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We s:on.sidc*linea.r structural equation models with latent variables and
develop a criterion to certify whether the direct causal effects between the ob-
servable variables are identifiable based on the observed covariance matrix.
Linear structural equation models assume that both observed and latent vari-
ables solve a linear equation system featuring stochastic noise terms. Each
model corresponds to a directed graph whose edges represent the direct ef-
fects that appear as coefficients in the equation system. Prior research has
developed a variety of methods to decide identifiability of direct effects in a
latent projection framework, in which the confounding effects of the latent
variables are represented by correlation among noise terms. This approach
is effective when the confounding is sparse and effects only small subsets
of the observed variables. In contrast, the new latent-factor half-trek crite-
rion (LF-HTC) we develop in this paper operates on the original unprojected
latent variable model and is able to certify identifiability in settings, where
some latent variables may also have dense effects on many or even all of
the observables. Our LF-HTC is an effective sufficient criterion for rational
identifiability, under which the direct effects can be uniquely recovered as
rational functions of the joint covariance matrix of the observed random vari-
ables. When restricting the search steps in LF-HTC to consider subsets of
latent variables of bounded size, the criterion can be verified in time that is
polynomial in the size of the graph.
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Linear Structural Equation/Causal Models

Each model is induced by a directed graph:

[ L, : Confounder ]

S

[Xl : Tax Rate }—‘P{Xz : Mom’s Smoking]—»[X3 : Baby’s Weight}

L

Linear structural equations:

= Aot + €1,
= A2 + A2 X1 + 7l + e, Independent errors:
= Aoz + A23Xo + 3L; + €3, g1l ey Les e

= Aou + &4. Varle,]| = wy, < 00

Topic of the talk: I L; is latent, can we recover the direct effects (A2, Ap3) from X = Var[X]?
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Our Software: SEMID (R Package)

Define graph
Lambda = matrix(c(0, 1,

] H 3 ] 3

i ds da Iy L
6, 6, byrow=TRUE)
observedNodes = seq(1,5)
latentNodes = c(6)
g = LatentDigraph(Lambda, observedNodes, latentNodes)
plot(g)
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Our Software: SEMID (R Package)

> # Check identifiability
> res = 1fhtcID(g)

> res

Call: 1lfhtcID(graph = g)

Latent Digraph Info

# observed nodes: 5

# latent nodes: 1

# total nr. of edges between observed nodes: 3

Generic Identifiability Summary
# nr. of edges between observed nodes shown gen. identifiable: 3
# gen. identifiable edges: 1->2, 2->3, 4->b

1
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But now something else...

SIAM J. MATRIX ANAL. APPL. © 2010 Society for Industrial and Applied Mathematics Contents lists available at ScienceDirect

Vaol. 31, No. 5, pp. 2665-2680

Linear Algebra and its Applications

ON A PARAMETRIZATION OF POSITIVE SEMIDEFINITE A ]
MATRICES WITH ZEROS" www.elsevier.com/locate/laa

MATHIAS DRTON' AND JOSEPHINE YU!

Abstract. We study a class of parametrizations of convex cones of positive semidefinite ma- . : : .
trices with prescribed zeros. Each such cone corresponds to a graph whose nonedges determine the On the causal lnterpretatlon of &C}'Chc mixed @
prescribed zeros. Each parametrization in this class is a polynomial map associated with a simplicial . . . Ly
complex supported on cliques of the graph. The images of the maps are convex cones, and the gr thS under multl\.’arlate nor H]&llt}'
maps can only be surjective onto the cone of zero-constrained positive semidefinite matrices when
the associated graph is chordal and the simplicial complex is the clique complex of the graph. Our Christopher J. Fox*, Andreas Kiufl >, Mathias Drton “*
main result gives a semialgebraic description of the images of the parametrizations for chordless cy-

cles. The work is motivated by the fact that the considered maps correspond to Gaussian statistical * Department of Statistics, The University of Chicago, Chicago, IL, USA
models with hidden variables. " Institute for Mathematics, University of Augsburg, Augsburg, Germany
® Depariment of Statistics, University of Washington, Seattle, WA, USA

CrossMark
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TLTI
Starting point for D. & Yu (2010): “Bidirected three-cycle”

Can any positive definite 3x3 correlation matrix arise in this model?

X1 =V12L12 + V13l13 + &
X2 = V21L12 + V23laz + &
X3 =V¥31Ll13 + V32L23 + &3

& independent with Var[g}-] — sz

Mathias Drton (TUM)
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“‘Bidirected three-cycle”

Can any positive definite 3x3 correlation matrix arise in this model?

o X1 =VY12L12 + V13l13 + &

X3 =V21L12 + V23la3 + &
X3 =V¥31L13 + ¥32L23 + &3

(23)

Spirtes et al. (1998), Richardson & Spirtes (2002):

NO... not all correlations can be “large”
@ o (not all larger than 1/+/2 ~ 0.707 ...)

Mathias Drton (TUM)
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“Bidirected three-cycle”

The parametrization...
2 2 2
Y1 + Yi2 T Vi3 Y1221 Y1331

Y1221 Y + 75 +75 Y2332
° Q Y1331 V23732 73+ Y5 + 75

° In fact, at least one correlation p;; < 1/2.

Mathias Drton (TUM)
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“Bidirected three-cycle”

Our solution:

Correlation matrix R = (p;;) is in model if and only if

1 — pla — Pis — Pa3 — 2p12P13p23 > 0.

Mathias Drton (TUM)
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“Bidirected three-cycle” TLUTI

The main trick to show this (+some algebra concerning polynomial equation systems...)
k

If a PD matrix is in the model,

'712 6 & 7122 =+ ’)’fg Fiat a1 Y1331 o . .
then so is its version with (1,2)-

Y1221 3 + 3y + ’)’33 Y2332

Y1331 Y2332 Y2 + 43 + 3, entry negated. (negate y;, )

= Constraint:

B 5 " Matrix with negated (1,2)-entry
Y1 +7Y2 713 —7M2721 V13731 must remain PSD.
—Y12721 Y5 + 31 + V33 V23732
Y1331 V23732 73 + 731 + 752

Mathias Drton (TUM)
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TUT

Perspective: Parametrizing positive definite matrices

Drton & Yu (2010): DAGs with latent source nodes, no edges among observed nodes.

Mathias Drton (TUM)
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TUT

Parametrizations given by simplicial complexes (MDAGS)

FI1G. 1. A simplicial complez (left) and the acyclic bipartite digraph corresponding to it (right).

Mathias Drton (TUM)
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Motivation

® Let ST be set of symmetric and positive semi-definite m X m matrices

— closed convex cone

— extreme rays are rank one matrices: ¥ = w'

® let G=(V,E)beagraphon V=1{12,...,m}
® Graphical cones:
Se(G}:={X=(oy)€ST : 0;=0 ifi#jand {i,j} ¢ E(G)}
appear in statistical models for multivariate normal distribution.

® Simple parametrizations useful for parameter estimation, prior specification, ...

Mathias Drton (TUM)
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Parametrization

e A = simplicial complex on V such that faces are cliques in G

(e.g. A = edge complex of G, A = clique complex of G).
o [=(vifr) ERV*Asuch that v, =0if i ¢ F.
® TheniT' € S,.(G).
o Let ¢a : Irea Rl — S, (G) given by v — T(7)M(7)"

Is ¢a surjective onto S, (G)? If not, what is the image?

Mathias Drton (TUM)
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TUT

Parametrizations given by simplicial complexes (MDAGS)

Fi1G. 1. A simplicial complez (left) and the acyclic bipartite digraph corresponding to it (right).
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Example: Three-chain TUTI

e A = Simplicial complex whose facets are the edges {1,2} and {2, 3} of a three-chain 1 —2 — 3.

® Then {1} {2} {3} {1.2} {2,3}
1(m 0 0 Y12 0
My)=2 0 » 0 Va1 V23
30 0 0 V32

V4V +75 Y2373
Y3+ 73

oaly) =

(’7% + 7%, V12721 0

® The map @a is surjective onto Sy (G) in this case.

Mathias Drton (TUM)
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Convexity TUT

Lemma

For any simplicial complex A with underlying graph G(A) = G, image of ¢ is a full-dimensional
semialgebraic subset in Sy (G).

Theorem

For any simplicial complex A on [m], image of ¢ is a closed convex cone whose extreme rays are the rank
one matrices of form w with v € R™ supported on a clique in G.

Useful tool: Cholesky decomposition ¥ = LL", L lower triangular.

Corollary .

The convex hull of all rank one matrices in S.-(G) is im(¢a), where A is the clique complex of G.

Mathias Drton (TUM)
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Sparsity order

Sparsity order of graph G = max rank of an extreme ray of Sy (G).

Theorem (Laurent, 2001, and references therein)

Let G be a graph on [m], ord(G) its sparsity order. Then
(i) 1<ord(G) <m-—2,
(ii) ord(G) =1 if and only if G is chordal,
(iii) ord(G) = m — 2 if and only if G is a chordless cycle, and
(iv) if H is an induced subgraph of G, then ord(H) < ord(G).

Corollary

(i) The map ¢p is surjective onto SZ(G) if and only if G is chordal and A is the clique complex of G.
(ii) For A = E(G), ¢n is surjective if and only if G is a forest.

Mathias Drton (TUM)
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Chordless cycle Co: A = E(C,p) TUT

Main Theorem
Let {k, I} be any edge of the chordless cycle Cj,. A matrix ¥ = (o) € ST(Cp) is in the image of ¢, if and
only if

min{det(Z), det(X*))} = X (-1)° T of T oi — 21l loim| > 0.

matching e {IJ}Ge i€ [m]\e i=1
L

Corollary

For a matrix ¥ = (0j;) € ST(Cp), the following are equivalent:
(i) X is in the image of ¢c,.

(i) £ is PSD for some edge ij € Cn, with o # 0.

(iii) £@) s PSD for all edges ij € Cp,.

Mathias Drton (TUM)
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Proof idea (Sufficiency) TUTI

e |t suffices to show that for each ¥ € ST(C,,) satisfying the claimed condition, the equation system

r(r)™=x

has a real solution.
® ) has 2m free entries, v has 3m (one per node, two per edge)
e Set node incidence variables v;; to zero.
e |t suffices to show that

2 > _ .
Yii-1+ Vii+1 = Oy i=1,...,m,

'Yf—lf'}’f,i—l = 0i-1,i ) )

has a real solutions for any choice of ¥ = (o) € ST(Cp) satisfying the claimed condition.

Mathias Drton (TUM)
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Spherical volumes TUTI

Table: Spherical volume of the image of ¢¢, as a fraction of the spherical volume of the cone Syo(Cp,).

m 3 - b 6 7
Vol 0.78 0.90 0.95 0.98 0.99

Mathias Drton (TUM)
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Fox, Kaufl & D. (2015) T

Consider linear Gaussian models based on mixed graphs (latent projections).

Models postulate that confounding yields error correlations of “arbitrary’ size.

Which ones are strictly causal = they coincide with a linear Gaussian DAG model with
latent variables?

Mathias Drton (TUM)
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TUT

Main results

Theorem 1.2. If an acyclic mized graph G = (V,D,B) has a chordal bidirected part
(V, B), then N(G) is strictly causal.

L

Theorem 1.3. Suppose the mized graph G = (V, D, B) is a chain graph. Then N(G) is
strictly causal if and only if the bidirected part (V, B) is chordal.

Mathias Drton (TUM)
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Conclusion TUTI

» 1Gaussian (or rather linear covariance) version of some of the problems discussed by
others. Is this right:

Statistics » Physics but it's not impossible that Physics — Statistics?

Sign trick to derive inequalities between correlations in latent variable models that
then differ from the model associated to a mixed graph/latent projection.

Other approaches to get inequalities?

If a linear Gaussian model is strictly causal, what's the ““causality index” = smallest
number of latent variables needed?

European Research Council

Mathias Drton (TUM) Established by the European Commission
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