary condition hlogp=v © ¢logp=0
Hamiltonian constraint Vi — Ry + e ?c%g,, —e®y=0

(Lichnerowicz equation in 2+1) -
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Solving the constraints — Existence and uniquiness

The non-positive cosmological constant implies

1
x=-2A+51°20

which ensures that the Lichnerowicz equation always has one and only one solution.

Each family of Weyl-transformed “seed data” leads to a unique valid initial data.

Any valid data corresponds [(h , Jab) N (e’lh ) e—zf‘lgab)]
to an equivalence class ab’ ab»

Abpzo
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Reduced phase space — Removing gauge

Remove gauge: Boundary-trivial spatial diffeomorphisms W: D - D

Reduced phase space = Space of physically inequivalent (classical) states

with W, = I

[(hap, 5°) ~ (P.e"hap, Wie 740 )] and Algp =0

This can be identified with the cotangent bundle of the space of “conformal
geometries” of the disc,

P=T*Q

\

[hab - l{—’*e}“hab] with LplaD =]

and Algp =0 -
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Reduced phase space — Determining Q)

Note that Diff t(S1), the group of orientation-preserving diffeos on S* ~ @D, acts on Q.

Given i € Diff*(§1), let ¢ € C*(S, R) be such that the boundary metric is preserved

Y,efy =y

Now extend this transformation arbitrarily into the disc,

(¥, d) € Difft*(D) x C*(D,R) , (W, ®) | . W, )

The natural action of Y on [h] € Q is

p[h] = [V.e®h]
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Reduced phase space — Determining Q)

This action is transitive because all discs are conformally equivalent (under conformal
transformations that act non-trivially at the boundary)

Therefore Q = Diff*(S§')/H, for some little group H.

To determine H we can look at a particular point of Q, e.g., the class of equivalence of the
unit round disc

[dr? + r?d6?]

The group of conformal isometries of the unit disc is PSL(2, R), so

Q = Diff*(S1)/PSL(2, R)
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Reduced phase space — Structure of P

The reduced phase space is thus

P = T*[Diff*(§)/PSL(2, R)]

The symplectic form is the natural one (associated with the cotangent bundle structure).

There is a non-trivial symplectomorphism to the reduced phase space of pure asymp AdS;,

Q x Q = [Diff*(s1)/PSL(2,R)] x [Diff*(s1)/PSL(2, R)]

[Maloney, Witten 10]
[Scarinci, Krasnov 13]

Pirsa: 23040159 Page 18/44



Reduced phase space — Alternative approach

Change from the ADM coordinates (hab, Uab) to “conformal coordinates” (‘P, A, Eab)

Reference

metric (W, 1) hab =Y,e A’_lab

gab — l_I_J*e—Zﬁ.&ab

- Possible to carry the reduction process explicitly by quotienting over degenerate
directions of the ADM (pre)-symplectic form.

- Induces a natural “coordinalization” for the reduced phase space.

- Useful for interpreting the physical meaning of quantum observables. -
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Physical interpretation of the states

What are all those states? There are no local degrees of freedom in 2+1 dimensions.
Since the diamond is locally AdS, it embeds into global AdS; spacetime.

Because the diamond is finite, its shape is observable.
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Physical interpretation of the states

We can think of the phase space P = T*[Diff*(5§1)/PSL(2, R)] as:

“A space of loops, with fixed length, that can be embedded
into AdS; (as the boundary of a spacelike disc).”

< e
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Some more pictures...

Produced with Mathematica

(Assuming Minkowski)
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The CMC Hamiltonian

We now identify the Hamiltonian H that generates
(CMC) time evolution on the reduced phase space.

Write the action in the form
S f dt(n® gy — 0) = f dz(pg - H)
Y Y

and read H.

We obtain,

H= fdzx et = "area of the CMC withK = —1"
D

[York 72]
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Reintroducing physical scales
This Hamiltonian is complicated. There are regimes where it simplifies.
We must reintroduce the physical scales:

Corner length, ¢

1

AdS length, €445 = 7=

Planck length, £, == AG

Pirsa: 23040159 Page 24/44



Quantization
Now we wish to quantize our reduced phase space, P = T*[Diff *(S1)/PSL(2, R)]
Since it is not trivial (no natural global coordinates), we must be careful
Example: A particle on the half-line

Phase space T*R* ~ R* X IR, with canonical coordinates (x, p)

-[ ~ P 7/K+

If x and p can be represented as self-adjoint operators satisfying [x,p] = i,
then p can be exponentiated to a generator of spatial translations

e 1 |x) = |x + a)

Since a can be arbitrarily negative, this is an improper quantization.
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Isham’s quantization scheme

“Find a transitive group G of symplectic symmetries of the phase space, and then construct
the quantum theory based on unitary irreducible (projective) representations of G.”

Each generator ¢; of the group is associated with a Hamiltonian charge 0Q;.
The Poisson algebra of these charges is homomorphic to the algebra of G.

Transitiveness implies that this set of charges is complete (i.e., any observable can be
locally expressed in terms of them).

Quantization proceeds by finding unitary irreducible representations of this algebra

1 "
{0, Q;} = Cfchk — E[Qier] = Cflchk
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Action on the configuration space

The configuration space Q = Diff *(S1)/PSL(2, R)
is a homogeneous space for Diff ¥ (S1)

Syldl = yYlo] = [P o ¢]

Naturally, this can be lifted to a (symplectic) action
on the cotangent bundle

Sv,b (p) = 5{;,—119

But this does not act transitively on the phase
space — it only acts “horizontally”.

We need also some sort of “vertical” action.
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Momentum translations

There is a natural way to define vertical
transformations, given a group K acting on the
configuration space Q

“Find a representation of K on a vector space V such
that at least one orbit in V is homeomorphic to Q”

Any w € VV* can be restricted to Q < V to define a
1-form field on Q.

Then the momentum translation is defined by

wp) =p—w

wherep € T*Q.
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Canonical group for the diamond

We could not find any representation of K = Diff *(§1) which
had an orbit isomorphic to @ = Diff*(S1)/PSL(2, R).

It turns out that the coadjoint representation of the Virasoro
group Vira (extension of Diff *(S1) by R) on its dual Lie algebra
vira” ~ Diff* D R, does have an orbit isomorphic to Q.

Thus, taking K = Vira and VV = poira™, we can have a transitive
group of symplectomorphisms of 7 = T*[Diff *(S1)/PSL(2, R)]
defined by

G = (vira™)* x Vira

Low,p) (@) = coady.p —w e

where w € (vira*)* ~ virq, Y € Vira and p is a cotangent vector on Q C pira”
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Canonical algebra for the diamond
The algebra of G is vira® @ vira. Recall that vira ~ R B¢ diff(S!) ~ R @ Vect(S?t)

It is convenient to consider a Fourier basis

central
Q-translations I (0, einf’ae) R =1(0,¢) + elements
Momentum transl. K= (em8 dg, 0) = (e 0)
which gives

[Ln, Lp] = i(n — M) Ly 4y — 4min’ OnsmoR
[Kn, Lin] = i(n — m)Kp 4y — 470in° 8y o T

[Kpn, K]l =0
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Canonical charges
We can evaluate the canonical charges generated on the phase space. In this Fourier basis,
Ly = B Ky = Qn

with central charges R —» 0 and T ~ 1.

Their Poisson algebra is
{Pn, Pn} = i(n = m)Ppym
{Qn, Pn} = i(n — m)Quym — 4min 8y im0
{Qn, Om} =0

This corresponds to the BMS; algebra (symmetries of 2+1 asymptotically flat spacetimes at

null infinity). [Barnich, Compere 07; Oblak 17] -

Pirsa: 23040159 Page 33/44



Twist of a loop
The twist T is the integrated torsion along a loop

(The torsion of a curve gives how its adapted frame rotates around it)

Euclidean example of twisted loop. (Lorentzian is similar.) -
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Spin/Twist
The charge P, can be interpreted as the spin of the diamond.
It corresponds to the SO (2) subgroup of Diff*(S!) c Vira
It coincides it the ADM generator of diffeos that act as isometries of the corner

We can also show that P, is proportional to the twist 7° of the diamond corner
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Quantum diamonds

The quantum theory is based on some unitary irreducible (projective) representation of the
canonical group G = (vira*)* % Vira

Since G is a semi-direct product of the form abelian X group, we “can” apply Mackey’s
theory of induced representations. [op/ak 16

A representation is given by “wavefunctions” on a coadjoint orbit of Vira with labels on
some unitary irrep of the corresponding little group H.

If the orbit is chosen as Q, the little group is

H = "Vira/[Diff*(S1)/PSL(2, R)]" = R x PSL(2, R)

This is compatible with the Casimir T being
represented as 1.
Imposing R = 0 picks the trivial irrep for R.

K
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Quantum diamonds
Equivalently, the Hilbert space H carries an irreducible representation of the algebra
[Py Pl = R(m — )Py
[Qn, Pl = A(m — n) Qi + 4TAN 0

[Qn: Qm] =0

satisfying the “reality” conditions P,:r =P ,andQ, =0Q_,
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Spin (twist) quantization
Note that the P,’s and Q,,’s act as ladder operators for the spin P,
[Po, P,] = nhB, [Po, Qnl = nhQy
Since these operators are represented irreducibly,
Spectrum(P,) = {(s + n)h, Vn € Z)
where s is some real number. We can take s € [0,1).
Assuming that time-reversal symmetry is realized in the quantum theory, s = 0 or 1/,

Therefore, the twist of the diamond corner loop is quantized as

. 1677.'2‘8]3
I

(s+n), nez
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What are those () charges?

Unlike the P charges, the geometrical meaning of the Q charges remains a mystery.

Speculation: The Q charges may be some linear combination of the following
set of “corner conformal-deforming’’ Hamiltonian charges (on-shell)

HOGS67) = 2 [ ds(uetn? Ky + 8707 = $767)

\ |

Associated with diffeos yt® Associated with flows {*
along the corner. These are along the future/past
precisely the P charges. horizon null generators.

(0% are the respective
expansion parameters.)
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What are those () charges?

Unlike the P charges, the geometrical meaning of the Q charges remains a mystery.

We know their formula in the abstract phase space variables, and we also know that they
must depend only on the conformal class of the spatial metric.

Moreover, both classically and quantum-mechanically, we know that —oo < Q,< 2m. The
value 21 is attained only by a (hon-normalizable) wave-function concentrated at the
conformal class of the symmetric disc.

R E
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Summary

* We considered 2+1 pure gravity, with A < 0, in the domain of dependence of topological
discs with fixed induced corner metric (causal diamonds).

* Using a constant-mean-curvature gauge for time, we solved the constraints and eliminated all
the gauge ambiguities. We found the reduced phase space P = T*[Diff*(5')/PSL(2, R)];

* The CMC Hamiltonian was given by the area of the CMC with K = —1, a complicated function
on the reduced phase space. It becomes “free” in a neighborhood of the symmetric diamond.

* We applied Isham’s group-theoretic method to quantize the system. The canonical group was
(vira™)* % Vira ~ BMS;. Mackey’s theory gives representations carried by “wavefunctions”
on coadjoint orbits of Virasoro, with labels in unitary irreps of the corresponding little group.

* We found that the spin is related to the twist of the diamond corner loop, which is quantized
in integer or half-integer multiples of 1672¢p /.

Pirsa: 23040159 Page 42/44



Open questions

 What is the nature of a “quantum causal diamond”? What are “shapes” given that
[Q,P] # 07

* What is the guantum dynamics of the diamond? Can the Hamiltonian be (perturbatively)
quantized in certain regimes?

*  Why has the geometrical meaning of the Q) charges been so elusive, given that the P
charges have very simple interpretations?

* Can the causal diamond be seen as a “subsystem” of a larger quantum spacetime? Can
the twist quantization be promoted to a general statement about loops in AdS;? Can we
obtain a finite entropy by fixing certain parameters (like P, and H, or Py and Q,)?
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Thank You!
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