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Abstract: Causal reasoning is vital for effective reasoning in many domains, from healthcare to economics. In medical diagnosis, for example, a
doctor aims to explain a patient's symptoms by determining the diseases causing them. This is because causal relations, unlike correlations, allow
one to reason about the consequences of possible treatments and to answer counterfactual queries. In this talk | will present two recent causal
inference projects done with my collaborators deriving new algorithms to solve problems that arise when applying causal inference in the real world.
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Motivating example

e The findings were very weird indeed, flying in the face of medical
knowledge and confounding experts

e Yet the finding was irrefutable: death rates for vaccinated people are
higher than for unvaccinated people

Do vaccines work?
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Let’s look at a picture

The average unvaccinated person is
much younger than the average
vaccinated person.

Therefore they have a lower mortality
rate. Any benefit from the vaccines is
swamped by the increase in mortality
with age!

+ Mortality J

Age is a confounder between Vaccination
Vaccine Status and Mortality Status

When we control for age,
vaccinations are shown to reduce
mortality rate.
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Motivating example

e Any action or policy change based on these correlations—such as
whether to vaccinate —would not increase patient survival.

Take home: Relying on correlations extracted from observational data can
lead to embarrassing, costly, and dangerous mistakes.

e To overcome this, we need to understand cause and effect

Why is this important for Spotify?
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Why is this important for Spotify?

e Usually randomised controlled trials or A/B tests tell us about cause & effect.

e But sometimes A/B tests can’t be performed. They could be too damaging to
user experience, or technically too hard to implement:

o “Do app crashes cause churn?”
o “Does podcast or audiobook consumption cause retention?”

e Causal Inference provides a set of methods and tools for learning and
quantifying cause and effect, even without A/B tests — given some
assumptions.
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Disentangling joint-interventions

e In many applications, only a single intervention is possible at a given time, or interventions are
applied one after another in a sequential manner

e However, in some areas, multiple interventions are concurrently applied:

o in medicine, patients that possess many commodities may have to be simultaneously
treated with multiple prescriptions;

o in computational advertising, people may be targeted by multiple concurrent campaigns,
and so on.

o during the pandemic, many interventions were applied at same time, e.g. mask wearing,
work from home, schools closed, etc.

e How can we learn the individual effect of each intervention?
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Problem: disentangling interventions

Given samples from observational and joint-interventions data

E[Y|X¢ = .’L‘i,Xj = l‘j,C = C], and E[Y[dO(Xt = in,Xj — :L'j),}? = C]

When can we learn, or identify, conditional average causal
effects of single-interventions

IE[YEio(X,; _ xi)JXj =2;,C=d, o E[Y|X; = :ci[do(Xj _ xj)Jc =
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|dentifiability

A quantity is identifiable from a specific type of data if every
model that agrees on that data produces the same value for the
quantity

Hence, if two models agree on the data, but not on the quantity,
then it is not identifiable from that data
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This is not identifiable in
general

Intuition:

All variables are binary, and all latents are

rfectly correlated.
PEREEY X1=U Xy =

Observationally, the models look the exact Xo = XU, Xo
same! Moreover as Y is the same function of

X’s in both models, joint-interventions are the Y =X L X 2 U x Y
same

| I .
SISks
=
3

But when we intervene on X1, X2 behaves
differently in both models—as X2 doesn’t
causally depend on X1 in M’, but it does in M. U1=U 2=U y

Hence observations and joint-interventions perfecﬂy correlated bits
are not enough to fully constrain
single-interventions.

That is, we need more assumptions for identifiability
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But it is identifiable from extra assumptions

Theorem 2 (Identifiability of disentangled conditional
average treatment effects in additive noise models with
symmetric structure).

Let M = ({C,X,Y},U, f,Py) be an SCM, where
o= L0 U0 V=1 B
Y = fy(C,X)+ Uy,
C L U and Py ~ N(0,%X). The estimand
E[Y |do(X;), C] is identifiable from the conjunction of

two data regimes: (1) the observational distribution, and

(2) any interventional distribution on a set of treatments
X € X that holds X;: X; € Xy
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But it is identifiable from extra assumptions

Theorem 2 (Identifiability of disentangled conditional
average treatment effects in additive noise models with
symmetric structure).

Let M= ({C,X,Y},U, f,Py) be an SCM, where

Xz=fz(C)+U?,, \V’?;z].,...,K,
Y = fy(C,X) + Uy,

C 1L U, and Py ~ N(0,X). The
E[Y |do(X;), C] is identifiable from the conjunct
two data regimes: (1) the observational distribution, a

(2) any interventional distribution on a set of treatments
X € X that holds X;: X; € X
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This additive noise model still
allows for correlations and
interactions between
treatments, through observed
and unobserved confounders
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Learning algorithm based on
results

e L(SC@';Q, E) = PU(iL'z—fg(PA(ZEZ),Q),E)
Estimating a structural causal model from a
combination of observational and interventional

data boils down to:

L : Algorithm 1 SCM Estimation for Symmetric ANMs
1.  estimating the structural equations,
estimating the noise distribution Input: Dataset D o
Output: Parameter estimates 6, ¥
1: Initialise # and X

E[Y|C; do(Xin); Xons] = fr (C; X) +E[Uy | Xons]. - Wlf/“/l‘?s not converged 40 o
olve Ior v wi XC

4:  Optimise log-likelihood in Eq. 7
We employ an Expectation-Maximisation-style 5. // Solve f?}’ b Wit}} fixed 6 N
iterative algorithm to achieve this 6: Estimate ¥ from U =z — f(x;0)
7: return 6,2

Full details in the paper...
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Experiments: How robust is
learning to increasing
confounding strength?

We showed our method is robust under varying
levels of unobserved confounding by testing it in
a semi-synthetic setup.

This was based on real-world data from the
International Stroke Trial database: a large,
randomised trial of up to 14 days of
antithrombotic therapy after stroke onset.

There are two possible treatments: aspirin
allocation dosage, heparin allocation dosage.

The goal is to understand the effects of these
treatments on a composite outcome, a
continuous value in [0,1] predicting the likelihood
of patients’ recovery.
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Accepted at NeurlPS 2022 and on arXiv at 2210.05446

Disentangling causal effects from sets of interventions in the
presence of unobserved confounders
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Abstract

The ability to answer causal questions is
crucial in many domains, as causal infer-
ence allows one to understand the impact
of interventions. In many applications, only
a single intervention is poessible at a given
time. However, in some important areas,
multiple interventions are concurrently ap-
plied. Disentangling the effects of single in-
terventions from jointly applied interventions
is a challenging task—especially as simulta-
neously applied interventions can interact.
This problem is made harder still by un-
observed confounders, which influence both
treatments and outcome. We address this
challenge by aiming to learn the effect of a
single-intervention from both ohservational
data and sets of interventions, We prove
that this is not generally possible, but pro-
vide identification proofs demonstrating that
it can be achieved in certain classes of addi-
tive noise models—even in the presence of un-
observed confounders. Importantly, we show
how to incorporate observed covariates and
learn heterogeneous treatment effects condi-
tioned on them for single-interventions,

INTRODUCTION

manner. However, in some important areas, multiple
interventions are concurrently applied. For instance,
in medicine, patients that possess many commodities
may have to be simultaneously treated with multi-
ple preseriptions; in computational advertising, peo-
ple may be targeted by multiple coneurrent campaigns;
and in dietetics, the nutritional content of meals can be
considered a joint intervention from which we wish to
learn the effects of individual nutritional components.

Disentangling the effects of single interventions from
jointly applied interventions is a challenging task—
especially as simultaneously applied interventions can
interact, leading to consequences not seen when con-
sidering single interventions separately. This problem
is made harder still by the possible presence of unob-
served confounders, which influence both treatments
and outcome. This paper addresses this challenge, by
aiming to learn the effect of a single-intervention from
both observational data and sets of interventions. We
prove that this is not generally possible, but provide
identification proofs demonstrating it can be achieved
in certain elasses of non-linear causal models with ad-
ditive Gaussian noise—even in the presence of un-
observed confounders. Importantly, we show how to
incorporate observed covariates, which can be high-
dimensional, by learning heterogeneous treatment ef-
fects conditioned on them for single-interventions.

Our main contributions are:

1. A proof that without restrictions on the causal
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Can we correctly attribute changes
among many possible causes when
unobserved confounders are present?

6 November 24, 2022
Published by Ciaran M. Gilligan-Les, Mounia Lalmas and Olivier Jeunan

Overview on Spotify Research blog:
https://research.atspotify.com/blog/
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I
Examples of disentangling problem at Spotify

® There are a range of playlists/albums/podcasts that are recommended to a user at a
given time, what’s the individual impact of each one?

* There are a collection of actions an artist can take to build their fanbase and
improve their career, which ones have the biggest effect for a given artist?

And many, many more....
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Estimating long-term outcomes

e Even when we can use A/B tests, they usually have relatively short durations due to
cost considerations. This makes learning long-term causal effects a very
challenging task in practice.

e Often short-term outcomes are different to long-term ones, and, as many
decision-makers are interested in long-term outcomes, this is a crucial problem to
address.

e Forinstance:

o Technology companies are interested in understanding the impact of
deploying a new feature on long-term retention

o Economists are interested in long-term outcomes of job training programs

o Doctors are interested in the long-term impacts of medical interventions, such
as treatments for stroke
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The problem

Given experimental samples between (X, M), and (historical)
observational samples between (X, M, Y), can we estimate the
causal effect of X on Y?
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The problem: a concrete
example

Suppose X is dosage of a specific drug, M is the
severity of symptom after 2 weeks, and Y is the
symptom severity after 6 months.

If we have historical observational samples

involving X, M, and Y, and we’re given samples

from a recent experiment between dosage and

symptoms two weeks later, can we combine this

with the observational samples to estimate the X M
effect of dosage on symptom severity 6 months

later? T T
The issue is that observational samples can be
confounded, while experimental samples are

not. Moreover, because they’re samples from
different distributions, we don’t observe the long

term outcomes for those units in the
experiment.
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The problem

Let’s assume a linear Gaussian model: W )
W = Nw d b
e
X =d.W + Nx
M=cX+eW+ Num c a
Y =aX + b.W + Ny X M
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Warm up: front-door
structure

Consider the front-door causal d b
structure. Here, to estimate the causal

effect of X on Y, from observational

data we:

1. Regress M on Xto get c, X M
2. Regress Y on M and X to get a. c a

The causal effect is just their product: T T

!
™) ) O
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Warm up: new front-door
estimator

Instead of the standard estimation b
strategy from the previous slide, let’s try d

something new. Estimating ¢ as before,

estimate a as follows:

1. Regress M on X, and compute the X M
residual: Nwm C a

2. Use Nwm as an instrumental variable T
forM ->Y

Regress Y on Nv and M on Nwv and take @ @

the ratio of the coefficients to get a.
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The full problem

The residual from regressing M on X isn’t

Nw in this case, due to confounding from W.

However, using the experimental samples
between X and M, we can remove the
confounding bias on the residual, and use
this de-biased residual as an instrument for
M->Y.

Instrument =
Residual[M|X] - [E(M-c.X)/E(X)].X

This requires obtaining ¢ from the
experimental dataset
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Experiments: How robust is
learning to hidden

confounding? -
' — o0'=01
o JPR—— e Jea el

We showed our method is robust to SR
unobserved confounding by testing it in a o
semi-synthetic setup.

0.15
This was based on real-world data from the
International Stroke Trial database: a large, e
randomised trial of up to 14 days of

Bias[al

antithrombotic therapy after stroke onset. .
0.00
Using systolic blood pressure at
randomisation as treatment, & age as hidden =0.05'—5 o5 5 I Iy
confounder, the goal is to estimate the effect e

of a synthetic mediator on synthetic outcome:
a value in [0,1] —the likelihood of patients’
recovery. Solid line our method, dashed line
just controls for observed confounders.
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Accepted at CLeaR 2023 and on arXiv at 2302.10625
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Estimating long-term causal effects from short-term experiments and
long-term observational data with unobserved confounding

Graham Van Goffrier UCAPGWG®@ UCL.AC.UK
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Editors: Mihaela van der Schaar, Dominik Janzing and Cheng Zhang

Abstract

Understanding and quantifying cause and effect is an important problem in many domains. The
generally-agreed solution to this problem is to perform a randomised controlled trial. However, even
when randomised controlled trials can be performed, they usually have relatively short duration’s
due to cost considerations. This makes learning long-term causal effects a very challenging task
in practice, since the long-term outcome is only observed after a long delay. In this paper, we
study the identification and estimation of long-term treatment effects when both experimental and
observational data are available. Previous work provided an estimation strategy to determine long-
term causal effects from such data regimes. However, this strategy only works if one assumes there
are no unobserved confounders in the observational data. In this paper, we specifically address the
challenging case where unmeasured confounders are present in the observational data. Our long-term
causal effect estimator is obtained by combining regression residuals with short-term experimental
outcomes in a specific manner to create an instrumental variable, which is then used to quantify
the long-term causal effect through instrumental variable regression. We prove this estimator is
unbiased, and analytically study its variance. In the context of the front-door causal structure, this
provides a new causal estimator, which may be of independent interest. Finally, we empirically test
our approach on synthetic-data, as well as real-data from the International Stroke Trial.
Keywords: Long-term causal effects, latent confounding, linear Structural Causal Models
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Estimating long-term effects when only
short-run experiments are available

April 06, 2023
Published by Ciaran Gllligan:Lee, Lucas Maystra

Overview on Spotify Research blog:
https://research.atspotify.com/blog/
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We’ve only discussed
interventional questions...

Inference Hierarchy
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Are counterfactuals useful
for anything in practice?

o @ Cancer

cancer cancer

P(C = F|C = T,do(S = F))

Pirsa: 23040125 Page 28/32



Yes! Formulating medical diagnosis as a
counterfactual task results in expert clinical accuracy

NewScientist

News Podcasts Video Space Physics Health More =
—_—

nature communications
Al mimics the way doctors think to

Explore content v  About the journal ¥ Publish with us v make better medical diagnoses
00eOO

TECHNOLOGY 11 August 2020

nature > nature communications > articles > article

By

Article | Open Access | Published: 11 August 2020

Improving the accuracy of medical diagnosis with
causal machinelearning

Jonathan G. Richens &, Ciardn M. Lee & Saurabh Johri

Nature Communications 11, Article number: 3923 (2020) | Cite this article

72k Accesses | 105 Citations | 952 Altmetric | Metrics

Check out our paper to dive deeper arXiv:1910.06772
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Combining it with deep learning allows for

personalised decision making from raw data!

nature machine intelligence

Article

https:/fdol.org/10.1038/542256-023-00611-x

Estimating categorical counterfactuals via
deep twinnetworks

Received: 23 May 2022

Accepted: 4 January 2023
Published online: 20 February 2023

® Check for updates

Athanasios Vlontzos®'* |, Bernhard Kainz®' & Ciardn M. Gilligan-Lee ®**

Counterfactual inference isa powerful tool, capable of solving challenging
problems in high-profile sectors. To perform counterfactual inference,

we require knowledge of the underlying causal mechanisms. However,
causal mechanisms cannot be uniguely determined from observations and
interventions alone. This raises the question of howto choose the causal
mechanisms so that the resulting counterfactual inference is trustworthy
ina given domain. This question has been addressed in causal models

with binary variables, but for the case of categorical variables, it remains
unanswered. We address this challenge by introducing for causal models
with categorical variables the notion of counterfactual ordering, a principle
positing desirable properties that causal mechanisms should possess and
prove that it is equivalent to specific functional constraints on the causal
mechanisms. To learn causal mechanisms satisfying these constraints,

and perform counterfactual inference with them, we introduce deep twin
networks. Theseare deep neural networks that, when trained, are capable
oftwin network counterfactual inference —analternative to the abduction-
action-prediction method. We empirically test our approach ondiverse
real-world and semisynthetic data frommedicine, epidemiology and
finance, reporting accurate estimation of counterfactual probabilities while
demonstrating the issues that arise with counterfactual reasoning when
counterfactual ordering is not enforced

MIT Technology Review SUBSCRIBE =—

ARTIFICIAL INTELLIGENCE

The complex math of counterfactuals could help
Spotify pick your next favorite song

A new kind of machine-learning model is set to improve automated decision
making in finance, health care, ad targeting, and more.

By Will Douglas Heaven

April 4,2023

Check out our paper to dive deeper arXiv:2109.01904
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Examples of counterfactuals at Spotify

® Which Playlists to update: which playlists Z “need” to be updated?

P(Yx=update = €ngaged, Yx=no update = NOt engaged | 2Z)

® New content to enjoy: If user Z listened to specific content and
enjoyed it, which other content would they also have enjoyed?

P(Yx=new content = €ngage | Y = engage, X = current content, 2)

And many more....

Pirsa: 23040125 Page 31/32



Conclusion

e Being able to answer causal questions enables actionable decision making
e Lots of new problems to solve if we want to apply causal inference reliably in the real world

e Many more causal inference applications at Spotify beyond what we’ve discussed today,
reach out of you're interested!

ciaranl@spotify @quantumciaran
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