Title: Causal Discovery via Common Entropy
Speakers: Murat Kocaoglu
Collection: Causal Inference \& Quantum Foundations Workshop
Date: April 18, 2023-2:00 PM
URL: https://pirsa.org/23040113
Abstract: Distinguishing causation from correlation from observational data requires assumptions. We consider the setting where the unobserved confounder between two observed variables is simple in an information-theoretic sense, captured by its entropy. When the observed dependence is not due to causation, there exists a small-entropy variable that can make the observed variables conditionally independent. The smallest such entropy is known as common entropy in information theory. We extend this notion to Renyi common entropy by minimizing the Renyi entropy of the latent variable. We establish identifiability results with Renyi- 0 common entropy, and a special case of (binary) Renyi- 1 common entropy. To efficiently compute common entropy, we propose an iterative algorithm that can be used to discover the trade-off between the entropy of the latent variable and the conditional mutual information of the observed variables. We show that our algorithm can be used to distinguish causation from correlation in such simple two-variable systems. Additionally, we show that common entropy can be used to improve constraint-based methods such as the PC algorithm in the small-sample regime, where such methods are known to struggle. We propose modifying these constraint-based methods to assess if a separating set found by these algorithms is valid using common entropy. We finally evaluate our algorithms on synthetic and real data to establish their performance.

Causal Discovery via Common Entropy

Murat Kocaoglu	Sanjay Shakkottai Purdue University ECE
	Alex Dimakis Constantine Caramanis Causal Inference and
Sriram Vishwanath	
Quantum Foundations Workshop	
Perimeter Institute	
Waterloo, Canada	
April 18, 2023	

Modeling Probabilistic Causation

X : Percentage of population $\mathrm{w} /$ access to clean water Y : Child mortality

Magic wand to intervene/do:

\mathbf{X}	\mathbf{Y}
22	165
97	15
85	33
100	3
51	154
$\ldots .$.	\ldots.
nttp://data.un.org	

Modeling Probabilistic Causation

X is said to cause Y if intervening on X changes
 the
 distribution of Y

Causal Graphs

Vertices: Random variables
Edges : Causal relations
$X_{i}=f_{i}\left(P a_{i}, E_{i}\right)$
$P a_{i}$: Set of parents of X_{i} in the causal graph
$\left\{E_{i}\right\}_{i}$: Jointly independent exogenous variables

Causal Graphs

Vertices: Random variables
Edges : Causal relations
$X_{i}=f_{i}\left(P a_{i}, E_{i}\right)$
$P a_{i}$: Set of parents of X_{i} in the causal graph
$\left\{E_{i}\right\}_{i}$: Jointly independent exogenous variables

How to Infer Causation?

Does going to college have any causal effect on income at 30?

Went to College	Income at 30 > 50k
0	0
0	1
0	0
1	1
1	1
\ldots	\cdots

How to Infer Causation?

Does going to college have any causal effect on income at 30?

Went to College	Income at 30 > 50k	Parents' Income
0	0	0
0	1	1
0	0	0
1	1	1
1	1	1
\ldots	\ldots	\ldots

How to Infer Causation?

Does going to college have any causal effect on income at 30?

Went to College	Income at 30 > 50k	Parents' Income
0	0	0
0	1	1
0	0	0
1	1	1
1	1	1
\ldots	\ldots	\ldots

How to Infer Causation?

Conduct intervention (RCT)

- Force half the people to go

Went to College	Income at 30 $\mathbf{> 5 0 k}$
1	1
1	1
1	0
$\ldots \cdot$	\ldots

- Compare income of both populations

- Force other half to NOT go

Went to College	Income at 30 $\mathbf{> 5 0 k}$
0	0
0	1
0	0
\ldots	\ldots

Talk Outline

- Motivation
- Introduction to Probabilistic Causality
- Causal Discovery and Common Entropy

Motivation:
 Distinguish Causation from Correlation

- Z is an unobserved (latent) confounder.
- Can we distinguish them from observational data?

No.

Motivation:
 Distinguish Causation from Correlation

Latent Graph

- Z is an unobserved (latent) confounder.
- Can we distinguish them from observational data?

No.

- What if the latent confounder is simple?

Motivation:
 Distinguish Causation from Correlation

Latent Graph

- Z is an unobserved (latent) confounder.
- Can we distinguish them from observational data?

No.
-What if the latent confounder is simple?
simple = low Rényi entropy

Simple Confounder

Case1: Low support size

- Two variables $X \in \mathcal{X}, Y \in \mathcal{Y}$.

- $Z \in \mathcal{Z}$ unobserved (latent) $X \Perp Y \mid Z$

$\begin{gathered} \text { IID } \\ \text { Datapoints } \end{gathered}$	Farmer X	Farmer Y
1992	0	So
1993	0	0
1994	0	50
1995	50	5
1996	0	0
1997	\cdots	50
1998	0	0
1999	\cdots	5
2000	\cdots	C
	\cdots	\cdots

17

Simple Confounder
 Case1: Low support size

- Two variables $X \in \mathcal{X}, Y \in \mathcal{Y}$.

- $Z \in \mathcal{Z}$ unobserved (latent) $X \Perp Y \mid Z$
- Q: How does this graph manifest itself in the observed distribution $p(x, y)$ when Z has small support size?

Footprints of Latent Graph

- Suppose Z has k states

$$
\begin{aligned}
p(x, y) & =\sum_{z} p(x, y \mid z) p(z) \\
& =\sum_{z} p(x \mid z) p(y \mid z) p(z)
\end{aligned}
$$

Model Decomposition and NMF

NMF

$$
U \in \mathbb{R}_{+}^{n \times k}, V \in \mathbb{R}_{+}^{k \times n} \quad \Sigma=\operatorname{diag}(d), d \in \mathbb{R}_{+}^{k}
$$

Model Decomposition and NMF

\Rightarrow Nonnegative rank gives minimum support size for the confounder!

Story with Support Size

Story with Support Size

A typical distribution from Triangle Graph

$$
p(x, y, z)=p(z) p(x \mid z) p(y \mid x, z)
$$

Triangle Graph

Theorem: Suppose each conditional in triangle graph is uniformly Kocaoglu et al., randomly chosen from the simplex.
Neurlis' 20
$\Rightarrow[p(x, y)]_{x, y}$ has non-negative rank $\min \{|\mathcal{X}|,|\mathcal{Y}|\}$ with prob. 1 .

Story with Support Size

$[p(x, y)]_{x, y}$ has non-negative rank $\leq|\mathcal{Z}|$

Triangle Graph
$[p(x, y)]_{x, y}$ has non-negative rank $=\min \{|\mathcal{X}|,|\mathcal{Y}|\}$

Identifiability Result

Triangle Graph
$[p(x, y)]_{x, y}$ has non-negative rank $=\min \{|\mathcal{X}|,|\mathcal{Y}|\}$

Corollary: If the support size of latent confounder is $<\min \{|\mathcal{X}|,|\mathcal{Y}|\}$ we can distinguish Latent Graph from Triangle Graph.

- Uses NMF rank. NP-Hard to calculate.
- Next: Assume low-entropy confounder.

Simple Confounder

Case2: Low entropy

- Q: How does such a causal graph manifest itself in the observed distribution $p(x, y)$ when Z has small entropy?
- A: This is related to common entropy.

Common Entropy

- Given $p(x, y)$, find Z with minimum entropy such that $X \Perp Y \mid Z$.
- Common entropy is $G(X, Y):=H(Z)$. [related to Wyner info]
- Equivalent to fitting latent graph with smallest-entropy latent.

\Rightarrow Entropy of true confounder upper-bounds common entropy!

Common Entropy

- Given $p(x, y)$, find Z with minimum entropy such that $X \Perp Y \mid Z$.
- Common entropy is $G(X, Y):=H(Z)$. [related to Wyner info]
- Closed-form solution for binary variables by Kumar et al. 2014.
- Very hard problem in general. (But no formal hardness results)
G. R. Kumar, C. T. Li, A. El Gamal, "Exact common information," ISIT' 14.

Story with Common Entropy

Story with Common Entropy

Latent Graph
X, Y has common entropy $G(X, Y) \leq H(Z)$

Triangle Graph
What can we say about common entropy?

Very difficult to answer. We can show a bound for binary case:
Theorem: For binary X, Y, all but a vanishing fraction* of models from Kocaoglu et al., Triangle Graph has
NeurIPS'20

* $\rightarrow 1$ as $H(Z) \rightarrow 0$

A Conjecture

Conjecture: Let $p(X, Y, Z)=p(Z) p(X \mid Z) p(Y \mid X, Z) \quad$ s.t. each conditional is uniformly randomly chosen from the simplex.
\Rightarrow For any $q(X, Y, Z)$ that satisfies $p(X, Y)=q(X, Y)$ and $X \Perp Y \mid Z$

$$
H(Z)>\alpha \min \{H(X), H(Y)\}
$$

for some constant α.

In words, most X, Y from triangle graph have large common entropy.

- Next: Propose an algorithm to estimate common entropy.

A Relaxation of the Problem

$$
\begin{aligned}
\underset{q(x, y, z)}{\operatorname{minimize}} & H(Z) \\
\text { subject to } & \sum_{x, y, z} q(x, y, z)=1, \\
q(x, y)= & p(x, y), \forall x, y . \quad I(X ; Y \mid Z) \leq \delta
\end{aligned}
$$

Loss Function

$$
\mathcal{L}=I(X ; Y \mid Z)+\beta H(Z)
$$

Loss Function

$$
\mathcal{L}=I(X ; Y \mid Z)+\beta H(Z)
$$

- Given $p(X, Y)$, construct $q(Z \mid X, Y)$

Takes care of the constraint $q(x, y)=p(x, y), \forall x, y$.

Joint: $q(X, Y, Z)=p(X, Y) q(Z \mid X, Y)$

Loss Function

$$
\mathcal{L}=I(X ; Y \mid Z)+\beta H(Z)
$$

- Given $p(X, Y)$, construct $q(Z \mid X, Y)$

Takes care of the constraint $q(x, y)=p(x, y), \forall x, y$. Joint: $q(X, Y, Z)=p(X, Y) q(Z \mid X, Y)$

- Variables:

$$
q(z \mid x, y) \quad \forall x \in[n], y \in[n], z \in[k]
$$

$k n^{2}$ variables

- Constraints: Non-negative, slices sum to 1 .

A Practical Way to Estimate Common Entropy

- Regularize with the constraint:

$$
\min \mathcal{L}=I(X ; Y \mid Z)+\beta H(Z)
$$

- Still need to search over $q(z \mid x, y)$.
- Still non-convex in $q(z \mid x, y)$.

Characterizing Stationary Points of Loss

- Find Lagrangian of $\mathcal{L}=I(X ; Y \mid Z)+\beta H(Z)$
take partial derivative and set to zero.

$$
q(z \mid x, y)=\left(\frac{1}{2}\right)^{\delta_{x, y}-\beta} \frac{q(z \mid x) q(z \mid y)}{q(z)^{1-\beta}}
$$

- Turn into an iterative update algorithm called LatentSearch.
[Similar in spirit to Blahut-Arimoto, EM, Information bottleneck]

Latent Variable Discovery Algorithm LatentSearch

- Theorem 1: Stationary points of LatentSearch are stationary points of the loss.
- Theorem 2: LatentSearch converges to local minimum or saddle point for $\beta=1$.

Latent Variable Discovery Algorithm

 LatentSearch- Recovers a point in the $H(Z)$ vs. $I(X ; Y \mid Z)$ plane for each β.

Discover a fundamental tradeoff between
Complexity of the Latent vs. Dependence explained away
$H(Z)$
$I(X ; Y \mid Z)$

Samples Output of Algorithm

Samples Output of Algorithm

Causal Inference Algorithm

InferGraph

- Input: $p(X, Y)$

Mutual information threshold: I_{t}
Set of β : \mathcal{B}

- Set $\mathcal{S}=\emptyset$
- For β in \mathcal{B} :

$$
q(X, Y, Z) \leftarrow \text { LatentSearch }(p(X, Y), \beta)
$$

$H(Z), I(X ; Y \mid Z) \leftarrow q(X, Y, Z)$
$\mathcal{S} \leftarrow \mathcal{S} \cup(H(Z), I(X ; Y \mid Z))$

- $H^{*}(Z)=\min \left\{H:(H, I) \in \mathcal{S}\right.$ AND $\left.I<I_{t}\right\}$
- If $H^{*}(Z)<\min \{H(X), H(Y)\} \quad$, otherwise output output

If common entropy is large

otherwise

Causal Inference Algorithm InferGraph

$\mathcal{L}=I(X ; Y \mid Z)+\beta H(Z)$

Causal Inference Algorithm InferGraph

Causal Inference Algorithm InferGraph

Causal Inference Algorithm InferGraph

$$
\mathcal{L}=I(X ; Y \mid Z)+\beta H(Z)
$$

Another Application of Common Entropy

- Improve constraint-based causal discovery alg. in the small sample regime.
- Finitely many samples \Rightarrow Incorrect Cl statements
- Can be used to reject small separating sets:

$$
\begin{array}{cc}
\text { We observe } & \text { but } \\
X \Perp Y \mid Z & G(X ; Y)>H(Z)
\end{array}
$$

Another Application of Common Entropy

- EntropicPC rejects separating sets using common entropy.

EntropicPC

Standard PC

Conclusion

- Information-theoretic measures can enable causal discovery
- Minimum entropy couplings
- Nonnegative Rank
- Common Entropy
- More information-theory research needed to improve entropic causality (e.g., approximate common entropy)
- General case of larger graphs open.

References

1. S. Compton, D. Katz, B. Qi, K. Greenewald, M. Kocaoglu, "Minimum-Entropy Coupling Approximation Guarantees Beyond the Majorization Barrier," in Proc. of AISTATS'23, Valencia, Spain, April 2023.
2. S. Compton, K. Greenewald, D. Katz, M. Kocaoglu, "Entropic Causal Inference: Graph Identifiability", in Proc. of ICML'22, July 2022.
3. M. Kocaoglu, S. Shakkottai, A. G. Dimakis, C. Caramanis, S. Vishwanath, "Applications of Common Entropy for Causal Inference," in Proc. of NeurlPS'20, Online, Dec. 2020.
4. S. Compton, M. Kocaoglu, Kristjan Greenewald, Dmitriy Katz, "Entropic Causal Inference: Identifiability and Finite Sample Results," in Proc. of NeurlPS'20, Online, Dec. 2020.
5. M. Kocaoglu, A. G. Dimakis, S. Vishwanath, B. Hassibi, "Entropic Causality and Greedy Minimum Entropy Coupling," in Proc. of ISIT' 17, Aachen, Germany, June 2017.
6. M. Kocaoglu, A. G. Dimakis, S. Vishwanath, B. Hassibi, "Entropic Causal Inference," in Proc. of AAAI 2017, San Francisco, USA, Feb. 2017.

Questions?

