Title: Tutorial 2

Speakers: Ilya Shpitser

Collection: Causal Inference & Quantum Foundations Workshop

Date: April 17, 2023 - 2:00 PM

URL: https://pirsa.org/23040106

Pirsa: 23040106 Page 1/36

An Introduction to Causal Inference

Ilya Shpitser

Causal Inference And Quantum Foundations Workshop

April 17, 2023

Ø

Overview

- ▶ Statistical versus causal models of a Directed Acyclic Graph (DAG).
- ▶ One graph, many causal models.
- ► Hidden variables in causal inference.
- ► Nomenclature / glossary (throughout).

1/41

Pirsa: 23040106 Page 3/36

Statistical Models

- Statisticians think about joint probability distributions $p(\vec{V})$ on a set of random variables \vec{V} .
- Glossary: a statistical model is a set of distributions on a particular set of random variables.
- ▶ For example, if $\vec{V} = \{Y\} \cup \vec{W}$, where Y is an outcome variable, and \vec{W} is a vector of feature variables, a linear regression model is the following set of distributions on $p(Y, \vec{W})$:

$$\left\{ p(Y, \vec{W}) : Y = \beta_0 + \vec{\beta}^T \cdot \vec{W} + \epsilon \right\},$$

where ϵ is typically a Gaussian random variable.

▶ This is generally not how the word "model" is used in physics, but the above definition is important to keep in mind when talking to statisticians or reading their literature.

2/41

Pirsa: 23040106

Directed Acyclic Graphs

- ▶ Directed Acyclic Graphs (DAGs) have vertices and (directed) edges connecting vertex pairs.
- ▶ DAGs do not allow directed cycles.
- Positive example:

► Negative example:

3/41

Pirsa: 23040106 Page 5/36

Genealogic Relations Among Vertices In A DAG

- In graph theory, vertex relations in a graph are described using genealogic terms.
- For example, in the graph above, we have:
 - ightharpoonup A is a parent of B, B is a child of A.
 - ightharpoonup A is an ancestor of E, E is a descendant of A.
- By convention every vertex is both an ancestor and a descendant of itself.
- We define the following notation for sets of vertices related to any vertex V:

parents of $V : pa_{\mathcal{G}}(V);$

children of $V : \operatorname{ch}_{\mathcal{G}}(V)$;

ancestors of $V : \operatorname{an}_{\mathcal{G}}(V)$;

descendants of $V : de_{\mathcal{G}}(V)$.

4/41

Pirsa: 23040106 Page 6/36

The Statistical Model Of A DAG

- A graphical model is a statistical model associated with a graph in a particular way.
- ▶ Random variables in a distribution in a graphical model correspond to vertices in the associated graph.
- ▶ Often, notation for vertices and random variables is the same.
- ► Three definitions (all involve the graph):
 - Factorization (probability distribution as a set of small factors).
 - Local Markov property (a small set of independence constraints).
 - Global Markov property (all independence constraints in the model). Will skip this.
- Example: the statistical model of a DAG $\mathcal{G}(\vec{V})$ is the set of distributions:

$$\left\{ p(\vec{V}) : p(\vec{V}) = \prod_{V \in \vec{V}} p(V \mid \operatorname{pa}_{\mathcal{G}}(V)) \right\}.$$

- lacktriangle This representation of $p(\vec{V})$ is called the DAG factorization.
- Another name for the statistical model of a DAG is the Bayesian network model.

5/41

Pirsa: 23040106 Page 7/36

DAG Factorization: An Example

Given the DAG

the corresponding statistical model is the set of all distributions p(A,B,C,D,E) which can be written as:

$$p(A, B, C, D, E) = p(A)p(B \mid A)p(C \mid A)p(D \mid A, C)p(E \mid D).$$

6/41

Pirsa: 23040106 Page 8/36

Local Markov Property

- ► Graph implies a small list of independences that imply the rest.
- ► Every *X* is independent of non-parental non-descendants, conditional on parents.
- **Example:**

 $\blacktriangleright \ (C \perp\!\!\!\perp B \mid A), \ (D \perp\!\!\!\perp A \mid B, C), \ (E \perp\!\!\!\perp A, B, C \mid D).$

...

7/41

Pirsa: 23040106

Aside: Observational Equivalence

Consider the following two DAGs:

- ▶ Local Markov property gives same independence: $(A \perp\!\!\!\perp C \mid B)$.
- In fact, the only independence in this model.
- ▶ If one graph is causal, the other isn't...
- ► These graphs are called observationally equivalent.
- ▶ This creates problems for model selection and model compatibility.

8/41

Pirsa: 23040106 Page 10/36

Aside: Statistical Inference

- Statistical models are used to formulate learning from data.
- One formulation goes like this:
 - We consider a statistical model \mathcal{P} , with one distribution $p_0(\vec{V}) \in \mathcal{P}$ (we don't know which) the "true distribution."
 - Nature generates a set of n samples $[\vec{V}] = (\vec{v}_1, \dots, \vec{v}_n)$ which are independent draws from $p_0(\vec{V})$.
 - We are interested in learning values of a set of target parameters $\vec{\beta}$ in $p_0(\vec{V})$ from $[\vec{V}]$.
 - A function that maps possible $[\vec{V}]$ to a guess for $\vec{\beta}$ is called an estimator, with its output written as $\hat{\vec{\beta}}$.
- Statistical inference is the process of constructing and using this function to make a guess for $\vec{\beta}$ using data.
- Lots of problems may be formulated in this way: predictive modeling in machine learning, parameter estimation, image analysis, text and speech processing, model selection, etc.

9/41

Pirsa: 23040106 Page 11/36

Statistical Inference (Continued)

- ▶ We can write target parameters as a function $\vec{\beta}(\vec{\eta})$ of $\vec{\eta}$.
- ightharpoonup A common approach to statistical inference in parametric \mathcal{P} is to:
 - ► Posit a likelihood function

$$\mathcal{L}_{[ec{V}]}(ec{\eta}) = \prod_{i=1}^n p(ec{v}_i; ec{\eta}),$$

- ightharpoonup Choose $\vec{\eta}^*$ that maximize this function, and
- Let $\vec{\beta}(\vec{\eta}^*)$ be our guess for $\vec{\beta}$ based on $[\vec{V}]$.
- ▶ Other approaches: minimize a loss tailored to our application, solve an estimating equation we know should hold, etc.

10/41

Pirsa: 23040106

Causal Models: Two Approaches

- ► The random variable approach (closer to statistics, originating with Jerzy Neyman).
- ► The causal mechanism approach (closer to econometrics, and computer science, originating with Sewall Wright).
- ► These approaches are closely connected.

11/41

Pirsa: 23040106 Page 13/36

The Potential Outcome Approach

- A potential outcome (or counterfactual) Y(a) reads "the outcome Y if A were set, possibly contrary to fact, to value a."
- ightharpoonup Y(a) is a random variable.
- One conception of causal models is as statistical models of joint distributions of counterfactual random variables.
- Many ways to do so, we will describe causal models of a DAG.
- ▶ In such a causal model, directed edges in the DAG represent "direct causal relationship" between two variables.
- ► This is cashed out in different ways.

12/41

Pirsa: 23040106 Page 14/36

Graphical Causal Model (Counterfactual View)

▶ Given a DAG $\mathcal{G}(\vec{V})$, for every $V \in \vec{V}$, assume counterfactuals $V(\vec{a}_V)$ exist, for all values \vec{a}_V of $\mathrm{pa}_{\mathcal{G}}(V)$.

- Example (for binary C, A, Y, and the graph above): C, A(c=0), A(c=1), Y(c=0, a=0), Y(c=0, a=1), Y(c=1, a=0), Y(c=1, a=1) exist.
- ▶ Recall: $pa_{\mathcal{G}}(V)$ are "direct causes" of V.
- $ightharpoonup V(\vec{a}_V)$ described the behavior of V in response to direct causes assuming particular values.

13/41

Pirsa: 23040106

Defining General Counterfactuals

- $V(\vec{a}_V)$ exist, for all values \vec{a}_V of $pa_{\mathcal{G}}(V)$ are called *one-step-ahead* counterfactuals.
- ► We use them to construct other counterfactuals (inductively) via recursive substitution:

$$V(\vec{a}) = V(\vec{a}_{\vec{A} \cap \mathrm{pa}_{\mathcal{G}}(V)}, \{W(\vec{a}) : W \in \mathrm{pa}_{\mathcal{G}}(V) \setminus A\})$$

Examples (for graph above):

$$Y(a) \equiv Y(a, C)$$
$$Y(c) \equiv Y(c, A(c)).$$

Interpret Y(a, C) to mean "Y if A were set to a, and C were set to whatever value it would naturally take."

14/41

Pirsa: 23040106 Page 16/36

Consequences of Recursive Substitution

- ▶ Recursive substitution has a number of important implications.
- ► Causal irrelevance: given a set of interventions, a counterfactual outcome is only influenced by those interventions that appear in the recursive substitution definition.

- Example: in the graph above, $Y(a,z) \equiv Y(a,C)$ is not a function of z.
- ► These constraints are sometimes called exclusion restrictions.
- ▶ There are other interpretations of this: will come back to this later.
- Exclusion restrictions correspond to missing edges in a graph (missing $Z \to Y$ edges).
- $lackbox{ Consistency: states that if } \vec{W}(\vec{a}) = \vec{w} ext{ then } \vec{Y}(\vec{a}, \vec{w}) = \vec{Y}(\vec{a}).$
- **Example**: in the graph above, if A = a, Y(a) = Y.
- Consistency allows us to link counterfactual and observed variables.
- Sometimes phrased as coarsening: Y = Y(A) = Y(a = 1)A + Y(a = 0)(1 A) (for a binary A).

15/41

Pirsa: 23040106 Page 17/36

A Generic Causal Model

- Recall: a model is a set of distributions.
- ▶ Given a DAG \mathcal{G} , and a set of one-step-ahead counterfactuals $V(\vec{a}_V)$ on \vec{V} , the set of distributions

$$p(\{V(\vec{a}_V): \vec{a}_V \in \mathfrak{X}_{\mathrm{pa}_{\mathcal{G}}(V)}\} \cup \{V(\vec{a}_{\vec{A} \cap \mathrm{pa}_{\mathcal{G}}(V)}, \{W(\vec{a}): W \in \mathrm{pa}_{\mathcal{G}}(V) \setminus \vec{A}\} : \vec{a} \in \mathfrak{X}_{\vec{A}}; \})$$

is called the non-parametric structural equation model (NPSEM), or structural causal model (SCM).

► Example: the NPSEM (for all binary variables) for the above graph is the set of all distributions of the form:

$$p(C,A(C),Y(A(C),C),\{A(c_1),Y(c_2,a_1),Y(a_2),Y(c_3):c_1,c_2,c_3,a_1,a_2\in\{0,1\}\})$$
 where $Y(a_2)=Y(a_2,C),\ Y(c_3)=Y(A(c_3),c_3)$.

16/41

Pirsa: 23040106 Page 18/36

Identification

- In classical statistics, we want to learn about a parameter β of the observed data distribution $p(\vec{V})$ given samples from $p(\vec{V})$.
- In causal inference, the observed data distribution is still $p(\vec{V})$, but we want counterfactual parameters.
- This yields a question of identification: is a parameter such as $\mathbb{E}[Y(a)] = \int Y(a)p(Y(a))dY(a)$ a function of $p(\vec{V})$?
- ▶ In general, no.
- Causal models may give us assumptions under which parameters may be identified.

17/41

Pirsa: 23040106 Page 19/36

Graphical Causal Model (Structural Equation View)

▶ Given a DAG $\mathcal{G}(\vec{V})$, for every $V \in \vec{V}$, the values of V are determined by means of a *structural equation*:

$$f_V: \mathfrak{X}_{\mathrm{pa}_{\mathcal{G}}(V)\cup\{\epsilon_V\}} \mapsto \mathfrak{X}_V$$

and an exogenous random variable ϵ_V .

ightharpoonup Example (for binary C, A, Y, and the graph above):

$$C = f_C(\epsilon_C)$$
 $A = f_A(C, \epsilon_A)$
 $Y = f_Y(C, A, \epsilon_Y).$

- ▶ Recall: $pa_{\mathcal{G}}(V)$ are "direct causes" of V.
- $ightharpoonup f_V$ described the behavior of V in response to direct causes assuming particular values.
- ullet ϵ_V is needed since behavior of V may still be random, even if all direct causes are specified.

18/41

Pirsa: 23040106 Page 20/36

Interventions And Structural Equation Replacement

- ▶ In the structural equation view, counterfactuals are defined by equation replacement.
- An intervention that sets A to a is implemented by replacing f_A by f_A^* that always outputs a constant a.
- Counterfactual variables are defined using this new set of structural equations.

ightharpoonup Example: in the graph above, an intervention that sets A to a yields the following structural equations:

$$C = f_C(\epsilon_C)$$
 $A^* = f_A^* = a$
 $Y(a) = f_Y(C, A^*, \epsilon_Y) = f_Y(C, a, \epsilon_Y).$

19/41

Pirsa: 23040106 Page 21/36

The Structural Equation View of the NPSEM / SCM

- ▶ Given a DAG \mathcal{G} , and a set of structural equations and exogenous variables $\{f_V, \epsilon_V : V \in \vec{V}\}$, where each f_V maps from $\mathfrak{X}_{\mathrm{pa}_{\mathcal{G}}(V) \cup \{\epsilon_V\}} \mapsto \mathfrak{X}_V$, an NPSEM or SCM is the set of the distributions of all variables under all possible interventions, such that the joint distribution $p(\{\epsilon_V : V \in \vec{V}\})$ is unrestricted.
- ► The potential outcome view and the structural equation view are equivalent: they use different notation and emphasize different things to describe the same object.

$$Y(\vec{a}) = f_Y(\{W : \operatorname{pa}_{\mathcal{G}}(Y) \setminus \vec{A}\}, \vec{a}_{\operatorname{pa}_{\mathcal{G}}(Y) \cap \vec{A}}, \epsilon_Y)$$

$$W(\vec{a}) = f_W(\{Z : \operatorname{pa}_{\mathcal{G}}(Z) \setminus \vec{A}\}, \vec{a}_{\operatorname{pa}_{\mathcal{G}}(W) \cap \vec{A}}, \epsilon_W)$$

► The potential outcome view emphasizes the output (as a random variable), the structural equation view emphasizes the mechanism, and the intervention operation itself.

20/41

Pirsa: 23040106 Page 22/36

The Use Of The Term "Model"

- Statisticians say "model" to mean "a set of distributions on a sample space."
- ▶ By contrast, in model/set theory, a "model" is some mathematical object about which we want to build a "theory" (a set of tautologies in some formal language).
- ➤ Some authors (Pearl, for example), use "model" in the sense closer to the latter.
- In particular, a "structural causal model" may be viewed as a particular set of structural equations f_V and exogenous variables ϵ_V associated with a particular DAG \mathcal{G} .
- This would be a "model" in the model-theoretic sense (a mathematical object we want to build a theory about).
- ➤ To a statistician, that same object would correspond to an element of the "model."

21/41

Pirsa: 23040106 Page 23/36

Individuals, Distributions, and Interference

- In the standard view of statistical inference, "individuals" or "experimental units" correspond to data samples from the true distribution in the statistical model.
- ▶ Data samples are usually considered to be independent, identically distributed (i.i.d.).
- Often not true in practice (social networks, infectious disease, spatial proximity).
- In causal inference, dependent samples are studied in *interference* problems.
- ► Glossary: interference variables of one "experimental unit" influences variables of another

22/41

Pirsa: 23040106 Page 24/36

Two Types Of Interference

- ► Two types of interference:
 - Partial interference: data samples may be partitioned into independent blocks, with units in a blocks dependent.

► Full interference: data samples are all pairwise dependent.

23/41

Pirsa: 23040106 Page 25/36

Aside: SUTVA

- ► A common assumption in the literature is SUTVA: Stable Unit Treatment Value Assumption.
- ► Two part assumption:
 - 1 Y = Y(A) (consistency).
 - 2 Lack of interference.
- Being able to write Y(a=1) as a random variables, with samples $Y_i(a_i)$ corresponding to an experimental unit i implicitly assumes no dependence of Y_i on A of another unit j: $Y_i(a_i, a_j) = Y_i(a_i, a_j')$.

24/41

Pirsa: 23040106 Page 26/36

Interpretation Of Exclusion Restrictions

▶ Two interpretations of causal irrelevance: Y(a,z) = Y(a,z') for all z,z' in the graph below:

- Individual level: for every unit i, $Y_i(a_i, z_i) = Y_i(a_i, z_i')$ for all z_i, z_i' .
- ▶ Distribution/population level: the distribution p(Y(a, z)) is not a function of z for every a.
- Recursive substitution imposes an individual level restriction, but distribution/population level restrictions are sometimes discussed as well.

25/41

Pirsa: 23040106

Defining Causal Models

- ightharpoonup A causal model associated with a DAG $\mathcal G$ that assumes nothing beyond recursive substitution is an NPSEM or SCM.
- ▶ We may impose additional restrictions to obtain models where, in some sense, unobserved confounding is absent.
- ► Two important models:
 - ▶ NPSEM-IE (NPSEM with independent errors):

sets
$$\{V(\vec{a}_V): \vec{a}_V \in \mathfrak{X}_{\mathrm{pa}_G(V)}\}$$
 are mutually independent $(\forall V \in \vec{V})$.

► FFRCISTG (finest fully randomized causally interpretable structured tree graph):

for
$$ec{v} \in \mathfrak{X}_{ec{V}}$$
, variables $V(ec{v}_{\mathrm{pa}_{\mathcal{G}}(V)})$ are mutually independent $(\forall V \in \vec{V})$

► FFRCISTG is a historic name. I use 'multiple worlds model' for NPSEM-IE and 'single world model' for FFRCISTG.

26/41

Pirsa: 23040106 Page 28/36

Single World Versus Multiple Worlds Models

Example:

- ▶ FFRCISTG: $C \perp\!\!\!\perp A(c) \perp\!\!\!\perp Y(a,c)$ for all a,c.
- ▶ NPSEM-IE: $C \perp\!\!\!\perp A(c) \perp\!\!\!\perp Y(a, c'_{y})$ for all a, c, c'.
- ▶ NPSEM-IE is a strong model, e.g. is a submodel of the FFRCISTG.
- Observation 1: single graph may correspond to different models!
- ▶ Observation 2: unclear how to check if $A(c) \perp \!\!\! \perp Y(a,c')$ holds.
- ► Glossary: cross-world assumption: an assumption on counterfactuals that do not correspond to a single consistent assignment of interventions.

27/41

Pirsa: 23040106 Page 29/36

Identification Via The G-formula

▶ Given $\vec{A} \subseteq \vec{V}$, $p(\{Y(a): Y \in \vec{V} \setminus \vec{A}\})$ is identified by the g-formula, a modified factorization of the DAG, as follows:

$$p(\{Y(a): Y \in \vec{V} \setminus \vec{A}\}) = \prod_{Y \in \vec{V} \setminus \vec{A}} p(Y \mid \operatorname{pa}_{\mathcal{G}(Y)} \setminus \vec{A}, \vec{a}_{\vec{A} \cap \operatorname{pa}_{\mathcal{G}}(Y)}).$$

Example:

$$\begin{split} p(C,A,Y) &= p(Y|A,C)p(A|C)p(C) \\ p(C,A(\boldsymbol{c}),Y(\boldsymbol{c})) &= p(Y|A,\boldsymbol{c})p(A|\boldsymbol{c})p(C) \\ p(C,A,Y(\boldsymbol{a})) &= p(Y|\boldsymbol{a},C)p(A|C)p(C) \\ p(Y(\boldsymbol{a})) &= \sum_{C,A} p(Y|\boldsymbol{a},C)p(A|C)p(C) \\ &= \sum_{C} p(Y|\boldsymbol{a},C)p(C). \end{split}$$

Obvious corollary: a causal model of a DAG implies the statistical model of a DAG.

28/41

Pirsa: 23040106 Page 30/36

Central Analogy For The Remainder Of This Talk

- Fully observed model story:
 - Causal models imply statistical directed acyclic graph (DAG) models on the observed law.
 - Statistical DAG models admit factorizations.
 - Identification of counterfactual laws is via modified DAG factorizations (g-formula and friends).
- ► Hidden variable model story:
 - Causal models imply statistical acyclic directed mixed graph (ADMG) models on the observed law.
 - Statistical ADMG models admit factorizations.
 - ► Identification of counterfactual laws is via modified ADMG factorizations (ID algorithm and friends).

29/41

Pirsa: 23040106 Page 31/36

Examples Of Identification

- Examples of identified counterfactual laws:

$$(a): p(D(b,a)) = \sum_{C} q_{C}(C|a,b)q_{D}(D|C) = \sum_{C} p(C|a,b) \left(\sum_{B} p(D|C,B,A)p(B|A)\right)$$
 $(b): p(D(c,a)) = q_{D}(D|c,a) = \sum_{B} p(D|c,B,a)p(B|a).$

- **Examples** of non-identified counterfactual laws: p(D(a)).
- ► This is a complete procedure for any hidden variable model: failure implies non-identification (S and Pearl, 2006).

37/41

Pirsa: 23040106 Page 32/36

Example Of Maximum Likelihood Estimation

▶ Basic pieces: $\begin{cases} p(A;\eta_A) \\ p(B|A;\eta_{A,B}) \\ p(C|A,B;\eta_C) \\ q_{B,D}(B,D|A,C;\eta_{B,D}) = p(D|C,B,A)p(B|A) \\ q_D(D|C,A,\eta_D) = \sum_B p(D|C,B,A)p(B|A) \end{cases}$

$$\begin{split} p(D(b,a)) &= \sum_{C} p(C|a,b) q_D(D|C) \Rightarrow \sum_{C} p(C|a,b;\widehat{\eta_C}) q_D(D|C;\widehat{\eta_D}) \\ p(D(c,a)) &= q_D(D|c,a) \Rightarrow q_D(D|c,a;\widehat{\eta_{B,D}}) \end{split}$$

- Discrete data: parameters are tables, the parameter map is via a generalized Möbius, transform.
- The multivariate normal nested Markov model of \mathcal{G} is the linear SEM model for the arid projection graph \mathcal{G}^a of \mathcal{G} (S et al, 2018).
- Linear SEMs of arid graphs are everywhere identified (Drton et al).
- Gaussian nested likelihood in terms of linear SEM path coefficients.

38/41

Pirsa: 23040106 Page 33/36

Summary

- Important to distinguish statistical and causal graphical models. (The latter imply the former).
- ► Two complementary views of causal DAG models: structural equations and counterfactual random variables.
- ► A given DAG may correspond to multiple causal models.
- Causal effects are conceptualized as parameters in distributions defined over counterfactual r.v.s.
- ► The causal inference workflow is:
 - Posit a (causal) model. Or maybe learn it from data...
 - Formulate a parameter of interest.
 - Check if identified.
 - ► If identified, obtain an estimation strategy (maximum likelihood, etc.)
 - Quantify uncertainty (confidence intervals), sensitivity analysis.
- In fully observed DAGs identification is via the g-formula.
- ▶ In hidden variable DAGs, identification is not always possible, but is given by the ID algorithm if it is.
- ▶ Both the g-formula and the ID algorithm may be viewed as modified factorizations of a graphical model.

39/41

Pirsa: 23040106 Page 34/36

To Think About

- Quantum physics and causal inference have evolved in parallel, but considered similar topics.
- What can we do to accelerate progress?
 - ► Term glossary: interference, consistency, exclusion restrictions, faithfulness, etc.
 - Problems of common interest: model selection/compatibility, model descriptions/factorizations, others?
 - Bounds on non-identified effects?
- How to read each other's papers?
- Hoping to make progress at this event!

40/41

Pirsa: 23040106 Page 35/36

Thank you for listening!

Contact info:

Ilya Shpitser ilyas@cs.jhu.edu

Į

41/41

Pirsa: 23040106 Page 36/36