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Abstract: Quantum causality is an emerging field of study which has the potential to greatly advance our understanding of quantum systems. In this
paper, we put forth a theoretical framework for merging quantum information science and causal inference by exploiting entropic principles. For this
purpose, we leverage the tradeoff between the entropy of hidden cause and the conditional mutual information of observed variables to develop a
scalable algorithmic approach for inferring causality in the presence of latent confounders (common causes) in quantum systems. As an application,
we consider a system of three entangled qubits and transmit the second and third qubits over separate noisy quantum channels. In this model, we
validate that the first qubit is a latent confounder and the common cause of the second and third qubits. In contrast, when two entangled qubits are
prepared and one of them is sent over a noisy channel, there is no common confounder. We aso demonstrate that the proposed approach
outperforms the results of classical causal inference for the Tubingen database when the variables are classical by exploiting quantum dependence
between variables through density matrices rather than joint probability distributions.
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Inspired by Murat Kocaoglu et al. (NeurlPS
2020)

* Applications of Common Entropy for Causal Inference:

« Common Entropy [G(X,Y) := H(Z)]: Given P(X,Y), find Z with minimum
entropy such that X Il Y|Z.

* Goal: Identifying Correlation without Causation via Rényi Common Entropy
(latent graph (aﬁ using joint probability distribution P(X,Y).

» Assumption: Suppose latent confounding is weak, i.e., H(Z) < 6

GX,Y) <6 In most cases: G(X,Y) > 6
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(a) Latent Graph (b) Triangle Graph (c) Direct Graph (d) Mediator Graph
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Our Contributions

* |[dentification of latent graphs in quantum systems
* Conceptual challenges
* Technical challenges

* Benefits of using quantum entropy in classical settings
* Tubingen data set
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Reichenbach’s common
cause principle

* |f two random variables X

and Y are statistically
dependent, then there
exists a third variable Z that
causally affects both. As a
special case, Z may coincide
with either X or Y.
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* |f two random variables X
and Y are statistically HANS REICKENBACH
dependent, then there
exists a third variable Z that
causally affects both. As a
special case, Z may coincide
with either X or Y.

* this variable Z makes X and
Y conditionally independent
OO
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Conceptual challenges in quantum systems

* Coexistence of quantum systems:

* For a given causal structure, a coexisting set of systems is one for which a joint
state can be defined.

* Because of the impossibility of cloning, the outcomes and the quantum
systems that led to them do not exist simultaneously.

* If a system X is measured to produce Y, then pyy is not defined and hence
neither is the entropy S(pxy)-

* In this presentation we assume that pyy is given.
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Conceptual challenges in quantum systems

* Coexistence of quantum systems:

* For a given causal structure, a coexisting set of systems is one for which a joint
state can be defined.

* Because of the impossibility of cloning, the outcomes and the quantum
systems that led to them do not exist simultaneously.

* If a system X is measured to produce Y, then pyy is not defined and hence
neither is the entropy S(pxy)-

* In this presentation we assume that pyy is given.
* Quantum state tomography
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Formalism of Classical probability vs Quantum
theory

Probability distribution/Density P(X) Px
operator (matrix)
Joint distribution/Joint density BP{X 1) Pxy
Marginal distribution/Partial trace =Tr
g / P(X) = ZP(X’ Y) Px v (Pxy)
Y
Conditional probability/Conditional P(X,Y) 1 1

P(Y|X) = P(X) prix = (042 ®ly)pxy (b *®ly)
S(Z) = —Tr(pzIn(pz))

density matrix

Shannon/von Neumann Entropy

H(X) = = > P In[Pxp)

Conditional Entropy HY|X)=HX,Y)—HX) =0 SV |X) =S¥, X) S(X)eER
Mutual Information IX;Y)=HX)+H)—-HX,Y) | [,(X;Y) =SX) +S() —S5(X,Y)
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Inference of quantum common cause in the
literature of quantum computing and information

* Wolfe et al., 2020: Quantifying Bell: the Resource Theory of Nonclassicality
of Common-Cause Boxes

* Allen et al., 2017: Quantum Common Causes and Quantum Causal Models

* Chaves et al., 2014, 2015: in some cases (hidden) common causes can be
distinguished from direct causation using information from the theoretical
generalization of Bell’s inequalities and causal directed acyclic graphs
(DAGS).

* We introduce an alternative algorithmic approach to distinguish between a
hidden common cause and direct (indirect) causal influences among two
observed quantum systems via quantum common entropy.
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Quantum Common Entropy for Identification
of Latent Graphs

* Quantum Common Entropy [G(X,Y) := S(Z)]: Given pyy, find Z with
minimum entropy such that X 1L Y|Z.

* Goal: Identifying Correlation without Causation via quantum Common
Entropy (latent graph (a)) using joint density matrix pyy.

» Assumption: Suppose latent confounding is weak, i.e., S(Z) < 6

GX,Y)<@ In most cases: G(X,Y) > 6
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(a) Latent Graph (b) Triangle Graph (c) Direct Graph (d) Mediator Graph
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How to compute quantum common entropy?

* Quantum Common Entropy [G(X,Y) := S(Z)]: Given pyy, find Z with
minimum entropy such that X 1L Y|Z.

* Difficult to compute directly

* Instead of that we find the trade-off between the entropy of the
unmeasured confounder and the quantum conditional mutual information
of two observed quantum systems given the unmeasured confounder.

L =1,(X;Y|Z) + BS(Z)
* Io(X;Y|Z) = 0 implies the quantum conditional independence of X and Y
given Z. And §(Z) is small according to our assumption.

* Rather than searching over pyy, and enforcing the constraint pyy =
Tr;(pxyz), we search over p(Z|X,Y). Why and how?
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How to write our objective loss function
L=1,(X;Y|Z) + BS(Z) based on p(Z|X,Y)

o L=1,(X;Y|Z) + BS(Z)

e =S(XZ) +S(YZ) — S(Z) — S(XYZ) + BS(Z)

e =S(XZ) +S(YZ) — S(XYZ) + (B — 1)S(Z)

e = S(X) + S(Z|X) + S(Y) + S(Z|Y) — S(XY) — S(Z|X,Y) + (B — 1)S(Z)
¢+ = SZIX) +SEZIY) = SZIX,Y) + (B —1)S(Z) + I,(X; Y)

* Due to our choice is quantum conditional states, we can rewrite all of
terms based on p(Z|X,Y). For example:

c 0z1x) = Tr ()| pzix, v [ (x|
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Algorithm 3. QLATENTSEARCH: An iterative algorithm for com-
puting exact quantum common entropy.

How to find a stationary point
. . . Input: Joint density matrix pxy; Number of iterations
Of th e o pt| mization pro b | em? L Do o ol L e

L =Ig(X;Y|Z)+ BS(Z), Initialization of
) i = m(Z|X,Y).
An iterative algorithm .

1 for 1 1: Ndo

/* Form the joint density matrix: */
2 Pxyz = “}‘1\:'\2 R 1z)pi(Z|X,Y ‘(f-’,;\('l? ® Iz);
/* Calculate Phase: */
= - A : /* (i) Calculate p;(Z1X): */
1) Calculate Phase (iteration i): In this s | Dieg = Try(shey ) /# Then, compute sy, 5 by
phase, we use partial trace to get reordering the entries of pi

4 p"\ = J'T'z{p"_,\./:];

P (Z|X) (lines 3 to 5), p*(Z|Y) e | o213 (o) 200y ), 2 () 20Ty )

1 L 1 /* (ii) Calculate p;(Z1Y): */
(lines 6 to 8), and pz (line 9) from o | by =Trx(slys) 77 Thon, coupute

- Piyvz =Ix ®pyz
pXYZ. 7 Py \:’ rz(Py z);

8 pilZY) <

(Ix ® (p%) 1/2 @ Iz)p} . vz(Ix @ (p}) " 1/2

14 fz_\:

2) Update Phase: In this phase we
update pl+1(Z|XJ Y) tO get p;’(-;lz /# (iii) Calculate p/ %/

. . . B Pz =Trxy(Pxyz);
(line 10) for the next iteration. i Vel Bans) !
10 {)‘,1ir,,‘. ]v—
exp(log(pi(Z| X)) + log(pi(Z|Y)) + (8 — 1) log(p%) );

3) Return: pyy,
11 end

2 return pxyz : l:p?‘("“z & Iz)pny H_Zl.\'_}‘][p;.’z ®1z)
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QINFERGRAPH: An algorithm for the identification
of latent confounders

* Assumption: Consider any causal model with observed quantum
subsystems X and Y. Let Z represents the quantum system that
captures all latent confounders between X and Y. Then §(Z) < 6,
where S(Z) = —Tr(pzIn(pz)).

* QINFERGRAPH calls QLATENTSEARCH N times to figure out if there
exist a W, for which I (X;Y|W) < T, i.e.,, W makes X and

Y conditionally independent.

* Also, if the von Neumann entropy of W is enough small such that
S(W) < amin{S(X),S(Y)} forsome a € (0,1), then

* The algorithm declares W is a latent confounder. L = I,(X;Y|Z) +
BS(Z)
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Synthetic Setting of latent graphs in noisy
channels

* Model 1: Assume a 2-bit input Z € {00,01, 10, 11}. Let each bit of Z be in
the state 1 with probability g and 1 — g otherwise, and independent of
each other.

» / is transmitted over a binary symmetric channel with independent bit-
error probability of p; and is denoted X (See Figure with Z as input and X

as output).
* A cloned version of Z is transmitted over a binary symmetric channel with
independent bit-error probability of p, and is denoted Y. @ —{%)
' (XY, Z) = p(DpX|Z2)p(Y]2). @
* We marginalize out Z to obtain the joint probability @< @
distribution for the latent graph X < Y. s o
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ldentification of latent graphs in noisy

channels

* Validation of latent graph in Model 1 via classical causal inference
(@ = 0.8) vs quantum causal inference (&« = 0.2) forT = 0.001 and

B € (0,1).
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Some highlights for results in Model 1

* When the probability of errors, i.e., p; and p, are very small, the
latent confounder Z is hardly distinguishable from X (or Y).

* |t seems that the classical causal inference algorithm is much more
sensitive to the choice of hyperparameter a, while QINFERGRAPH is
more robust to the choice of this parameter.

* QINFERGRAPH constantly returns local optima with lower entropy in
comparison with the classical INFERGRAPH algorithm.
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Real Database with cause-effect pairs:
Tuebingen dataset

* Tubingen: Database with cause-effect pairs of the form (a) or (b).
* First cause-effect pair of data from Tubingen

database: altitude causes temperature. F—0) G—O
(a) (b)

temperature

altitude

Algorithm True positive False positive False negative Accuracy
QINFERGRAPH (o = 0.2, T = 0.005) 0.83 0 0.17 0.83
Classical INFERGRAPH (@ = 0.8, T = 0.001) 0.32 0 0.68 0.32
Classical INFERGRAPH (o = 0.7, T = 0.001) 0.49 0 0.51 0.49
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Why should not map quantum to classical
directly?

* We lose some quantum information due to the loss of entanglement.

* To verify this, we used a depolarizing channel as described in the
paper: in all cases failed to obtain the correct results.
p
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Future Work

* Experiment on quantum simulators.

* The classical algorithm is fast even with large support sizes of X and
Y. Since our algorithm uses matrices, it’s quite slow when the support
size of X or Y becomes large.
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Quantum Common Entropy for Identification ., 1 find a stationary point

of Latent Graphs of the optimization problem?
An iterative algorithm

* Quantum Common Entropy [G(X,Y) := S(Z)]: Given pyy, find Z with
minimum entropy such that X 1l Y|Z.

0471543756

053 0
0.32 0

= Goal: Identifying Correlation without Causation via quantum Common 1) Calculate Phase (iteration i): In this -
Entropy (latent graph (a)) using joint density matrix pyy. phase, we use partial trace to get
. . ] o o3 PU(Z|X) (lines 3 ta 5), p'(Z|Y)

Assumption: Suppose latent confounding is weak, i.e., S(Z) < @ {lines 6 10 8), and piZ (line 9) from
Pyz-
GX,Y)<@o In most cases: G(X,Y) > 8 2) Update Phase: In this phase we
— . : update p;,; (Z]X, ) to get pitl
Y ” " \il : (line 10) %url the next \teratior:(.yZ | o

x) ) X —{¥ (¥ XOHMH(Y) 3) Return: prys lomiin 2%

() Latent Graph | (b) Triangle Graph (¢) Direet Graph (d) Mediator Graph e :
|dentification of latent graphs in noisy Real Database with cause-effect pairs:
channels Tuebingen dataset
* Validation of latent graph in Model 1 via classical causal inference « Tubingen: Database with cause-effect pairs of the form (a) or (b).

(a = 0.8) vs quantum causal inference (a¢ = 0.2) for T = 0.001 and . E i = 7
B € (0,1). * First cause-effect pair of data from Tubingen P
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