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Abstract: In a recent paper, Chaturvedi et a considered the interesting idea of routed Bell experiments. These are Bell experiments where Bob can
measure his quantum particles at two distinct locations, one close to the source and another far away. This can be accomplished in the lab by using a
switch that directs Bob's quantum particle either to the nearby measurement device or to the distant one, depending on a classical input chosen by
Bob. Chaturvedi et a argue that there exists in such experiments a tradeoff between short-range and long-range correlations and that high-quality
CHSH tests close to the source (which are achievable with current technology) lower the requirements for witnessing nonlocality faraway from the
source, and in particular increase their tolerance to particle losses. We critically review their results and present a simple counterexample to it. We
then introduce a class of hybrid quantum-classical models, which we refer to as "short-range quantum models'. These models suitably capture the
tradeoff between short-range and long-range correlations in routed Bell experiments. Using our definition, we explore new nonlocal tests in which
high-quality short-range correlations lead to weakened conditions for long-range tests. Although we do find improvements, they are significantly
smaller than those claimed by CVP.
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The Bell scenario
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CHSH = ¥4 p 5y (D)"Y P(ab|xy) < 2 for classical models
< 242 for quantum models

— Assuming the causal structure, we can certify quantumness from the data alone (device-independence)

A value CHSH > 2 actually provides much more information on the underlying quantum model (self-testing)
This can be used to certify the correct behavior of entire quantum info protocols, e.g., DIQKD.
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Quantum correlations are strongly affected by photon losses
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- In practice, we cannot certify long-range quantum correlations. N4
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1. Chaturvedi, Viola, Pawlowski’s proposal
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Routed Bell experiments — Chaturvedi, Viola, Pawlowski, arXiv:2211.14231
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Routed Bell experiments — Chaturvedi, Viola, Pawlowski, arXiv:2211.14231
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We can observe two CHSH quantities:
* short-path CHSH: CHSHg = Y4 5, (=1)%*2**YP(ab|xy, z = s)
 long-path CHSH: CHSH, = Za)b,x‘y(—l)aﬁLb”yP(ab|xy,Z =1)

According to the usual analysis, the condition for ruling out classical models and certifying long-range
quantum correlations between A and B; is CHSH; > 2.

CVP argue that a violation CHSHg > 2 in the short-path CHSH test weakens the condition for ruling out
classical models in the long-path CHSH test.

Specifically, they derive the following trade-off for any model where B; is classical:

CHSH, < \/ 8 — CHSHZ if CHSHg > 2
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By performing high-quality CHSH tests close to the source (which are achievable with current technology),
we can significantly extend the range over which genuine quantum correlations can be certified
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Intuition behind the CHSHy; — CHSH; trade-off
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CHSHg > 2 CHSH, <2
= a quantum common cause is required —> could a classical common cause be sufficient,

without any quantum particle actually reaching B, ?

This leads us to consider a hybrid quantum-classical causal model
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Intuition behind the CHSHy; — CHSH; trade-off
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Assume CHSHg > 2
- ¢ Aapproximately implements Pauli observables on a two-qubit maximally entangled state
and is weakly correlated to any other degrees of freedom in the universe, in particular to A
P(ab|xy,z =L) = P(alx)P(b|ly,z = L)
* A’soutput are locally partly random

1
P(ablxy,z=1L) < (E as c) P(bly,z=1L)

> CHSH, < J 8 — CHSH?
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Intuition behind the CHSHy; — CHSH; trade-off
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Assume CHSHg = 2+/2
- * Aimplements Pauli observables on a two-qubit maximally entangled state
and is independent of any other degrees of freedom in the universe, in particular of A
P(abl|xy,z = L) = P(alx)P(bly,z = L)
* A’s output are locally uniform

1
P(ablxy,z=1) = 5 P(bly,z = L)
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1. Chaturvedi, Viola, Pawlowski’s proposal

2. A counterexample
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A counterexample where CHSH, = 2 for CHSHs = 2+/2 for B; classical
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A counterexample where CHSH, = 2 for CHSHs = 2+/2 for B; classical
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A counterexample where CHSH, = 2 for CHSHs = 2+/2 for B; classical
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CHSHg = 22 x=0y=0->x=0,y=0;,->Pla=hbh)=1

x=0y=1->x=0,y=0;>Pla=b)=1
x=1y=0 >x=a,,y=0d; > P(a,b) =1/4
x=1,y=1->x=0,y=0ad; > Plab)=1/4

>  CHSH, =2
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P(ablxy,z =) = ) P(abbilxyy)
by P(absb|xysy.)

P(ablxy,z =1) = ) P(abgblxy.y)
b

Chaturvedi et al implicitly assume a tripartite causal structure (but the experiment is bipartite!)
In doing so, they add on top of a hypothesis of classicality, an implicit monogamy assumption.
It is this implicit assumption of monogamy, rather than B; being classical, that leads to the S/L tradeoff.
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P(ablxy,z =) = ) P(abbilxyy)
by P(absb|xysy.)
P(ablxy,z =1) = ) P(abgblxy.y)
bs

Chaturvedi et al implicitly assume a tripartite causal structure (but the experiment is bipartite!)
In doing so, they add on top of a hypothesis of classicality, an implicit monogamy assumption.
It is this implicit assumption of monogamy, rather than B; being classical, that leads to the S/L tradeoff.

The relation CHSH; < \/8 — CHSH¢ is also true in a fully quantum model [Toner, Verstragte, quant-ph/0611001]
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1. Chaturvedi, Viola, Pawlowski’s proposal )

2. A counterexample

3. How to formulate general models that exhibit only short-range
quantum correlations, i.e., where the distant device B; is classical ?
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Characterization of quantum correlations in routed Bell scenarios
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p(ablxyz) = tr[(I ® C,)(pap)Majx @ Mpyy ]
where C, are the CPTP maps describing the transmission on the short or long path channels

Or equivalently, defining M{,D,Z = CLJF(MDD,)
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Characterization of quantum correlations in routed Bell scenario

5
D
|Ale—* &M"
I T
X %:S 3

p(ablxyz) = tl‘[(l X Cz)(PAB)Ma|x X Mbly]

We can now define short-range quantum correlations as those where C; is entanglement-breaking.

Its adjoint CLT maps the operators {My,, } — {CLT (Mb|y )} to a set of jointly-measurable operators.

[Pusey arXiv:1502.03010]

a oY
r [
\2‘_6_- %‘—“E—%; p(ablxyz) = tr[pAB Mg X Mlb|yz]
where {M'’ _; t are jointly-measurable
J (4,3) {M'p)y,z=1 } are jointly

Pirsa: 23040123

Page 23/31



)
b
: 1
Ple—%—a"d 3§
T L. 4
The effective measurements {M,’,|y=0,Z=L} and {M,’jb,:LZ:L} are jointly-measurable

& there exists a single measurement {C}_ 5, } that returns a pair (by, b,) of outcome fory =0 &y = 1.
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The correlations p(ab|xyz) = tr[pAB Myx ® M’b|yz] where {M’bmz:L} are jointly-measurable
can be characterized through a standard application of the NPO hierarchy.
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1. Chaturvedi, Viola, Pawlowski’s proposal
2. A counterexample

3. How to formulate general models that exhibit only short-range
quantum correlations, i.e., where the distant device B; is classical ?

4. Do Bell violations in the short-path weaken the conditions
for ruling out classical models in the long-path?

o
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The classical bound of the long-path CHSH does not decrease if the short-path CHSH is violated.

But, we found other inequalities where this happens.

Example: a o
1 [®4)
{04, 0%} @{é—'s ¥ 7 {0z, 0x}
0 1
X 3

ZX, = Z(—l)a”’P(ablx —ky=k)
abk
Then

ZX; <2 forclassical model

ZX; <2 for quantum models (achieved by the above correlations)
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The classical bound of the long-path CHSH does not decrease if the short-path CHSH is violated.

But, we found other inequalities where this happens.
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Interestingly, if we trust that the measurement devices do the 05, 6,, measurements
the quantity o

7X, = Z(—l)a+bP(ab|x =ky=k)
abk
is an entanglement-witness:

ZX, <2 for separable states
ZX; <2 forentangled states

But it is not a device-independent (DI) entanglement witness,
i.e., if we don’t trust the measurement devices

ZX; <2 forseparable states
By embedding it in a routed Bell experiment, we can turn ZX; into a DI entanglement-witness.

In particular if CHSHs = 22 =  ZX; < /2 for short-range quantum correlations
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Improving detection efficiency tolerance with routed Bell tests
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Improving detection efficiency tolerance with routed Bell tests
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For regular Bell tests, there exists a lower bound on the
detection efficiency:

1.0}

n. > 1/1Y]
0.8 The same lower-bounds applies for routed Bell
scenarios.
0.6
e This is because |Y| lossy measurements are always
04l \ jointly-measurable if n;, < 1/|Y|
\ [Masini et al, in preparation]
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Conclusion

* Routed Bell experiments are interesting
* Form a causal perspective: they are represented by hybrid quantum/classical models, where
some latent notes (the switch) output either quantum or classical systems.
We showed how to model this using the concept of joint-measurability.

o
* We showed that they do weaken the conditions to certify quantumness among distant parties.

However, not to the extent originally announced in Chaturvedi et al.

» So far, we have analyzed the simplest scenario (binary variables, only a single switch)

There is still much to be explored!
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