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Abstract: Distinguishing causation from correlation from observational data requires assumptions. We consider the setting where the unobserved
confounder between two observed variables is simple in an information-theoretic sense, captured by its entropy. When the observed dependence is
not due to causation, there exists a small-entropy variable that can make the observed variables conditionally independent. The smallest such
entropy is known as common entropy in information theory. We extend this notion to Renyi common entropy by minimizing the Renyi entropy of
the latent variable. We establish identifiability results with Renyi-O common entropy, and a special case of (binary) Renyi-1 common entropy. To
efficiently compute common entropy, we propose an iterative algorithm that can be used to discover the trade-off between the entropy of the latent
variable and the conditional mutual information of the observed variables. We show that our agorithm can be used to distinguish causation from
correlation in such simple two-variable systems. Additionally, we show that common entropy can be used to improve constraint-based methods such
as the PC algorithm in the small-sample regime, where such methods are known to struggle. We propose modifying these constrai nt-based methods
to assess if a separating set found by these algorithms is valid using common entropy. We finally evaluate our algorithms on synthetic and real data
to establish their performance.
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Modeling Probabilistic Causation
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Modeling Probabilistic Causation

X Is said to cause Y
If
intervening on X
changes
the
distribution of Y

ation
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Causal Graphs

Vertices: Random variables
Edges :Causalrelations

X; = fz'(PClz',Ez')
Pa; :Setof parents of X; in the causal graph
{E;}i : Jointly independent exogenous variables
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Causal Graphs

Intervene on X4

— __,/ 2

Vertices: Random variables
Edges :Causalrelations

X; = fi(Pa;, E;)
Pa; :Setof parents of X; in the causal graph
{E;}i : Jointly independent exogenous variables
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How to Infer Causation?

Does going to college have any causal effect on income at 30¢

Went to College o Tncome at 39
' Went to Income at 30
College > 50k
0 0

0 1
0 0
1 1

1 1
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How to Infer Causation?

Does going to college have any causal effect on income at 30¢

Went to Income at 30 Parents’
College > 50k Income
0 1 1
- = 0 0 0
C Went to (,'ollcgc : ]

1 1
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How to Infer Causation?

Does going to college have any causal effect on income at 30¢

Went to Income at 30 Parents’
College > 50k Income
0 0 0
0 1 1
0 0 0
1 1 1
Conduct a - 1 1 1
Randomized
Experiment "9(‘\

// )
Went to College X Income at 39
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How to Infer Causation?
Conduct intervention (RCT)

« Force half the people to go

Went to Income at 30
College > 50k

1 1

1 1

1 0

« Compare income of both
populations
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// . )
Went to Collcgc X Income at 39

« Force other half o NOT go

Went to Income at 30
College > 50k

0 0

0 1

0 0

g s Trome >
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Talk Outline

o Moftivation
o Introduction to Probabilistic Causality

o Causal Discovery and Common Entropy

13

ation
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Motivation:
Distinguish Causation from Correlation

Triangle Graph Latent Graph

X Y ()5 Y

« Z 15 an unobserved (latent) confounder.

« Can we distinguish them from observational data?
No.

14
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Motivation:
Distinguish Causation from Correlation

Triangle Graph Latent Graph

X Y Qg Y

« Z 15 an unobserved (latent) confounder.

« Can we distinguish them from observational data?
No.

« What if the latent confounder is simple?
Maybe!
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Motivation:
Distinguish Causation from Correlation

Triangle Graph Latent Graph

X Y Qg Y

« Z 1S an unobserved (latent) confounder.

« Can we distinguish them from observational data?
No.

« What if the latent confounder is simple?
Maybe!
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simple = low Rényi entropy
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Simple Confounder ostapans |11 X | Fermer ¥
Casel: Low support size 1792 (4 g
, 1993 | 4@ o
* Two variables X € XY € ). P B
1995 | <9 3
£ 1996 | Q@ | Q
b 1997 | @ *
1998 | Q@ | Q
*» Z € Z unobserved (latent) 997 | @ | @
X1Y|Z 00 | @ | @

ation
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Simple Confounder = it sl
Casel: Low support size 1792 9 %
, 1993 | 4Q (W
* Two variables X € XY € ). o @
1995 T& g
£ 1996 | Q@ | Q
b 1297 o &
1998 | Q@ | Q
* Z € Z unobserved (latent) 99 | @ | &
X1Y|Z 000 | @ | @

* Q: How does this graph manifest itself in the

observed distribution p(z,y) when Z has small support size?

18
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Footprints of Latent Graph C‘é

» Suppose Z has k states
p(z,y) = Y plz,yl2)p(2)

- Zp(a:\z)p(mz)P(Z)
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Model Decomposition and NMF C‘é
[p(x,y)]m,yll_ + H I II_

= BN NMF
T
]
U 3 1%

U e RiXk,V & Rﬁ_Xn = d?,ag(d),d c R{T_ 20

ation
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Model Decomposition and NMF

&

P(Y|Z=1)

P(Z=3)

P(Y|Z=2)

] [Pz=1)
T 'ﬁ' “I? P(Z=2)
[p(a:,y)]xy:M:UV — (}Ef/ = |NjAN
21X (12X
NMF aal|a

row/column
normalization

—> Nonnegative rank gives minimum
support size for the confounder!

ation
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P(Y|Z=3)
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Story with Support Size

%

Latent Graph

[p(2,Y)]z,y has non-negative
rank < |Z|

irsa: 23040113
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Story with Support Size

X Y

Latent Graph Triangle Graph

[p(2,Y)]z,y has non-negative

2
rank < |Z| What can we say about ranke

23
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irsa:

A typical distribution from Triangle Graph

Z 1(0,0,1)
p(z,y,2z) = p(2)p(z|2)p(y|z, 2)

S
100
A
P

Triangle Graph 2D simplex

Theorem: Suppose each conditional in triangle graph is uniformly

Kocaoglu et al., .
ek randomly chosen from the simplex.

= [p(z, ¥)]z,y has non-negative rank min{|X|, |Y|} with prob. 1.

24
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Story with Support Size

Latent Graph

[p(z,y)]s,, has non-negative
rank < |Z]

Pirsa: 23040113

Triangle Graph

p(z,Y)]z,y has non-negative
rank = min{|X|, | Y|}
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Identifiability Result

7 z
Latent Graph Triangle Graph
lp(z,y)]z,, has non-negative [p(z,Y)|e,y has non-negative
rank < |Z| rank = min{|X|, | Y|}

Corollary: If the support size of latent confounder is < min{|X|, |V|}
we can distinguish Latent Graph from Triangle Graph.

* Uses NMF rank. NP-Hard to calculate.

* Next: Assume low-entropy confounder.

26
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Simple Confounder

Case2: Low entropy

H(Z)<#6

* Q: How does such a causal graph manifest itself
in the observed distribution p(z, y) when Z has small entropy?2

« A: This is related fo common entropy.

27
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Common Entropy
« Givenp(z,y), find Z with minimum entropy such thatX 1LY |Z .

« Common entropyis G(X,Y):= H(Z). [related to Wyner info]

« Equivalent to fitting latent graph
with smallest-entropy latent. E

= Entropy of frue confounder upper-bounds
common entropy!

28
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Common Entropy

» Closed-form solution for binary variables by Kumar et al. 2014,

* Very hard problem in general.
(But no formal hardness results)

G. R. Kumar, C.T. Li, A. El Gamal, "Exact common information," ISIT' 14.
29
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Story with Common Entropy

Y

Latent Graph

X,Y has common
enfropy G(X,Y) < H(Z)

30
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Story with Common Entropy

Z VA
Latent Graph Triangle Graph
X,Y has common
entropy G(X,Y) < H(Z) What can we say about

common entfropy?

Very difficult to answer. We can show a bound for binary case:

Theorem: Forbinary X,Y, all but a vanishing fraction* of models from
Kocaoglu et al.

Neurpsoo Imangle Graph has G(X,Y) > H(Z).

*—>1 as H(Z)—=0 Y
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A Conjecture

Conjecture: Let p(X,Y, Z) = p(Z2)p(X|Z)p(Y|X,Z) s.t. each conditional
Is uniformly randomly chosen from the simplex.

— Forany ¢(X,Y,Z) that satisfies p(X,Y) =¢(X,Y) and X 1L Y |Z
H(Z)>omin{H(X),H(Y)}

for some constant a. Open Problem!

In words, most X, Y from triangle graph have large common entropy.

» Next: Propose an algorithm to estimate common entropy.

32
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A Relaxation of the Problem

minimize H(Z)
q(z,y,7)

subject to Z q(x,y,z) =1,

xﬁy?z

q(z,y) = p(z,y), Yx,y.

I(X:Y|Z) <6

33



Loss Function
L=I1(X;Y|Z)+ BH(Z)

34



Loss Function

L=I1(X;Y|Z)+BH(Z)  Takescare of
the constraint
» Given p(X,Y) construct ¢(Z|X,Y) —  q(z,y) = p(z,y), Vz,y.

Joint: ¢(X,Y,Z) =p(X,Y)q(Z|X,Y)

35
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Loss Function

L=I1(X;Y|Z)+BH(Z)  Takescare of
- the constraint
» Given p(X,Y) construct ¢(Z|X,Y) —  q(z,y) = p(=z,y), Vz,yv.

Joint: ¢(X,Y,Z) =p(X,Y)q(Z|X,Y)

« Variables:
q(z|z,y) Vzx €[n],y € [n],z € [K]

kn? variables
« Constraints: Non-negative, slices sum to 1.

36
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A Practical Way to Estimate Common Entropy

« Regularize with the constraint:
min £=1I1(X;Y|Z)+ BH(Z)

- Still need to search over q(z|z,y).

» Still non-convex in q(z|x, y).

3
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Characterizing Stationary Points of Loss

 Find Lagrangian of £L =I1(X;Y|Z) + BH(Z)

take partial derivative and set to zero.

Sew =P 0 2l2)q(2
a(2lz,y) = (%) q<q’(z>)g<_ i)

* Turn intfo an iterative update algorithm called LatentSearch.

[Similar in spirit to Blahut-Arimoto, EM, Information bottleneck]

38
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Latent Variable Discovery Algorithm
LatentSearch

* Theorem 1: Stationary points of LatentSearch are stationary points of the loss.

* Theorem 2: LatentSearch converges to local minimum or saddle point forg =1.
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Latent Variable Discovery Algorithm
LatentSearch

* Recovers a pointin the H(Z) vs. I(X;Y|Z) plane for each 8.

Discover a fundamental tradeoff between
Complexity of the Latent vs. Dependence explained away

H(Z) I(X;Y|Z)

ation
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Samples Output of Algorithm

Synthetic Samplel0 _kest 20,dist. latent ﬁ — I(X, le) B /BH(Z)
4.5 *
4.0 -
3.5 -
o
3.0~
°
@ 2.5 1
I
2.0 -
1.5
° /8 /
1.0 °
e
0.5 - ..".’..Otoogg;;
~0.005 0.000 0.005 0.010 0.015 0.020
1(X;Y]2Z)
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Samples Output of Algorithm

Synthetic Samplel0_kest 20,dist. latent ﬁ — I(X, le) o= /BH(Z)
4.5 *
4.0 -
3.5 -
o
3.0~
Common entropy ol
estimate | 251
T
2.0 -
1.5
° /8 /
1.0 4 °
ey ose
0.5 1 . m.“@
~0.005 0.000 0.005 0.010 0.015 0.020
1(X;Y]Z)
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Causal Inference Algorithm
InferGraph
* Input: p(X,Y)
Mutual information threshold: 1
Setof 3. B
e Sets=10
For 5 in B:
9(X,Y,Z) «+ LatentSearch(p(X,Y),3)
H(Z),I(X;Y|Z) < q(X,Y, Z)
S« SU(H(Z),I(X;Y|2))
*H*(Z)=min{H : (H,I) € S AND I < I}
 If H*(Z) <min{H(X),H(Y)} , otherwise output

output z
e ”
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If common entropy is large

otherwise

¥
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Causal Inference Algorithm

InferGraph

Pirsa: 23040113

4.5

4.0 A

Synthetic Samplel0_kest 20,dist. latent

!

[ ]
]
[ ]
[ ]
Vo
“’m. [
—0.005 0.000 0.005 0.010 0.015 0.020
I(X;Y|2Z)

L=I1(X;Y|Z)+ BH(Z)
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Causal Inference Algorithm
InferGraph

Synthetic_Sanlplel0 _kest 20,dist. latent ﬁ — I(X, le) B /BH(Z)
4.5 *
4.0
3.5
0
3.0~
°
@ 2.5 A
I
2.0
1.5
° Z
1.0 1 o
‘h.
0.5 1 |..m.“§} ) Y
~0.005 0.000 0.905 0.010 0.015 0.020
1(X;Y]2Z)
Indep. 47
threshold
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Causal Inference Algorithm
InferGraph

it Synthetic_Sanplel0_kest 20,dist. latent ﬁ — I(X, le) = /BH(Z)
4.0 A *
3.5
0
3.0 4
°
@ 2.5 A
I
min{H(X),H(Y)}
. ® Z
1.0 A Q
0.5 1 m.“ﬁ e Y
—O.IOOS 0.000 0.905 0.610 0.615 0.620
1(X;Y]Z)

Feasible models
Indep. a8

threshold
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Causal Inference Algorithm

InferGraph

Synthd

ptic_Samplell kest 20,dist. complete_graph

S

S

L )
3.0
T &
@
2.5 1 ..
..
: ® o
min{H(X),H(Y)} == T
L)
1.5 - . . . . . . |
000 | 0.01 002 003 004 005 006 0.07
Feasible [eGY|2)
models
Indep.
threshold

Pirsa: 23040113

L=I1(X;Y|Z)+ BH(Z)
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Another Application of Common Entropy

* Improve constraint-based causal discovery alg.
in the small sample regime.

 Finitely many samples = Incorrect Cl statements

« Can be used to reject small separating sets:

We observe but
XUY|Z GX;Y)>H(Z)

50
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Another Application of Common Entropy

* EntropicPC rejects separatfing sets using common entropy.

'@ workclass

' relationship ‘ occupation

education N

(s D
EntropicPC Standard PC

51
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Conclusion

» Information-theoretic measures can enable causal discovery

« Minimum entropy couplings
« Nonnegative Rank
« Common Enfropy

* More information-theory research needed to improve
entropic causality
(e.9., approximate common entropy)

» General case of larger graphs open.

52
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Questionse
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