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Summary

© Motivation

@ Configuration spaces for field theories.
© The phase space of a field theory.

© Poisson brackets.

@ Differentiability. ™,

@ Examples in Sobolev spaces.
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Motivation

The holonomy-flux algebra in Loop Quantum Gravity involves distri-
butional objects.

In practice it must be defined by means of a relatively subtle regulari-
zation procedure.

Naive, straightforward computations quickly lead into trouble (appa-
rent violations of the Jacobi identities).

In order to make computations rigorous, some care with functional
analytic issues seems necessary.

This may be the case for all field theories

In particular when boundaries are present.
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Configuration space

The configuration space @ for a mechanical system is, usually, a finite-
dimensional differentiable manifold.

The configuration spaces for field theories are “spaces of regular enough
functions” defined on some spatial manifold X.

The specification of what regular means often reduces to saying that
the fields are as smooth as needed, so that they can satisfy dynamical
equations involving differential operators.

More care is needed. For instance, the specification of the topology of
infinite dimensional manifolds (Banach manifolds, Hilbert manifolds,...)
may be necessary and play an important role.

Sometimes it is not just a matter of mathematical rigor.

In this talk | will use Sobolev spaces as configuration spaces.
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Phase space

Lagrangian dynamics is defined by a real function L : TQ — R on the
tangent bundle TQ of the configuration space @ from which the action
is built as a real function on a space of appropriate paths in Q.

The stationary points of the action correspond to the physical evolu-
tion of the system. They are given by the Euler-Lagrange equations.

Hamiltonian dynamics takes place in the phase space T*Q, the co-
tangent bundle of the configuration space Q. A fiber 77Q (g € Q) is
dual to the fiber T,Q (a topological vector space).

Whereas in finite-dimensional manifolds the dual spaces are very simple,
the infinite dimensional case is richer and more subtle.
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The canonical symplectic form

o If Q is finite-dim T*Q is endowed with a canonical symplectic form

Closed: d2 = 0.
Non-degenerate: > : X(Q) — QY Q) : X+ Q(-,X) is an isomorphism.

@ In the finite dimensional case if we have coordinates g; on @ and
write 1-forms as o« = ) ; p;idq' we can use the g’ and p; as canonical
coordinates in phase space. In terms of them the symplectic form is

Q=Y dq' Adp;.
i

@ This can be interpreted in the following way: given two vector fields in
T*Q. X=3%; X0, + > i XP0p, Y=3, Y0, + > ; Y/ Op we have

QX,Y)=) YPX - ) XPY,.

1 I
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The canonical symplectic form

A point in T*Q can be interpreted as a pair (x,p) with x € Q and
pe T;Q, (i.e. a covector).

A vector X in T, ) T*Q can be interpreded as a pair (Xq, Xp) with
Xq € TxQ and X, € TFQ. We can then write

QX Y) = Yp(Xg) — Xp(Yg) ()

What about field theories? One is tempted to “generalize as usual”

quf A dpj ~ / dg(x)A dp(x)d"x,

!

where 2 is the manifold where the fields live.

This, however, does not make much sense. For instance, what measure
should be use in the integral?
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The canonical symplectic form

@ The correct way to think about this problem is to use () and be careful
with the duals! (whose definition depends on the functional details of
the configuration space).

Q(X: Y) : Z';(YPi(qu) - XPi( Yq'){%*

@ A concrete, and properly justified, mathematical description of the
covectors in the fiber 77 is necessary!

1See Marsden, Applications of global analysis in Mathematical Physics.
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Hamiltonian vector fields and Poisson brackets

@ On Banach manifolds modeled on reflexive spaces (i.e. such that H** and
H are linearly isomorphic) the 2-form (2 is closed and non-degenerate
(strongly symplectic or just symplectic).

@ Interesting examples are manifolds modeled on Hilbert spaces.

e The Hamiltonian vector field X in T*Q associated with a differen-
tiable function f : T*Q — R is the (unique) field X' satisfying
1xr 2 = df .

e If f and g are two real differentiable functions in 7*Q their Poisson
bracket is defined as:

{f, g} := df(XE) = XE(f) = Lxef = 1xedf = 1x515rQ = Q(X, XE)
X

where X’ and X& are the Hamiltonian vector fields defined by f and g.
e Notice that {f,.g} = —{g,f}.
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Example of a Sobolev space

In this talk | will use Sobolev spaces. Strictly speaking their elements
are not functions but, rather, equivalence classes of functions, so | will
work with a slight generalization of the physical concept of field.

| will look at examples in one dimension.

Definition 1: Let | be an open interval of the real line R, bounded or
unbounded, and let CL(1) denote the space of continuously differentiable
real functions with compact suport on | (test functions). We define

A I /u;p’ = /gg’),th e CL(1))
J e

The “functions” in H(/) have square integrable weak derivatives
defined on test functions by integration by parts. | will write g = /.
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Example of a Sobolev space

@ Theorem 1: With the scalar product

/ i =il

J 1

and its associated norm ||ul| 1 1= (u, u) 1, the space H'(1) is a sepgrable
Hilbert space.?

o Theorem 2: Let u € HY(I) and | a bounded or unbounded interval of

R, then there exists a continuous function i € C(I) such that u = i
almost everywhere, and

X
/ J(t)dt, VYx,yel.
y

e This provides a very useful characterization of the elements of H'(/).

See Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations.
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Example of a Sobolev space

Another useful (and representative) result:

o Theorem 3: Let u,v € H*(I). Then uv € H'(I) and (uv) = v'v+uv' .
Furthermore, the formula for integration by parts holds:

b
(a)—/ w', Vabel.

@ As a consequence H!(/) is a Banach algebra.

o The product of elements of H!(/) is well defined.
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Sobolev spaces (comments)

There are more general examples of Sobolev spaces (dimensions, num-
ber of derivatives, LP,...)

The elements of H!(/& have continuous representatives in /. We can
talk about the values of u € H(/) at any point x € [ despite the fact
that the elements of H!(/) are defined only modulo zero measure sets.

The boundary values (traces) of u are well defined if / is bounded.

The continuous representative i of u € Hl(l) is, actually, differentiable
a.e. and the classical derivative is equal to the weak derivative a.e.

In Hilbert spaces the duals are characterized by the Riesz-Fréchet re-
presentation theorem:

Let F : H — R be a linear map on a real Hilbert space H, then F is
continuous if and only if there exists b € H such that F(v) = (1, v)y ,
for all v € ‘H. Furthermore, v is unique and ||F ||+ = ||¢||% -
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Differentiability and functional derivatives

The following definition of differentiability is standard in mathematics:

o Definition 2 (Fréchet differentiability): Let 3, and B> be two Banach
spaces with norms || - ||1 and || - ||o respectively. Let A C By be open and
x € A and consider a function f : A — B>. We say that the function f
is Fréchet differentiable at x if there exists a linear and continuous map

dyf : By — B : h— dif(h), called the differential of f at x, such that

’ |f(x+ h) — f(x) — dyf(h)|2
m
h—0 | A1

=115

When the differential exists it is unique.

The differential of a linear and continuous function coincides with itself.
Differentiability is a useful concept that all&tvs us to extend many re-
sults of analysis in R” to infinite dimensional Banach spaces.

This is the kind of differential used to define the exterior derivative in
differential geometry.
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Functional differentiability in gravity

In the Lagrangian and Hamiltonian formulations of field theories on ma-
nifolds with boundaries, the word differentiability often means that the
variation of a functional S[¢] depending on fields ¢ has the form

(55:/ gé@b,
Jm 09

with no boundary integrals in the right hand side.

This RT-differentiability condition guarantees that the variational equa-
tions coming from the action do not have boundary contributions that
might clash with the boundary conditions imposed on the fields.
The Fréchet and RT-differentiability concepts have little in common.
The mathematical consequences of Fréchet differentiability are clear, but
it is quite dangerous to export them to situations in which diffe-
rentiability is understood in the second sense.

A situation where this applies is the computation of Poisson brackets
in field theories on manifolds with boundaries.
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Poisson brackets again

@ The relevant differentiability concept to compute Poisson brackets is
Fréchet differentiability (why use the other?) combined here with the
mathematical properties of Sobolev spaces (configuration manifolds).

@ [he standard formula found in the physical literature in the context of
field theories is

reh= | (6;5(2) 07~ o) mf()) s

@ On the other hafid, remember how Poisson brackets look like for field
theories.

QX,Y) = Yp(Xq) — Xp(Yq)

e Can we connect both expressions?

J. FERNANDO BARBERO G. (IEM-CSIC) POISSON BRACKETS PERIMETER 20/04/2023 16 / 29

Pirsa: 23040132 Page 17/30



Functional derivatives again

To do this the following definition of functional derivative is very useful:

Definition 3 (Functional derivative): Let us consider a differentiable
function F : H — R on a Sobolev Hilbert space H. The functional
derivative of F at ¢ € H, denoted as D,,F, is the unique element of H
satisfying

dyF(h) = (DyF,h)y,

for all h € H.

This functional derivative D, F is the Riesz-Fréchet representative
of the Fréchet-differential d,,F.

This is well defined as a consequence of the Riesz-Fréchet representa-
tion theorem and the fact that the differential is a continuous linear
functional.
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Poisson brackets again

o By using the Riesz-Fréchet representatives of X! and X5 (X! and
X5, respectively) we find

O,
{f.g) = QX .XE) = (X8 X{)u — (X[ XE)u

@ In order to write the symplectic form in terms of functional derivatives
we introduce partial functional derivatives in the obvious way. As we
have two arguments (fields and momenta) | denote them as D, and D

e If the configuration space is a Sobolev space H we have

{fg} = <Du,9f D’ﬂ'g>H — <D¢g Dﬂ'f>H

Notice that it is written in terms of the scalar product in H!
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Examples: the evaluation

Take H'(0,1) as the configuration space.

Let x € [0, 1]. Define the evaluation Ev, : H}(@,1) = R : ¢ — &(x),
where ¢ is the continuous representative of ¢ € H*(0, 1) whose existence
is guaranteed by Theorem 2.

For every ¢ € H(0,1) we can show that Evy(p) can be written as a
scalar product in H1(0,1), indeed, let

( cosh(1 — x)cosh t
sinh 1

t € [0,x]
Ex 1 [0,1] = R:t = E(t) = <
cosh x cosh(1 — t)
\ sinh 1

t € [x.1]

then Evy(p) = 3(x) = (Ex|¢) i [Exercise]. Ex € H'(0,1).
Notice that for x, y € [0, 1] we have &E(y) = &, (x).
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Examples: the evaluation

As a consequence of the previous result we immediately see that Evy is
linear and continuous, i.e. Ev, € H(0,1)*,Vx € [0, 1].

This implies that Evy i@ differentiable and the differential is given by
Ev, itself. '

d,Evy = Evyx < d,Evy(h) = Evy(h) = h(x),¥h € H'(0,1).
According to our definition the functional derivative of Ev, is then
BB — €y

which is independent of © € H'(0, 1).

It is not possible to define the evaluation of the derivative of an ele-
ment of u € H1(0,1) despite the fact that the continuous representative
of such an v is absolutely continuous and, hence, differentiable a.e.
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Examples: a non RT-differentiable function

@ Let us consider now the non-linear function

V:Hl(O,l)4,»}15%:-;,»9f—>1

This is well defined because ¢ € H(0,1).

@ This function is not differentiable in the RT sense because

1 1k
v = [ 60) = ¢ e() - £ 060(0) — [ 6.
0 J0

1 ~
. oV
which is not of the form 0V = / —5VO<,-9H (there are boundary terms).
;8

e Furthermore, notice that the preceding computation is not justified if ©”
is not defined [which it does not have to for a generic ¢ € H*(0,1)].
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Examples: a non RT-differentiable function

However, V is Fréchet-differentiable and d,V(h) = / o'H.
[0,1]

In order to show that this is indeed the Fréchet-differential of V we have
to check its linearity, its continuity and also (see the definition)

The linearity of d,V is obvious.
Continuity [A: Bl — By linear; 3C > 0 : ||Ax]|2 < CHXHl Vx € By ]

‘/ . ‘/ (S + h - )|:|<%h>H1—<%h>L2\
J10.1] [0.1]

M|+ (e, byl < llellurlhllar + el bl e

< 2[| @]l [l
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Examples: a non RT-differentiable function

@ | have used the Cauchy-Schwarz inequality and |[|¢||;2 < [[¢)]|y2 for
every v € H(0,1).

1 1
@ Finally 0 < — / (W)?| < —— / h? + (K)?)| = || h|| .
B0l Jio Tl o )| = 1Al

1
The continuity of the norm immediately gives |lim —— / (| =
h—=0 2|[h|| | Jio.1)

@ A convenient description of the functional derivative D,V € H(0,1)
can be obtained by considering its evaluation for every x € (0, 1)

Ev, (D,V) = (£, DoV = dyV(E) = / HEL = (B, Wy — (B, )i
Jio.1]

_ X 1
=u(x) — COSh_(l X) / u(t)cosh tdt — Sl / u(t)cosh(1l — t)dt.
sinhl /g

sinh1l /,
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Poisson brackets of the canonical evaluations

o Take the phase space H'(0gl) x H'(0,1)* = H'(0,1) x H*(0,1).

@ Define the projections

proj, : H*(0,1) x H(0,1) = H(0,1) : (¢,
proj, : H1(0,1) x H(0,1) — H(0,1) : (¢,

and the partial evaluations (x € [0, 1])
o, := Ev,oproj;, [y := Evyoproj,,

@ These are real differentiable functions in the phase space H(0,1) x
H(0,1) because proj;, proj, and the evaluation Ev, are differentiable.

@ T[heir Poisson brackets are given by

{(Dx: Hy} — <D99¢X9 Dﬁrﬂy>H1 _ <Dwﬂ><: DW¢Y>H1
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Poisson brackets of the canonical evaluations

A simple computation using the definitions gives
D, ®x(p,7) =&, Dey(p,m) = &, , Dr®x(p,m) = 0, DM (p,m) =0,

so that

{9, Ty k= (DO, Dally) it = (Do, Dy ) i = (Ex, € pir =Ex(y)

These Poisson brackets are completely determined by the canonical
symplectic form in H*(0,1) x H*(0,1)*.

They are the basic Poisson brackets in H*(0,1) x H*(0,1)* and play
the role of the {p(x),7(y)} = d(x,y) in the usual presentations of the
Hamiltonian formulation of field theories [with d(x, y) ~ Ex(y)].
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Poisson brackets of the canonical evaluations

Both ®, and 1y are real functions in phase space.

Their Poisson bracket is also a real function in phase space. In this
example, this function is constant ?ﬁ: does not depend on the phase
space point (¢, 7)].

Notice that {®,, My} = Ex(x) which is well defined!

All the objects used are suitably regular, in particular & € H(0,1).
Notice also that, at variance with the standard interpretation of the
basic Poisson brackets for the scalar field, now {®,.1,} is never zero.
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Poisson brackets involving V

o We start with {®y, V} = —dV(Xg, ). Now g

{0x, Ve 7m) = =d, 1)V (Xe) = —(dyV o proj; ) (X,
— A V(X,) = —dV(0) = 0 = {&,,V} = 0.

@ The computation of {,,V} = —dV(Xp,) is analogous
{Ny, V}e,m)=—d(pnV(Xn)=—(d,V o proj;)(Xp)

=—daW(Xp)=—d V(& ):—/ 5)’,@’.
[0.1]

@ There are no obstructions to perform the previous computations.
The boundary does not introduce any complications.
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Poisson brackets involving V

@ [he resulting Poisson brackets are Fréchet-differentiable functions. They
can be plugged into the Jacobi identity.

o In particular, {I1,,V} is differentiable because it can be written as F =
f o proj; with

J10.1]

which is linear and continuous.
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Final comments

@ Despite what we have all being taught, the transit from (Hamiltonian)
mechanics to field theories is not straightforward.

@ The configuration spaces for field theories carry important structures
that play relevant roles.

@ Sobolev Hilbert spaces are nice configuration spaces because they
allow us to use derivatives while keeping a scalar product.

The big question
Can we define interesting and useful field theories in these spaces?

Reference: J.F.B.G., M. Basquens, B. Diaz and E.J.S. Villaserior. Poisson
brackets in Sobolev spaces: a mock holonomy-flux algebra. Physica Scripta
97 (2022) 125202. ArXiv:2207.00342
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