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Abstract: When some variables in a directed acyclic graph (DAG) are hidden, a notoriously complicated set of constraints on the distribution of
observed variables is implied. In this talk, we present inequality constraints implied by graphical criteriain hidden variable DAGs. The constraints
can intuitively be understood to follow from the fact that the capacity of variables along a causal pathway to convey information is restricted by their
entropy. For DAGs that exhibit e-separation relations, we present entropic inequality constraints and we show how they can be used to learn about
the true causal model from an observed data distribution (arXiv:2107.07087).
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Equality constraints




Equality constraints implied by DAGs

G — P(V)=[] P(V | pag(V))

vew




d-separation

Fork Collider Chain
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d-separation

Fork Collider Chain

Forks and chains are said to be open if we do not condition on Z, and closed otherwise;

Colliders are said to be open if we do condition on Z or its descendants, and closed otherwise;

A path is open under a conditioning set Z if all contiguous triples along that path are open under that
conditioning set.
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d-separation

Fork Collider Chain

Forks and chains are said to be open if we do not condition on Z, and closed otherwise;
Colliders are said to be open if we do condition on Z or its descendants, and closed otherwise;

A path is open under a conditioning set Z if all contiguous triples along that path are open under that
conditioning set.

Let A, B and C be sets of variables in a DAG. A and B are said to be d-separated by C if
all paths between A and B are closed after conditioning on C.

(A L;B[C)
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Equality constraints implied by DAGs

G — P(V)= [ P(V|pag(V))

e

-(A1l;B|C) — A 1B|C




How to study causal models with

hidden variables?




Constraints in hidden variable models

* Quantifier elimination algorithms
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* If Bob only ever sends the same one message, regardless of what he gets from Amy,
Cathy can’t find anything out about Amy’s note from Bob.

* Bob’s notes have zero Entropy H(X)=—)  _, P(x)log, P(x)
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* As H(B) increases — there is variety in Bob’s notes — the potential for Cathy to learn
about Amy’s note from Bob’s note increases.

* But there are no guarantees — Bob may be sending Cathy nonsense.
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Amy Bob

* The information shared between Amy and Cathy is bounded from above by the
entropy of Bob’s notes:

I(X:Y)=HX)+HY)-H(X,Y)
I(A:C) < H(B)
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Intuition about passing information

* The amount of “fluid”(information) that can get through a bottleneck cannot exceed its
“size” (entropy).
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What is a bottleneck?

* Bottleneck variables (between A and Z) - variables that are between A and Z along some path
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What is a bottleneck?

* Bottleneck variables (between A and Z) - variables that are between A and Z along some path
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e-separation

* A node can be deleted from a graph by removing the node and all of its incoming and outgoing edges.

Let A, B, C and D be sets of variables in a DAG. A and B are said to be e-separated by C
after deletion of D if A and B are d-separated by C after deletion of every variable in D.

(A L. B| Cupon—-D)

D is a bottleneck for A and B conditional on C

* All information shared between A and B must flow through D
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e-separation

delete X
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The amount of information that can get through
a bottleneck cannot exceed its entropy.

We can formalize bottlenecks using e-separation.
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Entropic constraints from e-separation

Theorem. Suppose observed variables are discrete. If (A L. B | C upon =D) and no element of C is a descendant of
any in D, then for any value c in the domain of C, the following constraints hold:

I(A:B|C=c,D) < H(D| C=c),
I(A:B|C,D)<H(D|C).

If in addition, no element of A is a descendant of any in D, then for any value c in the domain of C, the following stronger
constraints hold:

I(A:B,D|C=c)
I(A:B,D|C)

H(D | C=c),

<
< H(D|C).

Entropic Inequality Constraints from e-separation Relations in Directed Acyclic Graphs with Hidden Variables
Noam Finkelstein, Beata Zjawin, Elie Wolfe, Ilya Shpitser, Robert Spekkens (UAI 2021) arxiv: 2107.07087
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Entropic constraints from e-separation

Theorem. Suppose observed variables are discrete. If (A L. B | C upon =D) and no element of C is a descendant of
any in D, then for any value c in the domain of C, the following constraints hold:

I(A:B|C=c,D)< H(D|C=c).
I(A:B|C,D)<H(D|C).

If in addition, no element of A is a descendant of any in D, then for any value c in the domain of C, the following stronger
constraints hold:

I(A:B,D|C=c) < H(D | C=c),
I(A:B,D|C)<H(D|C).

[(A: XYZ)< H(X)
D>~ V—=>2 [(A:YZ)<H(®Y)
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Entropic constraints from e-separation

Theorem. Suppose observed variables are discrete. If (A L. B | C upon =D) and no element of C is a descendant of
any in D, then for any value c in the domain of C, the following constraints hold:

I(A:B|C=c,D) < H(D| C=c),
I(A:B|C,D)<H(D|C).

If in addition, no element of A is a descendant of any in D, then for any value c in the domain of C, the following stronger
constraints hold:

I(A: XYZ) < H(X)
I(A:YZ) < H(Y)

We recover all Shannon-type entropic inequality
constraints implied by the graph
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Entropic constraints from e-separation

Theorem. Suppose observed variables are discrete. If (A L. B | C upon =D) and no element of C is a descendant of
any in D, then for any value c in the domain of C, the following constraints hold:

I(A:B|C=c,D)< H(D| C=c),
I(A:B|C,D)<H(D|C).

If in addition, no element of A is a descendant of any in D, then for any value c in the domain of C, the following stronger
constraints hold:

I(A:B,D|C=c)
I(A:B,D|C)

H(D | C=c),

<
< H(D|C).

I(A:XYZ) <
I(A:YZ|X) <

H(X)
H(Y|X)
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Entropic constraints from e-separation

Theorem. Suppose observed variables are discrete. If (A L. B | C upon =D) and no element of C is a descendant of
any in D, then for any value c in the domain of C, the following constraints hold:

I(A:B|C=c,D)< H(D| C=c),
I(A:B|C,D)<H(D|C).

If in addition, no element of A is a descendant of any in D, then for any value c in the domain of C, the following stronger
constraints hold:

I(A:B,D | C=c)
I(A:B.,D|C)

H(D | C=c),

=
<HD|C).

I(A: XYZ) <
I(A:YZ|X) <

H(X) Can be strengthen:
HY|X) I1(A:XYZ)<H(X|Y)
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Related results

* Itis possible to relate our inequality constraints to equality constraints (to the d-separation-based
conditional independence and Verma constraints (in identified post-intervention distributions)).

Proposition. If A is d-separated from B by {C,D}, then A is also e-separated from B by C upon deleting D.
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Causal discovery

Yi L Ys | YaY;
Y1 1Y;
e e no ) (¥i L Y | Y upon ~3)
(Y1Ys L. Yy | upon —Y3)
(Yo L. Yy | Yy upon —Y53) (Y2 Le Yy | Y: upon —Y3)
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Latent variables

Y

0 1 2 3
0.002  0.001 0400 0.001
Observed data: 0.003  0.005  0.005 0.066
0224  0.003  0.003 0.001
0.002 0281  0.001 0.002

Task: Decide between =) and

Assumption: |U|=3
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Latent variables

Y
0 | 2 3
0.002  0.001 0400 0.001
Observed data: 0.003  0.005  0.005 0.066
0224  0.003  0.003 0.001
0.002 0281  0.001 0.002

Task: Decide between (X)«—7—() and

Assumption: |U|=3

Proposition. If (A 1, B | C,U), then |U| > 2/(A:BIC)
QI(X:Y) ~ 21.594 ~ 3.018
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Latent variables

3

0.001
Observed data: 0.066

0.001
0.002

Task: Bound |U|
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Quantifying causal influence

* Traditional approach: Average Causal Effect defined as E[K(X LA S0 ek A4
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Quantifying causal influence

Minimal Mediary Entropy (MME) for direct causal effect: s
/
g gX—>W—>Y
s S
\
AP

MME (X—Y) is the smallest entropy H(W) over all structural equation models reproducing
the observed data distribution over the modified DAG in which W has finite cardinality.
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Quantifying causal influence

g g3(—>W—>Y
- N

—
/ ~ - ~

1
%

MME (X—=Y) is the smallest entropy H(W) over all structural equation models reproducing the
observed data distribution over the modified DAG in which W has finite cardinality.

(AL.B|C upon —{D,W}) — MMEx_y
Ac{X}uan(X) Em(?xI(A:B|C=c,D)—H(D|C=c)
Bc{Y}udesc(Y) >I(A:B|C,D)-H(D|C).
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