Title: SDP approaches for quantum polynomial optimization
Speakers: Laurens Ligthart
Collection: Causal Inference \& Quantum Foundations Workshop
Date: April 20, 2023-10:00 AM
URL: https://pirsa.org/23040122
Abstract: "Many relevant tasks in Quantum Information processing can be expressed as polynomial optimization problems over states and operators. In the earlier talk by David, we saw that this is also the case for certain (quantum) causal compatibility and causal optimization problems. This talk will focus on several closely related semidefinite programming (SDP) hierarchies that have recently been shown to be complete for such polynomial optimization problems [arxiv:2110.14659, 2212.11299, 2301.12513]. We give a high-level overview of the techniques and mathematics that are needed for proving such statements. In particular, we will see a version of a Quantum De Finetti theorem, as well as a sketch of a constructive proof of convergence for the SDP hierarchies. Afterwards, these results are linked back to the causal compatibility problem to conclude that such SDP hierarchies are complete for a certain type of causal structures known as tree networks."

Semidefinite optimization approaches for quantum polynomial optimization

Laurens Ligthart
Joint work with Mariami Gachechiladze \& David Gross

Institute for Theoretical Physics, University of Cologne, Germany
Causal Inference \& Quantum Foundations Workshop April 20, 2023

Nin

Outline

Introduction
Causal compatibility
(non-linear) Bell inequalities
Quantum Polynomial Optimization
SDP approaches
NPO
Polarization
Convergence
Conclusion

Bell scenario

Bell scenario

$P(a, b \mid x, y)=\rho_{A B}\left(A_{\alpha \mid x} B_{\beta \mid y}\right)$
$\rho_{A B}(\mathbb{I})=1, \rho_{A B} \geq 0$

$$
\begin{aligned}
&\left\{B_{\beta \mid y}\right\}_{\beta, y} \\
& B_{\beta \mid y} \succeq 0 \\
& \sum_{\beta} B_{\beta \mid y}=\mathbb{I}
\end{aligned}
$$

The causal compatibility problem

Causal compatibility
Given a (conditional) probability distribution $P(a, b, c, \ldots \mid x, y, z, \ldots)$ and a causal structure (in the form of a DAG), determine whether P can be produced in this causal structure.

This is dependent on the physical model:

- Classical probability
- Quantum mechanics
- GPT

（non－linear）Bell inequalities

For binary observables we have
－The CHSH expression

$$
\rho\left(A_{1} B_{1}+A_{1} B_{2}+A_{2} B_{1}-A_{2} B_{2}\right) .
$$

Tsirelson bound for quantum systems is $2 \sqrt{2}$ ．
－The expression

$$
\rho\left(A_{1} B_{2}+A_{2} B_{1}\right)^{2}+\rho\left(A_{1} B_{1}-A_{2} B_{2}\right)^{2} .
$$

Classical bound is 4^{1} ．Quantum bound is matching ${ }^{2}$ ．
－Many more complicated expressions．．．

[^0]
Causal structures

Tree networks

Tree networks

$$
\begin{aligned}
A & \perp C, D \\
A, B & \perp D
\end{aligned}
$$

$$
\begin{aligned}
& B \perp C, D, E \\
& C \perp B, D, E \\
& D \perp B, C, E
\end{aligned}
$$

Tree networks

$$
\begin{aligned}
& \rho(a c d)=\rho(a) \rho(c d) \\
& \rho(a b d)=\rho(a b) \rho(d)
\end{aligned}
$$

$$
\rho(b c d e)=\rho(b) \rho(c) \rho(d) \rho(e)
$$

Polynomials

Such expressions are polynomials in two ways:

- In the operators
- But also in the state

$$
\begin{aligned}
\rho(a b c d) & =\rho(a) \rho(b) \rho(c) \rho(d) \\
& =\rho^{\otimes 4}(a \otimes b \otimes c \otimes d)
\end{aligned}
$$

We call such expressions state polynomials

Optimization

Quantum Polynomial Optimization
Given a set of generators \mathcal{G} and relations \mathcal{R}, defining a C^{*}-algebra $\mathcal{A}=C^{*}(\mathcal{G} \mid \mathcal{R})$, and a set of state polynomials $p_{i}:(\mathcal{A}, S(\mathcal{A})) \rightarrow \mathbb{C}$, solve

$$
\begin{array}{cl}
\min _{\rho \in \mathcal{S}(\mathcal{A})} & p_{0}(\mathcal{A}, \rho) \\
\text { s. t. } & p_{i}(\mathcal{A}, \rho)=0 \quad \forall i .
\end{array}
$$

For example, \mathcal{A} could be the algebra generated by the measurements and the p_{i} could be the factorization constraints.

Difficulties for convex optimization

We would like to use convex optimization:

$$
\begin{array}{cl}
\min _{X} & \langle C, X\rangle \\
\text { s.t. } & \left\langle A_{i}, X\right\rangle=b_{i} \\
& X \succeq 0
\end{array}
$$

Difficulties for convex optimization

We would like to use convex optimization:

$$
\begin{array}{cl}
\min _{X} & \langle C, X\rangle \\
\text { s.t. } & \left\langle A_{i}, X\right\rangle=b_{i} \\
& X \succeq 0
\end{array}
$$

However

- The set of product states is not convex:

For ρ, σ product states $(1-\lambda) \rho+\lambda \sigma$ is mixed unless $\lambda=0$ or 1 .

Difficulties for convex optimization

We would like to use convex optimization:

$$
\begin{array}{cl}
\min _{X} & \langle C, X\rangle \\
\text { s.t. } & \left\langle A_{i}, X\right\rangle=b_{i} \\
& X \succeq 0
\end{array}
$$

However

- The set of product states is not convex:

For ρ, σ product states $(1-\lambda) \rho+\lambda \sigma$ is mixed unless $\lambda=0$ or 1 .

- The polynomials (in the state) can be non-convex
- The dimension grows exponentially quickly

Difficulties for convex optimization

We would like to use convex optimization:

$$
\begin{array}{cl}
\min _{X} & \langle C, X\rangle \\
\text { s.t. } & \left\langle A_{i}, X\right\rangle=b_{i} \\
& X \succeq 0
\end{array}
$$

However

- The set of product states is not convex: For ρ, σ product states $(1-\lambda) \rho+\lambda \sigma$ is mixed unless $\lambda=0$ or 1 .
- The polynomials (in the state) can be non-convex
- The dimension grows exponentially quickly

So that seems pretty bad...

NPO

- Non-commutative Polynomial Optimization ${ }^{34}$ can optimize over objective functions and constraints that are linear in the state and polynomial in the operators
- Hierarchy of relaxations that converges in the limit via a monotonically increasing sequence of lower bounds
- Can be formulated independent of the dimension!

[^1]
NPO: How does it (roughly) work?

Construct a functional that is only positive on a subspace of the algebra \mathcal{A}.

- Choose a basis $\left\{a_{i}\right\}$ of \mathcal{A}, with $a_{0}=\mathbb{I}$.
- Choose an integer k and construct a $k \times k$ matrix $M^{(k)}$, where

$$
M_{i, j}^{(k)}=\rho\left(a_{i}^{*} a_{j}\right)
$$

M is PSD

A matrix N is PSD iff $v^{*} N v \geq 0$ for all vectors v

M is PSD

A matrix N is PSD iff $v^{*} N v \geq 0$ for all vectors v

$$
v^{*} M v=\sum_{i, j} v_{i}^{*} M_{i, j} v_{j}
$$

M is $P S D$

A matrix N is PSD iff $v^{*} N v \geq 0$ for all vectors v

$$
\begin{aligned}
v^{*} M v & =\sum_{i, j} v_{i}^{*} M_{i, j} v_{j} \\
& =\sum_{i, j} v_{i}^{*} \rho\left(a_{i}^{*} a_{j}\right) v_{j} \\
& =\rho\left(\sum_{i} v_{i}^{*} a_{i}^{*} \sum_{j} v_{j} a_{j}\right)
\end{aligned}
$$

M is PSD

A matrix N is PSD iff $v^{*} N v \geq 0$ for all vectors v

$$
\begin{aligned}
v^{*} M v & =\sum_{i, j} v_{i}^{*} M_{i, j} v_{j} \\
& =\sum_{i, j} v_{i}^{*} \rho\left(a_{i}^{*} a_{j}\right) v_{j} \\
& =\rho\left(\sum_{i} v_{i}^{*} a_{i}^{*} \sum_{j} v_{j} a_{j}\right) \\
& =\rho\left(X^{*} X\right) \geq 0
\end{aligned}
$$

NPO: How does it (roughly) work?
Construct a functional that is only positive on a subspace of the algebra \mathcal{A}.

- Choose a basis $\left\{a_{i}\right\}$ of \mathcal{A}, with $a_{0}=\mathbb{I}$.
- Choose an integer k and construct a $k \times k$ matrix $M^{(k)}$, where

$$
M_{i, j}^{(k)}=\rho\left(a_{i}^{*} a_{j}\right)
$$

- Solve the SDP

$$
\begin{array}{ll}
\min _{M^{(k)}} & \sum_{i, j} p_{i j}^{0} M_{i, j}^{(k)} \\
\text { s.t. } & M_{0,0}^{(k)}=1 \\
& \sum_{i, j}\left(p^{\ell}\right)_{i j} M_{i, j}^{(k)}=0 \quad \text { when } \sum_{i, j}\left(p^{\ell}\right)_{i j} \rho\left(a_{i}^{*} a_{j}\right)=0 \\
& M^{(k)} \succeq 0
\end{array}
$$

Difficulties for convex optimization

- The set of product states is not convex:

For ρ, σ product states $(1-\lambda) \rho+\lambda \sigma$ is mixed unless $\lambda=0$ or 1 .

- The polynomials (in the state) can be non-convex NPO can handle any polynomial in operators $\frac{1}{2} \checkmark$
- The dimension grows exponentially quickly NPO can deal with that \checkmark

Independence implies symmetry

Idea:
If $\rho(A B)=\rho(A) \rho(B)$, then

$$
\rho(A B)=\rho^{\otimes 2}(A B \otimes \mathbb{I})=\rho^{\otimes 2}(A \otimes B)=\rho^{\otimes 2}(B \otimes A)
$$

More generally, for n copies:

$$
\rho(A B)=\rho^{\otimes n}\left(\pi_{1}\left(A \otimes \mathbb{I}^{\otimes(n-1)}\right) \pi_{2}\left(B \otimes \mathbb{I}^{\otimes(n-1)}\right)\right)
$$

for all n and $\pi_{1}, \pi_{2} \in S_{n}$.

[^2]
Independence implies symmetry

Idea:
If $\rho(A B)=\rho(A) \rho(B)$, then

$$
\rho(A B)=\rho^{\otimes 2}(A B \otimes \mathbb{I})=\rho^{\otimes 2}(A \otimes B)=\rho^{\otimes 2}(B \otimes A)
$$

More generally, for n copies:

$$
\rho(A B)=\rho^{\otimes n}\left(\pi_{1}\left(A \otimes \mathbb{I}^{\otimes(n-1)}\right) \pi_{2}\left(B \otimes \mathbb{I}^{\otimes(n-1)}\right)\right)
$$

for all n and $\pi_{1}, \pi_{2} \in S_{n}$.
This is also (partly) the motivation behind the inflation technique. ${ }^{5} 6$

[^3]
Relaxations via symmetry

Instead of solving our difficult problem

$$
\begin{aligned}
\min _{\rho \in S(\mathcal{A})} & p_{0}(\mathcal{A}, \rho) \\
\text { s.t. } & p_{i}(\mathcal{A}, \rho)=0 \quad \forall i
\end{aligned}
$$

solve the hierarchy of NPO problems

$$
\begin{aligned}
\min _{\omega \in S\left(\mathcal{A}^{\otimes n}\right)} & \omega\left(y_{0}\right) \\
\text { s.t. } & \omega\left(y_{i}\right)=0 \quad \forall i \\
& \omega \text { is symmetric on } \mathcal{A}^{\otimes n},
\end{aligned}
$$

where y_{0}, y_{i} are the polarizations of p_{0}, p_{i}.

Polarization example

Suppose

$$
p_{i}(\mathcal{A}, \rho)=\rho(A B)-\rho(A) \rho(B)=0 .
$$

Then the polarization of p_{i} is

$$
\omega\left(y_{i}\right):=\omega\left(A_{1} B_{1}-A_{1} B_{2}\right)=0,
$$

which is now linear in the state

Relaxations via symmetry

Instead of solving our difficult problem

$$
\begin{aligned}
\min _{\rho \in S(\mathcal{A})} & p_{0}(\mathcal{A}, \rho) \\
\text { s.t. } & p_{i}(\mathcal{A}, \rho)=0 \quad \forall i
\end{aligned}
$$

solve the hierarchy of NPO problems

$$
\begin{aligned}
\min _{\omega \in S\left(\mathcal{A}^{\otimes n}\right)} & \omega\left(y_{0}\right) \\
\text { s.t. } & \omega\left(y_{i}\right)=0 \quad \forall i \\
& \omega \text { is symmetric on } \mathcal{A}^{\otimes n},
\end{aligned}
$$

where y_{0}, y_{i} are the polarizations of p_{0}, p_{i}.

Difficulties for convex optimization

- The set of product states is not convex:

For ρ, σ product states $(1-\lambda) \rho+\lambda \sigma$ is mixed unless $\lambda=0$ or 1 . the set of symmetric states is convex \checkmark

- The polynomials (in the state) can be non-convex We linearized those polynomials \checkmark
- The dimension grows exponentially quickly NPO can deal with that \checkmark

Difficulties for convex optimization

- The set of product states is not convex:

For ρ, σ product states $(1-\lambda) \rho+\lambda \sigma$ is mixed unless $\lambda=0$ or 1 . the set of symmetric states is convex \checkmark

- The polynomials (in the state) can be non-convex We linearized those polynomials \checkmark
- The dimension grows exponentially quickly NPO can deal with that \checkmark

Quantum de Finetti Theorem

Theorem: Max tensor product Quantum de Finetti ${ }^{7}$
Let $\omega \in S\left(\mathcal{A}^{\infty}\right)$ be a symmetric state on an infinite maximal tensor product

$$
\mathcal{A}^{\infty}=\lim _{n \rightarrow \infty} \mathcal{A}^{\otimes_{\max } n}
$$

Then there exists a unique probability measure μ over states on \mathcal{A} such that for all $x \in \mathcal{A}^{\infty}$,

$$
\omega(x)=\int_{S(\mathcal{A})} \Pi_{\sigma}^{\infty}(x) \mathrm{d} \mu(\sigma)
$$

where Π_{σ}^{∞} is the infinite symmetric product state on \mathcal{A}^{∞} associated with the state σ on \mathcal{A}.

[^4]
Convergence proof sketch

- Each step in the hierarchy is a relaxation \Longrightarrow each solution is a lower bound
- NPO converges ${ }^{8}$
- The Quantum de Finetti Theorem shows that for $n \rightarrow \infty$ the optimal state converges to a separable state that obeys all the polarization constraints. It looks like

$$
\omega(x)=\int_{S(\mathcal{A})} \Pi_{\sigma}^{\infty}(x) \mathrm{d} \mu(\sigma)
$$

where "each" Π_{σ}^{∞} obeys all the polynomial constraints! ${ }^{9}$

- Choose one such Π_{σ}^{∞}. This state gives an upper bound that matches the lower bound in the limit.

[^5]
Closely related SDP hierarchy

Recent paper on state polynomial optimization ${ }^{10}$

- Extends the algebra \mathcal{A} by including commuting generators $g_{i}{ }^{\prime \prime}={ }^{\prime \prime} \rho\left(a_{i}\right)$ for a basis $\left\{a_{i}\right\}_{i}$ of \mathcal{A}
- Now polynomials in states also become linear:

$$
\begin{aligned}
\rho\left(a_{i} a_{j}\right) & =\rho\left(a_{i}\right) \rho\left(a_{j}\right) \\
& =\rho\left(a_{i} \rho\left(a_{j}\right)\right)=\rho\left(a_{i} g_{j}\right)
\end{aligned}
$$

- They prove a Positivstellensatz to show that this converges

Resembles scalar extension ${ }^{11}$

[^6]
Conclusion \& outlook

There are several closely related converging hierarchies of SDP relaxations to the state polynomial optimization problem

$$
\begin{array}{cl}
\min _{\rho \in S(\mathcal{A})} & p_{0}(\mathcal{A}, \rho) \\
\text { s.t. } & p_{i}(\mathcal{A}, \rho)=0 \quad \forall i .
\end{array}
$$

This has many applications in QIT, e.g. (non-linear) Bell inequalities and the causal compatibility problem (cf David's talk)

- Which hierarchy has faster convergence? And how are they related?
- For which causal structures is state polynomial optimization complete?

Thanks for listening!

[^0]: ${ }^{1}$ Uffink（2002）
 ${ }^{2}$ Klep et al．（2023）

[^1]: ${ }^{3}$ Navascués, Pironio, Acín (2008)
 ${ }^{4}$ Pironio, Navascués, Acín (2010)

[^2]: ${ }^{5}$ Wolfe, Spekkens, Fritz (2019)
 ${ }^{6}$ Wolfe et al. (2021)

[^3]: ${ }^{5}$ Wolfe, Spekkens, Fritz (2019)
 ${ }^{6}$ Wolfe et al. (2021)

[^4]: ${ }^{7}$ L, Gachechiladze, Gross (2021)

[^5]: ${ }^{8}$ Pironio, Navascués, Acín (2008)
 ${ }^{9}$ L, Gross (2022)

[^6]: ${ }^{10} \mathrm{Klep}$ et al. (2023)
 ${ }^{11}$ Pozas-Kerstjens et al. (2019)

