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Abstract: "Many relevant tasks in Quantum Information processing can be expressed as polynomial optimization problems over states and operators.
In the earlier talk by David, we saw that thisis also the case for certain (Quantum) causal compatibility and causal optimization problems.

This talk will focus on several closely related semidefinite programming (SDP) hierarchies that have recently been shown to be complete for such
polynomial optimization problems [arxiv:2110.14659, 2212.11299, 2301.12513]. We give a high-level overview of the techniques and mathematics
that are needed for proving such statements. In particular, we will see a version of a Quantum De Finetti theorem, as well as a sketch of a
constructive proof of convergence for the SDP hierarchies. Afterwards, these results are linked back to the causal compatibility problem to conclude
that such SDP hierarchies are complete for a certain type of causal structures known as tree networks."
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The causal compatibility problem

Causal compatibility

Given a (conditional) probability distribution P(a, b,c,...|x,y,z,...) and a causal
structure (in the form of a DAG), determine whether P can be produced in this
causal structure.

This is dependent on the physical model:
e Classical probability
¢ Quantum mechanics
e GPT
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(non-linear) Bell inequalities

For binary observables we have
e The CHSH expression

p(A1 By +A{B> + ABy — AQBQ).

Tsirelson bound for quantum systems is 2+/2.
® The expression

p(A1Bo + AoB1)? + p(A1By — AxBo)*.

Classical bound is 4'. Quantum bound is matching?.
e Many more complicated expressions...

Uffink (2002)
2Klep et al. (2023)
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Quantum Polynomial Optimization
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Polynomials

Such expressions are polynomials in two ways:
® |n the operators
e But also in the state

p(abcd) = p(a)p(b)p(c)p(d)
PP a b ced)

We call such expressions state polynomials
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(o] o)

Optimization

Quantum Polynomial Optimization

Given a set of generators G and relations R, defining a C*-algebra A = C*(G|R),
and a set of state polynomials p; : (A, S(A)) — C, solve

| A
LU po(A. p)

S. t- p!(Ag p) = 0 VI.

For example, A could be the algebra generated by the measurements and the p;
could be the factorization constraints.
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Difficulties for convex optimization

We would like to use convex optimization:

min  (C, X)

X

s.i. (/qi,)(> = tb
X=0
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Difficulties for convex optimization

We would like to use convex optimization:

min  (C, X)

X

s.i. (A,‘,X) = b,‘
X=0

However

® The set of product states is not convex:
For p, o product states (1 — \)p + Ao is mixed unless A =0 or 1.
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Difficulties for convex optimization

We would like to use convex optimization:

min  (C, X)

X

st. (AL X)=1b;
X =0

However

® The set of product states is not convex:
For p, o product states (1 — \)p + Ao is mixed unless A =0 or 1.

® The polynomials (in the state) can be non-convex
e The dimension grows exponentially quickly
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Difficulties for convex optimization

We would like to use convex optimization:

min  (C, X)

X

s.t. <A,,X> = b;
X~0

However

® The set of product states is not convex:
For p, o product states (1 — A)p + Ao is mixed unless A =0 or 1.

® The polynomials (in the state) can be non-convex
® The dimension grows exponentially quickly
So that seems pretty bad...
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NPO

e Non-commutative Polynomial Optimization®* can optimize over objective
functions and constraints that are linear in the state and polynomial in the
operators

e Hierarchy of relaxations that converges in the limit via a monotonically
increasing sequence of lower bounds

e Can be formulated independent of the dimension!

®Navascués, Pironio, Acin (2008)
*Pironio, Navascués, Acin (2010)
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NPO: How does it (roughly) work?

Construct a functional that is only positive on a subspace of the algebra A.
e Choose a basis {a;} of A, with ag = L.
e Choose an integer k and construct a k x k matrix M*), where

k *
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A matrix N is PSD iff v*Nv > 0 for all vectors v
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M is PSD

A matrix N is PSD iff v*Nv > 0 for all vectors v

v*Mv = Z vi'M; ;v
i

= Z Vi p(&; aj) v
kf
=p()_viar) va)
i J
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M is PSD

A matrix N is PSD iff v*Nv > 0 for all vectors v

vMv = Z Vi'M; ;v
— Z “o(ara)v
= P(Z viai ) va)
j.

:p(X* ) =0
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NPO: How does it (roughly) work?
Construct a functional that is only positive on a subspace of the algebra A.
e Choose a basis {a;} of A, with ag = I..
e Choose an integer k and construct a k x k matrix M(¥), where
M) = p(a &)
e Solve the SDP

- 0 p4(k)
Wik ;p"fM

k
st My =1
Z(p )iM) =0 when > (p')jp(a;a;) = 0

I
Mo+ ¢
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Difficulties for convex optimization

® The set of product states is not convex:
For p, o product states (1 — A\)p + Ao is mixed unless A = 0 or 1.

® The polynomials (in the state) can be non-convex
NPO can handle any polynomial in operators }v

® The dimension grows exponentially quickly
NPO can deal with that v
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Independence implies symmetry

|dea:
If p(AB) = p(A)p(B), then

p(AB) = p*?(AB®T) = p**(A® B) = p**(B A).
More generally, for n copies:

p(AB) = 5" (my(A® T ry(B e T50-1))

forall nand my,m € S,,.

>Wolfe, Spekkens, Fritz (2019)
®Wolfe et al. (2021)
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@000

Independence implies symmetry

|dea:
If p(AB) = p(A)p(B), then

p(AB) = p*?(AB®T) = p**(A® B) = p**(B A).
More generally, for n copies:

p(AB) = 5" (my(A® T ry(B e T50-1))

for all nand my, m € Sp.
This is also (partly) the motivation behind the inflation technique.® ©

>Wolfe, Spekkens, Fritz (2019)
®Wolfe et al. (2021)
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Relaxations via symmetry

Instead of solving our difficult problem

| n
e Po(A, p)

st. pi(A,p)=0 Vi
solve the hierarchy of NPO problems

e w(Yo)

s.t. w(y)=0 Vi
w is symmetric on A4%",

where yp, y; are the polarizations of pg, p;.
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Polarization example

Suppose
pi(A, p) = p(AB) — p(A)p(B) = 0.
Then the polarization of p; is
w(y;j) = w(A1Bi — A1Bz) = 0,

which is now linear in the state
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Relaxations via symmetry

Instead of solving our difficult problem

| n
e Po(A, p)

st. pi(A,p)=0 Vi
solve the hierarchy of NPO problems

e w(¥o)

s.t. w(y)=0 Vi
w is symmetric on A4%",

where yp, y; are the polarizations of pg, p;.
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Difficulties for convex optimization

¢ The set of product states is not convex:

For p, o product states (1 — \)p + Ao is mixed unless A =0 or 1.
the set of symmetric states is convex v

® The polynomials (in the state) can be non-convex
We linearized those polynomials v

¢ The dimension grows exponentially quickly
NPO can deal with that v
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Difficulties for convex optimization

e The set of product states is not convex:

For p, o product states (1 — A)p + Ao is mixed unless A =0 or 1.
the set of symmetric states is convex v

* The polynomials (in the state) can be non-convex
We linearized those polynomials v

¢ The dimension grows exponentially quickly
NPO can deal with that v
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Quantum de Finetti Theorem

Theorem: Max tensor product Quantum de Finetti’
Let w € S(A>) be a symmetric state on an infinite maximal tensor product

el A=

n—oo

Then there exists a unique probability measure u over states on A such that for all
X e A%,

w(x) = /S ()

where [15° is the infinite symmetric product state on A associated with the state
o on A.

7L, Gachechiladze, Gross (2021)
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Convergence proof sketch

Each step in the hierarchy is a relaxation — each solution is a lower bound
NPO converges®

The Quantum de Finetti Theorem shows that for n — oo the optimal state
converges to a separable state that obeys all the polarization constraints. It
looks like

o) = [, L IE (o),

where “each” MN<° obeys all the polynomial constraints!®

Choose one such IM5°. This state gives an upper bound that matches the
lower bound in the limit.

®Pironio, Navascués, Acin (2008)
°L, Gross (2022)
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Closely related SDP hierarchy

Recent paper on state polynomial optimization'®

e Extends the algebra A by including commuting generators g;“ = "p(a;,) for a
basis {a;}; of A
* Now polynomials in states also become linear:

p(a;a,) P( );0( )
= p(aip(a;)) = p(aig;)

® They prove a Positivstellensatz to show that this converges
Resembles scalar extension’

"Klep et al. (2023)
""Pozas-Kerstjens et al. (2019)
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Conclusion & outlook

There are several closely related converging hierarchies of SDP relaxations to the
state polynomial optimization problem

' A
RN Po(A. p)
s.t. pi(A4,p) =0 Vi

This has many applications in QIT, e.g. (non-linear) Bell inequalities and the
causal compatibility problem (cf David’s talk)

¢ Which hierarchy has faster convergence? And how are they related?
e For which causal structures is state polynomial optimization complete?
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