Title: Bounding counterfactual distributions in discrete structural causal models

Speakers: Jin Tian

Collection: Causal Inference & Quantum Foundations Workshop

Date: April 19, 2023 - 3:30 PM

URL: https://pirsa.org/23040118

Abstract: We investigate the problem of bounding counterfactual queries from an arbitrary collection of observational and experimental distributions and qualitative knowledge about the underlying data-generating model represented in the form of a causal diagram. We show that all counterfactual distributions in an arbitrary structural causal model (SCM) with finite discrete endogenous variables could be generated by a family of SCMs with the same causal diagram where unobserved (exogenous) variables are discrete with a finite domain. Utilizing this family of SCMs, we translate the problem of bounding counterfactuals into that of polynomial programming whose solution provides optimal bounds for the counterfactual query.

Pirsa: 23040118 Page 1/32

Counterfactuals

- Goal: inferring counterfactual queries from
 - observational/experimental data
 - causal diagram: qualitative knowledge about the underlying data-generating model
- E.g., investigating the gender discrimination in admission: "Would admission outcome for female applicant change had she been a male?"

Pirsa: 23040118 Page 2/32

Counterfactuals

- Goal: inferring counterfactual queries from
 - observational/experimental data
 - causal diagram: qualitative knowledge about the underlying data-generating model
- E.g., investigating the gender discrimination in admission: "Would admission outcome for female applicant change had she been a male?"

Pirsa: 23040118 Page 3/32

Partial Counterfactual Identifica.

- Identifying counterfactual distributions from data and causal diagram
 - ♦ (Halpern, 1998, Shpitser and Pearl 2007, Correa et al. 2021)
- Often non-identifiable
- Partial identification: deriving informative bounds
 (Manski, 1990; Robins,1989; Balke & Pearl, 1994; 1997;
 Tian & Pearl, 2000; Evans,2012; Richardson et al., 2014;
 Zhang & Bareinboim, 2017; Kallus & Zhou, 2018;
 Finkelstein & Shpitser, 2020; Kilbertus et al., 2020;
 Zhang & Bareinboim, 2021; ...)

3 / 34

Pirsa: 23040118 Page 4/32

Structural Causal Models

A structural causal model (SCM) is a tuple $\langle \boldsymbol{V}, \boldsymbol{U}, \boldsymbol{\mathcal{F}}, P \rangle$ where

- $lackbox{lackbox{lackbox{$\scriptstyle V$}}}$ is a set of endogenous variables
- lacktriangleright U is a set of mutually independent exogenous variables
- \mathcal{F} is a set of functions where each $f_V \in \mathcal{F}$ decides values of an endogenous variable $V \in \mathbf{V}$

$$v \leftarrow f_V(pa_V, u_V), PA_V \subseteq V, U_V \subseteq U$$

 $lackbox{\blacksquare} P(\boldsymbol{U})$ is a distribution

We consider acyclic SCMs.

4 / 34

Pearl's Causal Hierarchy - L1&2

- lacksquare $\mathcal F$ can be seen as a mapping from $U\longrightarrow V$
- An SCM M induces distribution P(V), called the observational distribution
- lacktriangle An intervention do($oldsymbol{X}=oldsymbol{x}$) induces a submodel $M_{oldsymbol{x}}$

$$x \leftarrow f_X(pa_X, u_X)$$
 replaced by $x \leftarrow x$

- $lacksquare M_{m{x}}$ induces an interventional distribution $P(m{V}|\mathsf{do}(m{x}))$
- Causal effect P(y|do(x)): how the outcome Y will respond if we take an action X=x

5 / 34

Pearl's Causal Hierarchy - L3

- The potential response $Y_x(u)$ is defined as the solution of Y in the submodel M_x given U = u.
- lacksquare $P(oldsymbol{U})$ induces a counterfactual variable $oldsymbol{Y}_{oldsymbol{x}}$

$$P\left(\boldsymbol{Y}_{\boldsymbol{x}}=\boldsymbol{y}\right)=P(\boldsymbol{y}|\mathsf{do}(\boldsymbol{x}))=\int_{\Omega_{\boldsymbol{U}}}\mathbb{1}_{\boldsymbol{Y}_{\boldsymbol{x}}(\boldsymbol{u})=\boldsymbol{y}}dP(\boldsymbol{u})$$

A counterfactual distribution

$$P(\boldsymbol{y_x}, \dots, \boldsymbol{z_w}) = \int_{\Omega_{\boldsymbol{U}}} \mathbb{1}_{\boldsymbol{Y_x(u)=y}, \dots, \boldsymbol{Z_w(u)=z}} dP(\boldsymbol{u})$$

6 / 34

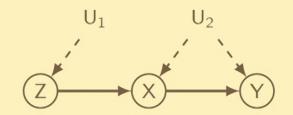
Causal Diagram

lacktriangle Every SCM M induces a causal diagram

$$z \leftarrow f_Z(u_1)$$

$$x \leftarrow f_X(z, u_2)$$

$$y \leftarrow f_Y(x, u_2)$$



- Researchers may know the scope of the functions, but not the details about the underlying mechanisms
- A graph is compatible with infinitely many SCMs

7 / 34

Pirsa: 23040118 Page 8/32

Causal Inference Tasks

- Model knowledge: causal diagram
- Data: P(v), P(v|do(z))
- Query: Q = P(y|do(x)); $Q = P(y_x, z_w)$
- Develop CI algorithms:
 - Identifiable? $P(y|do(x)) = \sum_{z} P(y|x,z)P(z)$
 - lacktriangle Partially identifiable? $Q \in [a, b]$

8 / 34

Pirsa: 23040118 Page 9/32

CI by Optimization

- Task: given the observational distribution P(v) in an arbitrary causal diagram \mathcal{G} , bound P(y|do(x)) or $P(Y_x, Z_w)$
- lacktriangle Assume endogenous variables $oldsymbol{V}$ are discrete and finite
- let $\mathcal{M}(\mathcal{G})$ be the set of all SCMs associated with \mathcal{G}

$$\min / \max_{M \in \mathcal{M}(\mathcal{G})} P_M(\boldsymbol{y_x}, \dots, \boldsymbol{z_w})$$

s.t. $P_M(\boldsymbol{V}) = P(\boldsymbol{V})$

Solving this optimization is difficult since we do not have access to the parametric forms of structural functions f_V nor $P(\boldsymbol{U})$

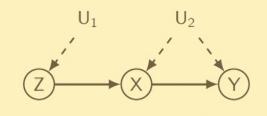
9 / 34

Pirsa: 23040118 Page 10/32

Canonical Partitioning (Balke&Pearl 94)

- IV model: binary X (treatment realized), Y (outcome), Z (treatment assigned)
- The canonical functions $x \leftarrow h_X^{(i)}(z)$

$$h_X^{(1)}(z)=0,$$
 Never-taker $h_X^{(2)}(z)=z,$ Complier $h_X^{(3)}(z)=1-z,$ Defier $h_X^{(4)}(z)=1.$ Always-taker



For any $x \leftarrow f_X(z, u_2)$, there exists a canonical partition $\mathcal{U}_X^{(i)}, i=1,2,3,4$ over the domain of U_2 such that $u_2 \in \mathcal{U}_X^{(i)}$ if and only if $f_X(\cdot, u_2) = h_X^{(i)}$

10 / 34

Canonical IV Model (Balke&Pearl 94)

A canonical IV model with $X, Y, Z \in \{0, 1\}$: $U_2 = (R_X, R_Y)$ where $R_X, R_Y \in \{1, 2, 3, 4\}$

$$x \leftarrow f_X(z, R_X) = h_X^{(R_X)}(z), \qquad \qquad U_1 \qquad U_2 = (R_X, R_Y)$$
$$y \leftarrow f_Y(x, R_Y) = h_Y^{(R_Y)}(x). \qquad \qquad Z \qquad \qquad Y$$

For any IV model M there exists a canonical IV model N such that

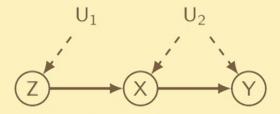
$$P_M(x, y, z) = P_N(x, y, z), P_M(y|do(x)) = P_N(y|do(x))$$

 $P_M(Z, X_{z_0}, X_{z_1}, Y_{x_0}, Y_{x_0}) = P_N(Z, X_{z_0}, X_{z_1}, Y_{x_0}, Y_{x_0})$

12 / 34

CI by Optimization (Balke&Pearl 94)

Task: given the observational distribution P(x, y, z), bound the causal effect P(y|do(x))



- Parameters in a canonical IV model: $P(R_X, R_Y)$
- P(x,y,z) imposes constraints on $P(R_X,R_Y)$
- Optimize P(y|do(x)) expressed in terms of $P(R_X, R_Y)$

13 / 34

LP Formulation (Balke&Pearl 94)

■ 16 parameters

$$q_{jk} = P(R_X = j, R_Y = k)$$

Express $p_{ij,k} = P(X = i, Y = j | Z = k)$ as linear functions of q_{jk}

$$p_{00.0} = P(Y = 0, X = 0 | Z = 0) = q_{00} + q_{01} + q_{10} + q_{11}$$

E Express objective function P(y|do(x)) as linear functions of q_{jk}

$$P(Y = 1|do(X = 0))$$

= $q_{02} + q_{12} + q_{22} + q_{32} + q_{03} + q_{13} + q_{23} + q_{33}$

14 / 34

Beyond IV Model

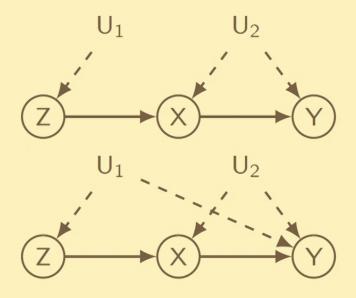
- Goal: extend the canonical IV model to general causal diagrams
- lacktriangleright Assume endogenous variables $oldsymbol{V}$ are discrete and finite
- Evans et al. (2018) showed observational distributions in geared graphs could be generated by a model with exogenous variables of discrete domains
- Rosset et al. (2018), Fraser (2020) showed observational distribution in an arbitrary causal diagram can be generated by a model with finite-state exogenous variables

15 / 34

Pirsa: 23040118 Page 15/32

C-Components

Definition (C-component): Two endogenous variables are in the same c-component if and only if they are connected by a bidirected path, a path composed entirely of bi-directed edges.

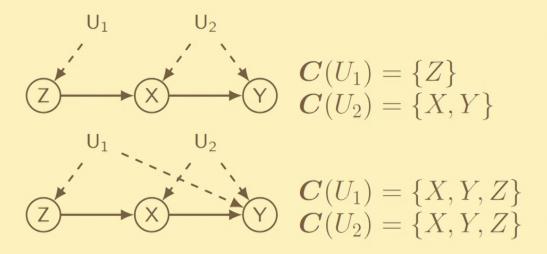


16 / 34

Pirsa: 23040118 Page 16/32

C-Components

We denote by C(U) the maximal c-component covering U in \mathcal{G} , i.e., $U \in \bigcup_{V \in C(U)} U_V$.



17 / 34

Pirsa: 23040118 Page 17/32

Canonical SCMs

Definition: An SCM $M=\langle {\bf V},{\bf U},\mathscr{F},P\rangle$ is said to be a canonical SCM over discrete endogenous $V\in {\bf V}$ with finite domain Ω_V if

Every exogenous $U \in U$ has a finite domain Ω_U with cardinality

$$|\Omega_U| = \prod_{V \in C(U)} |\Omega_{PA_V} \mapsto \Omega_V|,$$

 $|\Omega_{PA_V} \mapsto \Omega_V| = |\Omega_V|^{|\Omega_{PA_V}|}$ is the number of possible (canonical) functions mapping domain Ω_{PA_V} to Ω_V .

$$v \leftarrow f_V(pa_V, u_V)$$

18 / 34

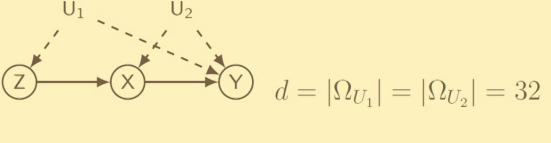
Canonical SCMs

Theorem For an arbitrary SCM $M = \langle V, U, \mathscr{F}, P \rangle$ over discrete and finite endogenous variables V, there exists a canonical SCM N such that

- 1. M and N are associated with the same causal diagram, i.e., $\mathcal{G}_M = \mathcal{G}_N$.
- 2. For any set of counterfactual variables $\boldsymbol{Y_x}, \dots, \boldsymbol{Z_w}$, $P_M(\boldsymbol{Y_x}, \dots, \boldsymbol{Z_w}) = P_N(\boldsymbol{Y_x}, \dots, \boldsymbol{Z_w})$.

20 / 34

Example



$$d = |\Omega_{U_1}| = |\Omega_{U_2}| = 32$$

$$P(x_{z'}, y_{x'}) = \sum_{u_1, u_2=1}^{d} \mathbb{1}_{f_X(z', u_2)=x} \mathbb{1}_{f_Y(x', u_1, u_2)=y} P(u_1) P(u_2).$$

$$P(\boldsymbol{y_x}, \dots, \boldsymbol{z_w}) = \sum_{U \in \boldsymbol{U}: u=1}^{d_U} \mathbb{1}_{\boldsymbol{Y_x(u)=y}, \dots, \boldsymbol{Z_w(u)=z}} \prod_{U \in \boldsymbol{U}} P(u).$$

21 / 34

Pirsa: 23040118 Page 20/32

Canonical SCMs - Int. Dist.

Theorem For an arbitrary SCM $M = \langle \boldsymbol{V}, \boldsymbol{U}, \mathcal{F}, P \rangle$ over discrete and finite endogenous variables \boldsymbol{V} , there exists a SCM N over \boldsymbol{V} with discrete exogenous \boldsymbol{U} having cardinality

$$|\Omega_U| = \prod_{V \in C(U)} |\Omega_{PA_V}| \times |\Omega_V|$$

such that

- 1. M and N are associated with the same causal diagram, i.e., $\mathcal{G}_M = \mathcal{G}_N$.
- 2. M and N generate the same set of interventional distributions, i.e., for any subsets $\boldsymbol{X}, \boldsymbol{Y} \subseteq \boldsymbol{V}$, $P_M(\boldsymbol{Y}_x) = P_N(\boldsymbol{Y}_x)$.

22 / 34

Canonical SCMs - Obs. Dist.

Theorem For an arbitrary SCM $M = \langle \boldsymbol{V}, \boldsymbol{U}, \mathscr{F}, P \rangle$ over discrete and finite endogenous variables \boldsymbol{V} , there exists a SCM N over \boldsymbol{V} with discrete exogenous \boldsymbol{U} having cardinality

$$|\Omega_U| = \prod_{V \in Pa(C(U))} |\Omega_V|$$

such that

- 1. M and N are associated with the same causal diagram, i.e., $\mathcal{G}_M = \mathcal{G}_N$.
- 2. M and N generate the same observational distribution, i.e., $P_M(\mathbf{V}) = P_N(\mathbf{V})$.

This has been shown in (Rosset et al., 2018, Fraser 2020).

23 / 34

Pirsa: 23040118 Page 22/32

Bounding Counterfactuals

- Given a collection of observational and interventional distributions $\{P(V|do(z)) \mid z \in \mathbb{Z}\}$
- lacktriangle Qualitative assumption: causal diagram ${\cal G}$
- lacktriangle Assume endogenous variables $oldsymbol{V}$ are discrete and finite
- lacksquare Query: $P(oldsymbol{y_x},\ldots,oldsymbol{z_w})$
- let $\mathcal{N}(\mathcal{G})$ be the set of all canonical SCMs associated with \mathcal{G}

$$\begin{aligned} \min / \max_{N \in \mathcal{N}(\mathcal{G})} & P_N\left(\boldsymbol{y_x}, \dots, \boldsymbol{z_w}\right) \\ \text{s.t.} & P_N(\boldsymbol{V_z}) = P(\boldsymbol{V_z}) \ \forall \boldsymbol{z} \in \mathbb{Z} \end{aligned}$$

24 / 34

Polynomial Optimization

For every $U \in U$, let parameters $\theta_u = P(U = u)$

$$\theta_u \in [0, 1],$$

$$\sum_{u \in \Omega_H} \theta_u = 1.$$

For every $V \in V$, we represent the output of function $f_V(pa_V, u_V)$ given input pa_V, u_V using an indicator vector $\mu_V^{(pa_V, u_V)} = \left(\mu_v^{(pa_V, u_V)} \mid \forall v \in \Omega_V\right)$ such that

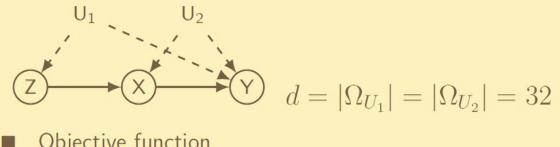
$$\mu_v^{(pa_V, u_V)} \in \{0, 1\},$$

$$\sum_{v \in \Omega_V} \mu_v^{(pa_V, u_V)} = 1.$$

Write any counterfactual probability as a polynomial function of parameters $\mu_v^{(pa_V,u_V)}$ and θ_u

25 / 34

Example



$$d = |\Omega_{U_1}| = |\Omega_{U_2}| = 32$$

Objective function

$$P(x_{z'}, y_{x'}) = \sum_{u_1, u_2=1}^{d} \mu_x^{(z', u_2)} \mu_y^{(x', u_1, u_2)} \theta_{u_1} \theta_{u_2}$$

Observational constraints

$$P(x, y, z) = \sum_{u_1, u_2=1}^{d} \mu_z^{(u_1)} \mu_x^{(z, u_2)} \mu_y^{(x, u_1, u_2)} \theta_{u_1} \theta_{u_2}$$

26 / 34

Pirsa: 23040118 Page 25/32

Quasi-Markovian Models

- Given an interventional distribution $P_z(V) = P(V|do(z))$
- \blacksquare Consider $G_{\overline{Z}}$

$$\sum_{u_i=1}^{du_i} \prod_{V_j \in C_i} \mathbb{1}_{f_{V_j}(pa_j, u_i) = v_j} \theta_{u_i} = \prod_{V_j \in C_i} P_{\boldsymbol{z}}(v_j | pa_j^+)$$

■ If the target query also factorizes, e.g, $W = \{Y, \dots, Z\}$

$$P(y_{pa_y}, \dots, z_{pa_z}) = \prod_{i} \sum_{u_i=1}^{a_{u_i}} \prod_{V_j \in \mathbf{W} \cap C_i} \mathbb{1}_{f_{V_j}(pa_j, u_i) = v_j} \theta_{u_i}$$

28 / 34

Pirsa: 23040118 Page 26/32

Bayesian Approach

- Solving polynomial optimization problems is generally hard.
- Duarte et al. (2021) presented an algorithm for bounding causal effects given data
- We develop a MCMC algorithm to approximate the bound given finite data

29 / 34

Pirsa: 23040118 Page 27/32

Bayesian Approach

- Given i.i.d. samples $\bar{\boldsymbol{v}} = \left\{ \boldsymbol{V}^{(n)} \right\}_{n=1}^N$ from $\left\{ P(\boldsymbol{V}|do(\boldsymbol{z})) \mid \boldsymbol{z} \in \mathbb{Z} \right\}$
- lacksquare Query $heta_{\mathsf{ctf}} = P\left(oldsymbol{y_x}, \dots, oldsymbol{z_w}
 ight)$
- Prior: For every V, $\forall pa_V, u_V$, $\mu_V^{(pa_V, u_V)}$ are drawn uniformly over domain Ω_V . For every U, θ_u are drawn from a Dirichlet distribution
- lacksquare Sample the posterior distribution $P\left(\theta_{\mathsf{ctf}} \mid \bar{m{v}}\right)$ given data $\bar{m{v}}$
 - 1. Draw $(\boldsymbol{\mu}, \boldsymbol{\theta}) \sim P(\boldsymbol{\mu}, \boldsymbol{\theta} \mid \bar{\boldsymbol{v}})$ by Gibbs sampling
 - 2. Given parameters $\boldsymbol{\theta}, \boldsymbol{\mu}$, compute the counterfactual probability $\theta_{\text{ctf}} = P(\boldsymbol{y_x}, \dots, \boldsymbol{z_w})$

30 / 34

Pirsa: 23040118 Page 28/32

Estimating Bounds

A $100(1-\alpha)\%$ credible interval $[l_{\alpha},r_{\alpha}]$: any counterfactual probability $\theta_{\rm ctf}$ that is compatible with observational data $\bar{\boldsymbol{v}}$ lies between the interval l_{α} and r_{α} with probability $1-\alpha$.

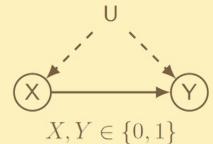
- 1. **Input:** Credible level α , tolerance level δ , ϵ .
- 2. **Output:** A credible interval $[l_{\alpha}, h_{\alpha}]$ for θ_{ctf} .
- 3. Draw $T = \lceil 2\epsilon^{-2} \ln(4/\delta) \rceil$ samples $\{\theta^{(1)}, \dots, \theta^{(T)}\}$ from the posterior distribution $P(\theta_{\mathsf{ctf}} \mid \bar{\boldsymbol{v}})$.
- 4. Return interval $\left[\hat{l}_{\alpha}(T), \hat{r}_{\alpha}(T)\right]$.

$$l_0 = \min_t \theta^{(t)}, \quad r_0 = \max_t \theta^{(t)}$$

 $[l_0, r_0]$ converges almost surely to the optimal bound as $N, T \to \infty$

31 / 34

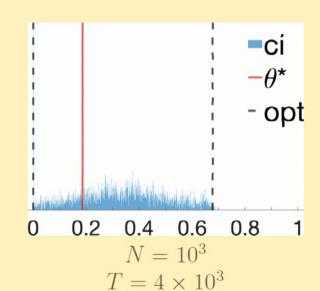
Simulation Example



 $d = |\Omega_U| = 8$

Data: P(X,Y)

Query: PNS

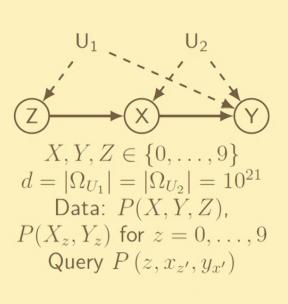


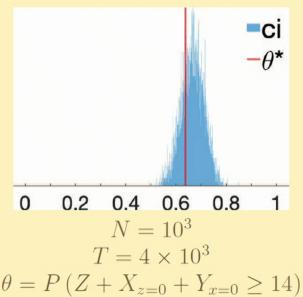
 $PNS = P(Y_{x=1} = 1, Y_{x=0} = 0)$ opt: sharp bound(Tian&Pearl 2000)

32 / 34

Pirsa: 23040118 Page 30/32

Simulation Example





Query $P(z, x_{z'}, y_{x'})$ $\theta = P(Z + X_{z=0} + Y_{x=0} \ge 14)$

33 / 34

Pirsa: 23040118 Page 31/32

Conclusion

- We study the problem of bounding counterfactual probabilities from observational and experimental data given a causal diagram
- We introduce a family of canonical SCMs over discrete endogenous variables with discrete exogenous variables
- We show canonical SCMs could represent all counterfactual distributions over discrete observed variables in any causal diagram.
- We reduce the partial identification problem into a polynomial program
- We develop an MCMC algorithm to approximate the optimal bounds from finite samples.

34 / 34

Pirsa: 23040118 Page 32/32