Title: Bounding counterfactual distributions in discrete structural causal models
Speakers: Jin Tian

Collection: Causal Inference & Quantum Foundations Workshop

Date: April 19, 2023 - 3:30 PM

URL.: https://pirsa.org/23040118

Abstract: We investigate the problem of bounding counterfactual queries from an arbitrary collection of observational and experimental distributions
and qualitative knowledge about the underlying data-generating model represented in the form of a causal diagram. We show that all counterfactual
distributions in an arbitrary structural causal model (SCM) with finite discrete endogenous variables could be generated by a family of SCMs with
the same causal diagram where unobserved (exogenous) variables are discrete with a finite domain. Utilizing this family of SCMs, we translate the
problem of bounding counterfactuals into that of polynomial programming whose solution provides optimal bounds for the counterfactual query.
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r

m Goal: inferring counterfactual queries from
& observational /experimental data
¢ causal diagram: qualitative knowledge about the
underlying data-generating model

m E.g., investigating the gender discrimination in admission:
“Would admission outcome for female applicant change
had she been a male?”
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1

|dentifying counterfactual distributions from data and
causal diagram

¢ (Halpern, 1998, Shpitser and Pearl 2007, Correa et
Alt i

Often non-identifiable

Partial identification: deriving informative bounds
(Manski, 1990; Robins,1989; Balke & Pearl, 1994; 1997;
Tian & Pearl, 2000: Evans,2012: Richardson et al., 2014:
Zhang & Bareinboim, 2017;Kallus & Zhou, 2018;
Finkelstein & Shpitser, 2020; Kilbertus et al., 2020;
Zhang & Bareinboim, 2021; ...)
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A structural causal model (SCM) is a tuple (V,U, F, P)
where

m V is a set of endogenous variables
m U is a set of mutually independent exogenous variables

m F is aset of functions where each fyy € F decides values
of an endogenous variable V' € V

I o ‘}L']"(\/)('I]". (_!1"). oy eV i Kol

m P(U) is a distribution
We consider acyclic SCMs.
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J can be seen as a mapping from U — V

An SCM M induces distribution P(V'), called the
observational distribution

An intervention do(X = @) induces a submodel M,

x4+ fx(pax,ux) replacedby z ¢ =z

M, induces an interventional distribution P(V |do(x))

Causal effect P(y|do(x)): how the outcome Y will

respond If we take an action X =«
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m [he potential response Y ,.(u) is defined as the solution
of Y in the submodel M, given U = wu.

m P (U) induces a counterfactual variable Y ,.
P(Y,=y)= P(yldo(x)) = / Ly, (u '1—3;(/-[)(;'11’)
JQy

m A counterfactual distribution

! ! Y- Zyw) = / Jl*Ymt W=y, A1 _)*:(U (u)
JQu
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m Every SCM M induces a causal diagram

2 +— fzlug) U, I

< Fyle, )

’/ .’/ \‘
y — fy(z,u) O—(0—)
m Researchers may know the scope of the functions, but

not the details about the underlying mechanisms

m A graph is compatible with infinitely many SCMs
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Model knowledge: causal diagram
Data: Pl Plujdolz))
Qilery. = Plylaolg ) =Flu.. 2,

Develop Cl algorithms:
¢ ldentifiable? P(y|do(x)) = ). P(y|z, z)P(2)
¢ Partially identifiable? @ € |a, b]
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Task: given the observational distribution P(v) in an

arbitrary causal diagram G, bound P(y|do(x)) or
ey 7

Assume endogenous variables V' are discrete and finite
let #(G) be the set of all SCMs associated with G

. / e D) . & 3
s mase Faay. . 20
Me. # (G)

st PV =Pl
Solving this optimization is difficult since we do not have
access to the parametric forms of structural functions fy

nor P(U)
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IV model: binary X (treatment realized), Y (outcome),
Z (treatment assigned)

(2)

The canonical functions v < hy/ (z)

h t\“ (2) = 0, Never-taker
h_t\\'f?" (2] = 2, Complier ' )
/ﬁ_t'\:') (2= - Delier . M

» g 4
Y. : ol v .
h(2) = 1. Always-taker O——®
For any x < fx(z,us), there exists a canonical partition
M_f{"_,‘ — 1,2, 3,4 over the domain of Us such that

{{362/{%5 if and only if fx(-,u2) = hY
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m A canonical IV model with X, Y, Z € {0, 1}:
Us = (Rx, Ry) where Rx, Ry € {1,2,3,4}

(Rx) ) :
! ‘\7 ]L\ F] \) ] \ 3 (H_)_ /Ul U_-‘ ,(F\\\ F\\,)

y — friz, Ry) = h{™(2). G

m For any |V model M there exists a canonical IV model N

such that

Byau 2= Bule y 20, Farl (/‘(/() Py ( U\(/(}
Fanl &, 8 A 3,“ },“) = N, & \ 3,“ 3,',)
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Task: given the observational distribution P(z, vy, 2),
bound the causal effect P(y|do(x))
U, U,

L / \
/ /7 \

¥ ¥ D)

O——O

Parameters in a canonical IV model: P(Ryx, Ry)

P(z,y, z) imposes constraints on P(Rx, Ry)

Optimize P(y|do(x)) expressed in terms of P(Ry, Ry)
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B 16 parameters

dik = Py R\ =7, L)} = k)

B Express p;ix = P(X =14,Y = j|Z = k) as linear functions of g

P00.0 P(Y =0,X {)‘Z 0) = qoo + go1 + g10 + 911

B Express objective function P(y|do(x)) as linear functions of ¢;,

PlY = l|(/r)(__\' = 0}
= @qo2 + q12 + @22 + @32 + qo3 + G13 + @23 + @33
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Goal: extend the canonical IV model to general causal
diagrams

Assume endogenous variables V' are discrete and finite

Evans et al. (2018) showed observational distributions in
geared graphs could be generated by a model with
exogenous variables of discrete domains

Rosset et al. (2018), Fraser (2020) showed observational
distribution in an arbitrary causal diagram can be
generated by a model with finite-state exogenous
variables
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Definition (C-component): Two endogenous variables are in
the same c-component if and only if they are connected by a
bidirected path, a path composed entirely of bi-directed

edges.

Ui U>
’/ ’// \\
F—F—O
Ui U>
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m We denote by C(U) the maximal c-component covering
Uing, ie, Uel JycomUy.

U, U>
r// r/ \\\ C(lU,) =4{2}
O—0—0 o) ={x,7}
u U
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Definition: An SCM M =(V, U, #, P) is said to be a
canonical SCM over discrete endogenous V' € V' with finite
domain Qy if

m Every exogenous U € U has a finite domain 2 with

cardinality
Qul= ] 194 — Qvl.
VeC(U)
Qpa, — Q| = |Qy|*#4v] is the number of possible

(canonical) functions mapping domain {2p4,. to {2y .

v — fv(pay,uy)
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Theorem For an arbitrary SCM M = (V. U, %, P) over
discrete and finite endogenous variables V', there exists a
canonical SCM N such that

1. M and N are associated with the same causal diagram,
L., Un = On.

2. For any set of counterfactual variables Y. ..., VA
,[')ﬂ\[ (Yl ...... Zu;‘) o ,[')k\ (‘YJ._' ok Zu_.» )
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/ \
“~ \
G—F—O
- W G )
Tl = ] = 2
d
[)(f d Uf’) e 2 ﬂf\t v )—.I"I'iL‘f\'f..I",iHAH_.)—_{_/'[-)({!1_)'[)(_([‘3_)
Uy, us=1
dr
. e 3
Zu!_) o 2 ﬂ}"wt 0=9.... Zup W )=2 H / (u).
UeU .u=l UeU
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Theorem For an arbitrary SCM M = (V,U,.%#, PP) over
discrete and finite endogenous variables V', there exists a
SCM N over V' with discrete exogenous U having
cardinality

‘SZ[‘ e HTF_(_T'{T") ‘Qj)ix ‘ X ‘Q\‘
such that

1. M and N are associated with the same causal diagram,
i.e., g,\u — g\

2. M and N generate the same set of interventional
distributions, i.e., for any subsets X, Y C V,
Prv(Ye) = Pn(Y.).
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Theorem For an arbitrary SCM M = (V U, .%#, PP) over
discrete and finite endogenous variables V', there exists a
SCM N over V' with discrete exogenous U having
cardinality

= HT'JW(_?’{(‘"H Q|

stich that

1. M and N are associated with the same causal diagram,

LE. e = Lo
2. M and N generate the same observational distribution,
l.e., P\[(V) = P\(V]

This has been shown in (Rosset et al., 2018, Fraser 2020).

1
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Given a collection of observational and interventional
distributions { P(V'|do(z)) | z € Z}
Qualitative assumption: causal diagram G
Assume endogenous variables V' are discrete and finite
Quepy: Bl .0, 2.,
let .4 (G) be the set of all canonical SCMs associated
with G

i mae Py o )

NeAV(G)

sit. V. =FRY .V yoe 7
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For every U € U, let parameters 8, = P(U = u)

6, € [0,1], Z 0y, = 1.

ueld;

For every V' € V| we represent the output of function fy (pay,uy)
given input pay , uy using an indicator vector

( D¢ i ) LD J ) N s
It (/af”‘ V| Yo € ) such that

/l:lflirf\ yuy ) L {{) l } Z /,’:I/”H' YA I

vEld

Write any counterfactual probability as a polynomial function of

Ly , Uy )

parameters /1" and 6,
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S o
Qu,| = || = 32
Objective function
d
N fix N ‘!'_;.u-_;]- [.f"".(r|,u-__»]
Pz, ye) = Z I, [y iy i
i tn =1
Observational constraints
d
‘[_)(.,!'_r(/_ )= Z /ilifuJ/!’Er.‘.u_ajllildr'.u|‘u-_»]'()”i“”:
11y Hjil
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B Given an interventional distribution P.(V') = P(V'|do(z))
B Consider G

du,
_ I Jv. (pa;,ui)=v; Hff,. / Z( { ) |/H"__; )
;=1 V.el,; Ve E,

B If the target query also factorizes, e.g, W ={Y, .. .. Z )

[)({//M _____ V/,,I, ]_H E H (pa, \ 4.;{)”#.

H*\‘l WwWno,
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Solving polynomial optimization problems is generally
hard.

Duarte et al. (2021) presented an algorithm for
bounding causal effects given data

We develop a MCMC algorithm to approximate the
bound given finite data

1
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N
Given i.i.d. samples v = {V“”} _[ from
{P(V]do(z)) .
Query Our = P (Yg) - - - 5 Zw)

— r;/'
z € 7}

(pav,uy)

Prior: For every V', Vpay,uy, uy are drawn
uniformly over domain €2y.. For every U, 0, are drawn
from a Dirichlet distribution

Sample the posterior distribution P (6. | v) given data v

1. Draw (u,0) ~ P (u,0 | v) by Gibbs sampling

2. Given parameters 0, pt, compute the counterfactual
prababilief = Elin . - & o)

30 / 3¢
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A 100(1 — «)% credible interval |l,,7.|: any counterfactual probability
0. that is compatible with observational data © lies between the interval
l, and r, with probability 1 — «.

1. Input: Credible level «, tolerance level 9, €.
2. Output: A credible interval [l,, h,] for €.

3. Draw T = [2¢*In(4/9)] samples {81, .. ., 0t} from the
posterior distribution P (A.s | D).

4. Return interval [/,1{ o) f",,('/”)]

: (1) (it
lo=mind". 7rp=maxt"”
t

t

lo, o] converges almost surely to the optimal bound as N,T" — oc

31 / 34
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E ' Ci

U i =

l , - opt
» Y : :
o - | :
sasa =l i

d=|Qy| =8 0 02 04 06 08 1
Pata: P X ¥) N = 10°
Query: PNS T'=14x 10°

PNS =Py, 1 =1,Y,.—o=20) opt: sharp bound( F'ian&Pearl 2000)
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@—»@—»@

X Y. ZEq

d = |Qu |_|(> |: 1(;"
Data: P(X.Y. Z),

FiXx  Fdor o=t 9
Q ey Pz .7 1)

0 02 04 06 08
N = 10°
T s 105

= Pt X wa'l 1omp =

IR

Ci
9*

;

14)
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We study the problem of bounding counterfactual
probabilities from observational and experimental data
given a causal diagram

We introduce a family of canonical SCMs over discrete
endogenous variables with discrete exogenous variables

We show canonical SCMs could represent all
counterfactual distributions over discrete observed
variables in any causal diagram.

We reduce the partial identification problem into a
polynomial program

We develop an MCMC algorithm to approximate the
optimal bounds from finite samples.

34 / 34
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