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Overview

> Statistical versus causal models of a Directed Acyclic Graph (DAG).
» One graph, many causal models.
» Hidden variables in causal inference.

» Nomenclature / glossary (throughout).
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Statistical Models

>

>

>

Statisticians think absut joint probability distributions p(?) on a set
of random variables V.

Glossary: a statistical model is a set of distributions on a particular
set of random variables.

For example, if V = {Y} UW, where Y is an outcome variable, and

W is a vector of feature variables, a linear regression model is the
following set of distributions on p(Y, W):

{pW) Y = o + BT - W + e},

where ¢ is typically a Gaussian random variable.

This is generally not how the word “model” is used in physics, but
the above definition is important to keep in mind when talking to
statisticians or reading their literature.
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Directed Acyclic Graphs

» Directed Acyclic Graphs (DAGs) have vertices and (directed) edges
connecting vertex pairs.

» DAGs do not allow directed cycles.

» Positive example:

» Negative example:
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Genealogic Relations Among Vertices In A DAG

{ -

In graph theory, vertex relations in a graph are described using

genealogic terms.
For example, in the graph above, we have:
» A is a parent of B, B is a child of A.
» A is an ancestor of F, F is a descendant of A.

By convention every vertex is both an ancestor and a descendant of

itself.
We define the following notation for sets of vertices related to any

vertex V:
parents of V :
children of V :
ancestors of V :

descendants of V :
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The Statistical Model Of A DAG

» A graphical model is a statistical model associated with a graph in a

particular way.
Random variables in a distribution in a graphical model correspond
to vertices in the associated graph.
Often, notation for vertices and random variables is the same.
Three definitions (all involve the graph):

» Factorization (probability distribution as a set of small factors).

» Local Markov property (a small set of independence constraints).

» Global Markov property (all independence constraints in the model).

Will skip this.

Example: the statistical model of a DAG G(V) is the set of
distributions:

p(V) :p(V) = ] p(V | pag(V))
vev

This representation of p(V) is called the DAG factorization.

Another name for the statistical model of a DAG is the Bayesian
network model.
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DAG Factorization: An Example

Given the DAG

©
(4) (D—&)
B)

the corresponding statistical model is the set of all distributions
p(A, B,C, D, E) which can be written as:

p(A,B,C,D,E) =p(A)p(B | A)p(C | A)p(D | A, C)p(E | D).

I
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Local Markov Property

» Graph implies a small list of independences that imply the rest.

» Every X is independent of non-parental non-descendants,
conditional on parents.

» Example:

» (CIB|A), (DI A|B,C), (EI A B,C|D).
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Aside: Observational Equivalence

Consider the following two DAGs:

Local Markov property gives same independence: (A 1 C | B).

In fact, the only independence in this model.

If one graph is causal, the other isn't...

These graphs are called observationally equivalent.

This creates problems for model selection and model compatibility.
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Aside: Statistical Inference

» Statistical models are used to formulate learning from data.

» One formulation goes like this:

» We consider a statistical model P, with one distribution 'po(ff‘) epP
(we don't know which) the “true distribution.”

> Nature generates a set of n samples [V] = (74, ...,7,) which are
independent draws from po(V).

> We are interested in learning values of a set of target parameters B’
in po(V) from [V].

» A function that maps possible [V’] to a guess for E is called an

estimator, with its output written as j3.

» Statistical inference is the process of constructing and using this
function to make a guess for 3 using data.

» Lots of problems may be formulated in this way: predictive modeling
in machine learning, parameter estimation, image analysis, text and
speech processing, model selection, etc.
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Statistical Inference (Continued)

> We can write target parameters as a function 3(7f) of 7.
» A common approach to statistical inference in parametric P is to:
» Posit a likelihood function

i=1

> Choo_’se 77" that maximize th_[s function, elnd
» Let 5(77") be our guess for 3 based on [V].

» Other approaches: minimize a loss tailored to our application, solve
an estimating equation we know should hold, etc.
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Causal Models: Two Approaches

» The random variable approach (closer to statistics, originating with
Jerzy Neyman).

» The causal mechanism approach (closer to econometrics, and
computer science, originating with Sewall Wright).

» These approaches are closely connected.
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The Potential Outcome Approach

A potential outcome (or counterfactual) Y (a) reads “the outcome
Y if A were set, possibly contrary to fact, to value a.”

Y (a) is a random variable.

One conception of causal models is as statistical models of joint
distributions of counterfactual random variables.

Many ways to do so, we will describe causal models of a DAG.

In such a causal model, directed edges in the DAG represent “direct
causal relationship” between two variables.

This is cashed out in different ways.
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Graphical Causal Model (Counterfactual View)

Given a DAG G(V), for every V € V, assume counterfactuals V (dy)
exist, for all values @y of pag(V).

Example (for binary C, A,Y", and the graph above):
C,A(c=0), A(c=1),Y(c=0,a=0),Y(c=0,a=1),
Y(c=1,a=0),Y(c=1,a =1) exist.

Recall: pag(V) are “direct causes” of V.

V(a@y) described the behavior of V' in response to direct causes
assuming particular values.
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Defining General Counterfactuals

> V(dy) exist, for all values d@y of pag(V') are called one-step-ahead
counterfactuals.

» We use them to construct other counterfactuals (inductively) via
recursive substitution:

V(@) = V(@ jrpa, vy (W (@) : W € pag(V) \ A})

G —&

» Examples (for graph above):

Yl =X (aC
Y(c) =Y (c, A(c)).

» Interpret Y (a,C) to mean Y if A were set to a, and C were set to
whatever value it would naturally take.”
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Consequences of Recursive Substitution

=2
B

Recursive substitution has a number of important implications.

Causal irrelevance: given a set of interventions, a counterfactual
outcome is only influenced by those interventions that appear in the
recursive substitution definition.

@~@F—O -

Example: in the graph above, Y (a,z) = Y (a,C) is not a function of
Z

» These constraints are sometimes called exclusion restrictions.

There are other interpretations of this: will come back to this later.
Exclusion restrictions correspond to missing edges in a graph
(missing Z — Y edges).

Consistency: states that if W (@) = @ then Y (@, @) = Y (a@).
Example: in the graph above, if A=a, Y(a) =Y.

Consistency allows us to link counterfactual and observed variables.

Sometimes phrased as coarsening:
Y=YA)=Y(ae=1)A+Y(a=0)(1— A) (for a binary A).

Page 17/36



Pirsa: 23040106

A Generic Causal Model

» Recall: a model is a set of distributions.
> Give_‘n a DAG G, and a set of one-step-ahead counterfactuals V(dy)
on V, the set of distributions
PUV(@v) : v € Xpug ) ULV (@ arpay vy {W (@) : W € pag(VI\A}:d € X))
is called the non-parametric structural equation model (NPSEM), or
structural causal model (SCM).

» Example: the NPSEM (for all binary variables) for the above graph
is the set of all distributions of the form:

p(O,A(C),Y(A(C),C), {A(C]_),Y(CQ,al),Y(Q,Q),Y(Cg) i C1,C2,C3,a1,a2 € {Os 1}})
where Y (a2) = Y(az2,C), Y(c3) = Y(A(c;.;),c?,)i
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Identification

In classical statistics, we want to learn about a parameter 3 of the
observed data distribution p(V') given samples from p(V).

In causal inference, the observed data distribution is still p(I?) but
we want counterfactual parameters.

This yields a question of identification: is a parameter such as

E[Yga)] = [Y(a)p(Y(a))dY (a) a function of p(V)?
In general, no.

Causal models may give us assumptions under which parameters
may be identified.
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Graphical Causal Model (Structural Equation View)

> Given a DAG G(V), for every V € V, the values of V are
determined by means of a structural equation:

fV : Ipag (V)u{ev} — Xy

and an exogenous random variable €y .

Example (for binary C, A, Y, and the graph above):

: C = fo(ec)
A= fA(Ca EA)
Y = fy(C, A ey).

Recall: pag(V) are “direct causes” of V.

fv described the behavior of V' in response to direct causes
assuming particular values.

ey is needed since behavior of V' may still be random, even if all
direct causes are specified.
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Interventions And Structural Equation Replacement

In the structural equation view, counterfactuals are defined by
equation replacement.

An intervention that sets A to a is implemented by replacing f4 by
fA that always outputs a constant a.

Counterfactual variables are defined using this new set of structural

equations.

Example: in the graph above, an intervention that sets A to a yields
the following structural equations:

Y(a) = fy(C, A% ey) = fy(C,a,ey).
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The Structural Equation View of the NPSEM / SCM

» Given a DAG G, and a set of structural equations and exogenous
variables { fy/,ey : V € V'}, where each fy, maps from
Xpag(V)ufev} — Xv, an NPSEM or SCM s the set of the
distributions of all variables under all possible interventions, such
that the joint distribution p({ey : V € V}) is unrestricted.

The potential outcome view and the structural equation view are
equivalent: they use different notation and emphasize different
things to describe the same object.

Y((_i) = fY({W . pag(Y) \ A’}:a"pag(y)ﬁj'n EY)

—

W (@) = fw({Z : pag(2)\ A}, @,y ew)

The potential outcome view emphasizes the output (as a random
variable), the structural equation view emphasizes the mechanism,
and the intervention operation itself.
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The Use Of The Term “Model”

» Statisticians say “model” to mean “a set of distributions on a
sample space.”

» By contrast, in model/set theory, a “model” is some mathematical
object about which we want to build a “theory” (a set of tautologies
in some formal language).

» Some authors (Pearl, for example), use “model” in the sense closer
to the latter.

» In particular, a “structural causal model” may be viewed as a
particular set of structural equations fi, and exogenous variables €y,
associated with a particular DAG G.

» This would be a “model” in the model-theoretic sense (a
mathematical object we want to build a theory about).

» To a statistician, that same object would correspond to an element
of the “model.”
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Individuals, Distributions, and Interference

» In the standard view of statistical inference, “individuals” or
“experimental units” correspond to data samples from the true
distribution in the statistical model.

» Data samples are usually considered to be independent, identically
distributed (i.i.d.).
» Often not true in practice (social networks, infectious disease, spatial
proximity).
» In causal inference, dependent samples are studied in interference
' problems.

» Glossary: interference variables of one “experimental unit” influences
variables of another.
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Two Types Of Interference

» Two types of interference:

» Partial interference: data samples may be partitioned into
independent blocks, with units in a blocks dependent.

W YW BOW © -

» Full interference: data samples are all pairwise dependent.

PR
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Aside: SUTVA

» A common assumption in the literature is SUTVA: Stable Unit
Treatment Value Assumption.
» Two part assumption:
1 Y =Y(A) (consistency).
2 Lack of interference.
» Being able to write Y (a = 1) as a random variables, with samples
Yi(a;) corresponding to an experimental unit ¢ implicitly assumes no
dependence of Y; on A of another unit j: Yi(a;, a;) = Yi(ai,a;-).
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Interpretation Of Exclusion Restrictions

Two interpretations of causal irrelevance: Y (a,z) = Y (a, 2) for all
z,%z" in the graph below:

Individual level: for every unit i, Y;(a;, z;) = Y;i(a;, 2)) for all z;, 2.
Distribution/population level: the distribution p(Y (a, 2)) is not a

function of z for every a.

Recursive substitution imposes an individual level restriction, but
distribution /population level restrictions are sometimes discussed as
well.
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Defining Causal Models

» A causal model associated with a DAG G that assumes nothing
beyond recursive substitution is an NPSEM or SCM.

» We may impose additional restrictions to obtain models where, in
some sense, unobserved confounding is absent.

» Two important models:
» NPSEM-IE (NPSEM with independent errors):

sets {V(av) : @v € Xpa (v)} are mutually independent (VV € V).

» FFRCISTG (finest fully randomized causally interpretable structured
tree graph):

for ¥ € X7, variables V(U (v)) are mutually independent (VV' € V)

» FFRCISTG is a historic name. | use 'multiple worlds model’ for
NPSEM-IE and ’single world model’ for FFRCISTG.
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Single World Versus Multiple Worlds Models

Example:

G—©
FFRCISTG: C 1L A(c) 1L Y(a,c) for all a,c.
NPSEM-IE: C' 1L A(c) L Y(a,c’) for all a,c,c'.
NPSEM-IE is a strong model, e.g. is a submodel of the FFRCISTG.
Observation 1: single graph may correspond to different models!
Observation 2: unclear how to check if A(c) IL Y(a,c’) holds.

Glossary: cross-world assumption: an assumption on counterfactuals
that do not correspond to a single consistent assignment of
interventions.
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|dentification Via The G-formula
> Given ACV, p({Y(a) : Y € V' \ A}) is identified by the g-formula,
a modified factorization of the DAG, as follows:

p({Y(a):Y € 1% \ }_l'}) = H p(Y | pag(y) \f_f: _'*npag(y))-
YevV\A

p(C,A,Y) =p(Y|A, C)p(A|C)p(C)
p(C, A(c),Y (c)) = p(Y|A, c)p(Alc)p(C)

» Example:

)
)

p(C, A,Y (a)) = p(Y]a, C)p(A|C)p(C)
)

p(Y(a)) =) p(Yla,C)p(A|C)p(C)
C,A

=3 p(¥]a, C)p(C).
C

» Obvious corollary: a causal model of a DAG implies the statistical
model of a DAG.
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Central Analogy For The Remainder Of This Talk

» Fully observed model story:

» Causal models imply statistical directed acyclic graph (DAG) models
on the observed law.

» Statistical DAG models admit factorizations.

» |dentification of counterfactual laws is via modified DAG
factorizations (g-formula and friends).

» Hidden variable model story:

» Causal models imply statistical acyclic directed mixed graph
(ADMG) models on the observed law.

» Statistical ADMG models admit factorizations.

» ldentification of counterfactual laws is via modified ADMG
factorizations (fD algorithm and friends).
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Examples Of Identification

gg 52

Q’A,B(A B) (B A)

Basic pieces: { qc(C|B,A) = p(C|B, A)
qB,D(BaDaAlc) = p(D|Ca Ba A)p(BsA)

[ ap(D|C,A) =3 5 p(D|C, B, A)p(B|A)

Examples of identified counterfactual laws:

(a) : p(D(b,a)) = Y qc(Cla, b)ap(D|C) = Zp (Cla, b) (ZP(DG B, A)p(BIA))

C

(b) : p(D(c,a)) =gp(Dle,a) = Zp (D|c, B, a)p(B|a).
B
I

Examples of non-identified counterfactual laws: p(D(a)).

This is a complete procedure for any hidden variable model: failure
implies non-identification (S and Pearl, 2006).
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Example Of Maximum Likelihood Estimation

Basic pieces: {
qs,0(B, D|A,C;np,p) = p(D|C, B, A)p(B|A)
qp(D|C, A,np) = > 5 p(D|C, B, A)p(B|A)

\

p(D(b,a)) =Y _p(Cla,b)gp(D|C) = > p(Cla,b; 1 )qn(D|C; 75)
C C

p(D(c,a)) = qp(Dle,a) = qp(Dlc, a;%5,5)

Discrete data: parameters are tables, the parameter map is via a
generalized Mébiusltransform.

The multivariate normal nested Markov model of G is the linear
SEM model for the arid projection graph G® of G (S et al, 2018).

Linear SEMs of arid graphs are everywhere identified (Drton et al).

Gaussian nested likelihood in terms of linear SEM path coefficients.
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Summary

» Important to distinguish statistical and causal graphical models.
(The latter imply the former).

» Two complementary views of causal DAG models: structural
equations and counterfactual random variables.
A given DAG may correspond to multiple causal models.
Causal effects are conceptualized as parameters in distributions
defined over counterfactual r.v.s.
The causal inference workflow is:

Posit a (causal) model. Or maybe learn it from data...

Formulate a parameter of interest.
Check if identified.
If identified, obtain an estimation strategy (maximum likelihood,

etc.
> Qua)ntify uncertainty (confidence intervals), sensitivity analysis.
In fully observed DAGs identification is via the g-formula.
In hidden variable DAGs, identification is not always possible, but is
given by the ID algorithm if it is.
Both the g-formula and the ID algorithm may be viewed as modified
factorizations of a graphical model.
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To Think About

» Quantum physics and causal inference have evolved in parallel, but
considered similar topics.

» What can we do to accelerate progress?

» Term glossary: interference, consistency, exclusion restrictions,
faithfulness, etc.

» Problems of common interest: model selection/compatibility, model
descriptions/factorizations, others?

» Bounds on non-identified effects?

» How to read each other's papers?

» Hoping to make progress at this event!
I
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Thank you for listening!

Contact info:

llya Shpitser ilyas@cs. jhu.edu
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