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Abstract: "Imsets, introduced by Studeny (see Studeny, 2005 for details), are an algebraic method for representing conditional independence models.
They have many attractive properties when applied to such models, and they are particularly nice when applied to directed acyclic graph (DAG)
models. In particular, the standard imset for a DAG is in one-to-one correspondence with the independence model it induces, and hence is alabel for
its Markov equivalence class. We present a proposed extension to standard imsets for maximal ancestral graph (MAG) models, which have directed
and bidirected edges, using the parameterizing set representation of Hu and Evans (2020). By construction, our imset also represents the Markov
equivalence class of the MAG.

We show that for many such graphs our proposed imset defines the model, though there is a subclass of graphs for which the representation does
not. We prove that it does work for MAGs that include models with no adjacent bidirected edges, as well as for a large class of purely bidirected
models. If there istime, we will also discuss applications of imsetsto structure learning in MAGs.

Thisisjoint work with Zhongyi Hu (Oxford).
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Imsets

Imsets were introduced by Studeny (1995), as a method for representing
arbitrary conditional independence models.

Let P(V) be the power-set of a finite set V.

Definition

An imset is an integer-valued multiset, or in other words a function

u:P(V)—Z.

R.J. Evans and Z. Hu, University of Oxford
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Imsets

Imsets were introduced by Studeny (1995), as a method for representing
arbitrary conditional independence models.

Let P(V) be the power-set of a finite set V.
Definition
An imset is an integer-valued multiset, or in other words a function

u:P(V)—Z.

Since they are often sparse, we tend to represent them with combinations
of identity functions:

1 if X=A,
0 otherwise.

5x) = {

R.J. Evans and Z. Hu, University of Oxford
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Conditional Independence Models
Definition
We identify a semi-elementary imset with a triple (A, B, C) where

uaB|c)y = 0c — dauc — dsuc + dausuc.
U aB|c)y represents the conditional independence X 1L Xp | Xc.

Notice this conditional independence is equivalent to:

p(xaBc) - p(xc) = p(xac) - p(xac)
log p(xc) — log p(xac) — log p(xsc) + log p(xasc) = 0.

Now we can see the analogy to the log-factorization.

Indeed, one can test a conditional independence by using the interaction
information operator |, : P(V) — R, and we have that Xa % X5 | X¢
if and only if

(Ip ugaic)) = (p(xC)) — 1(p(xac)) — 1(plxac)) + (p(xasc)) = 0.

R.J. Evans and Z. Hu, University of Oxford

Pirsa: 23040105 Page 8/37



Structural Imsets

Definition
An imset u is said to be structural if there exists some natural number k
such that we can write

k-u= Y kv, k eNu{o},
veZ(V)

where Z( V) is the collection of (semi-)elementary imsets over the
variables in the set V.

Structural imsets can be said to represent a model.

R.J. Evans and Z. Hu, University of Oxford
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Models

Definition
Given an independence X L Xg | Xc, we say that it is represented in
a structural imset v over V (and write A 1L B | C[u]) if there exists

k € N such that
k-u _QU(A,BlC)

Is also structural, )

Can be tested with an integer linear program (Bouckaert et al., 2010).

R.J. Evans and Z. Hu, University of Oxford
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Models

Definition
Given an independence X L Xg | Xc, we say that it is represented in

a structural imset v over V (and write A 1L B | C [u]) if there exists
k € N such that

k-u— U(A,B|C)

is also structural.

Can be tested with an integer linear program (Bouckaert et al., 2010).

Imsets are useful because they can be used to score models consistently,
and in particular can select the optimal directed acyclic graph model.

R.J. Evans and Z. Hu, University of Oxford
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Outline

2. DAG Models
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DAG Models

Directed acyclic graphs (DAGs) can represent comparatively simple
independence models.

We can use a local Markov property to completely define the model.

® pick a topological order;

® then each variable is conditionally independent of its predecessors in
the ordering given its parents;

Xi L Xore(in\pa(i) | Xpa(i), Vi€ V.

R.J. Evans and Z. Hu, University of Oxford
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Imsets for DAG Models

Correspondingly, we can define the standard imset for a DAG G as:
Ug -= Z Ui,pre(i)| pa(i))
iev

BB+ 5 i Bt
icv

This has several nice properties:

® it is clearly a structural imset;

® P is Markov with respect to G if and only if {lp, ug) = 0;

o,

R.J. Evans and Z. Hu, University of Oxford
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Imsets for DAG Models

Correspondingly, we can define the standard imset for a DAG G as:

UG "= Y Ui prei)| pali)
O, iev

BB+ 5 i Bt
icv

This has several nice properties:

® it is clearly a structural imset;

® P is Markov with respect to G if and only if (Ip, ug) = 0;
® G and G’ are Markov equivalent if and only if ug = ugr;
® it is sparse (at most 2|V/| terms).

R.J. Evans and Z. Hu, University of Oxford
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Characteristic Imsets for DAG Models

There is a bijective (Mobius) transformation we can make to obtain the
characteristic imset (Studeny et al., 2010) for a DAG:

Cg(A) =1- Z Ug(B).

BDA

One can then show that

A { 1 if E{Imv : {v} CAC {v}Upag(v)

0 otherwise.

Example. Consider the graph on the
right. Then the non-zero sets are:

0, {1}, {2}, {3}, {1,3}, {2,3}, {1,2,3}.

R.J. Evans and Z. Hu, University of Oxford
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Outline

3. MAG Models
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MAG Models

A (directed) maximal ancestral graph (MAG) model is just a collection
of independences that can be represented by a DAG with hidden
variables. (Richardson and Spirtes, 2002)

O. (3

R.J. Evans and Z. Hu, University of Oxford
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MAG Models

A (directed) maximal ancestral graph (MAG) model is just a collection
of independences that can be represented by a DAG with hidden
variables. (Richardson and Spirtes, 2002)

(—m

This MAG implies the independences
X1 A X3, Xy Xz 1L X5 | Xq,

which cannot be faithfully represented by any DAG.

R.J. Evans and Z. Hu, University of Oxford
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MAG Models

A (directed) maximal ancestral graph (MAG) model is just a collection
of independences that can be represented by a DAG with hidden
variables. (Richardson and Spirtes, 2002)
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MAG Models

A (directed) maximal ancestral graph (MAG) model is just a collection
of independences that can be represented by a DAG with hidden
variables. (Richardson and Spirtes, 2002)

—4)

This MAG implies the independences
X1 AL X3, X, X3 L Xz | X,

which cannot be faithfully represented by any DAG.
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Markov Equivalence

In Hu and Evans (2020), we gave a criterion for two MAGs to be Markov
equivalent based on collections of subsets.

Parametrizing Sets
The parametrizing sets for a MAG G are

S(G)={HUA:HecH(G), ACtailg(H)},

where H(G) is the collection of heads in G.

Given a vertex v in a head H, if we condition on Xy (1, then the
distribution cannot be m-separated from any t € tailg(H).

As an analogy, for DAGs heads = vertices and tails = parent sets.

R.J. Evans and Z. Hu, University of Oxford
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Parametrizing Sets Example
Consider this MAG, which implies

X3JLX1 and X4_U_X1|X2Z

head tail parametrizing sets
{1} 0
{2} | {1}
{3} 0
{23} | {1}
{4} | {2}
{3,4} | {1,2}

R.J. Evans and Z. Hu, University of Oxford
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Parametrizing Sets Example

Consider this MAG, which implies /CQ\
X3JLX1 and X4J_X1|X22

O—F—®
head tail parametrizing sets
{1} 0 {1}
{2} | {1} {2}.{1,2}
{3} 0 {3}

{2,3} | {1} {2,3},{1,2,3}
{4 | {2} {4},{2,4}

{3,4},{1,3,4},
340 | 1.2 123 4}, {1,2,3,4)

Parametrizing set is missing only subsets {1,3}, {1,4} and {1,2,4}.

R.J. Evans and Z. Hu, University of Oxford
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Markov Equivalence Class and Characteristic Imsets

The parametrizing sets also give a representation of the Markov
equivalence class of a MAG.

Theorem (Hu and Evans, 2020)
Two MAGs G and G’ are Markov equivalent if and only if S(G) = S(G').

Now note that the characteristic imset for a DAG takes the same form:

S(9) = v UA: AC pag(v)}

={A: cg(A) =1}.
So let's try using the parametrizing set to build the characteristic imset
for a MAG!
Definition

Define the characteristic imset for a MAG G as

1" if Ae S(G)
0 otherwise.

cstA) = {

R.J. Evans and Z. Hu, University of Oxford
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Retrofit for MAGs

Then define the ‘standard’ imset as the inverse transformation of this.

ug(A) = Y (1) F\(1 — cg(B)).

BDA &

Proposition
Given a MAG @G, the ‘standard’ imset is the same as:

Ug = 5\/ — 5@ - Z Z ’H\W|5WUT7

HEH(G) WCH

where T = tailg(H).

Note that this is consistent with the definition for DAGs.

R.J. Evans and Z. Hu, University of Oxford
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Defining the Model

We used ILPs to check which ‘standard’ imsets define the model.

There are three cases, based on whether the ‘standard’ imset ug:
(i) does define the same model as G;

(i) defines a model with a (strict) subset of the independence
restrictions of G;

(iii) is not structural (so does not define any model).

For small graphs, we find that they usually fall into category (i).
For all MAGs with 5 or 6 nodes, and 7 nodes and < 13 or > 18 edges:

n | equiv. classes (i) (ii) (iii)
b 285 284 1 0
6 13,303 13,248 54 1
[ 1,161,461 1,146,501 14,562 8

R.J. Evans and Z. Hu, University of Oxford
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Defining the Model

For n =5 ‘standard’ imsets all define the
model, except for the bidirected 5-cycle. ’

The bidirected 6-cycle is not even structural.

R.J. Evans and Z. Hu, University of Oxford
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‘Simple’ MAGs

Definition
Example.
We say that a MAG is simple if its maximal head
size is at most two. ) o
V| equiv. classes simple MAGs  DAGs e
5 285 205 119
6 13,303 6,278 2,025 o
Fii 1,161,461 331,310 57,661 o

*having at most 13 or at least 18 edges.

R.J. Evans and Z. Hu, University of Oxford
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‘Simple” MAGs

Definition
Example.
We say that a MAG is simple if its maximal head
size is at most two. o
V| equiv. classes simple MAGs  DAGs e
5 285 205 119
6 13,303 6,278 2,025 o
7 1,161,461 331,310 57,661 o

*having at most 13 or at least 18 edges.

Proposition

For every simple MAG G, the standard imset does define the model
implied by the graph. In addition, it contains at most 2(|V/| + |E|) terms. |

R.J. Evans and Z. Hu, University of Oxford
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Model Scoring

Usual consistent score for model scoring is the BIC. This requires us to
find the maximum likelihood for each model we score.

We have a proposal for a scoring models (Andrews, 2022):

h(G) :=2n{lp,ug) — klog n,

where n is the number of samples, k is the number of parameters, and |p
is the interaction information operator (see appendix).

If ug defines the model, we have
n{lp, ug) ~ £g(P; Xy),
so our score approximates the BIC.

Hence the score is consistent over this set of MAGs
(i.e. the highest score is given asymptotically to the true model).

Since ug ought to define the model, we restrict to simple MAGs.

R.J. Evans and Z. Hu, University of Oxford
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Results (Skeleton accuracy)
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Results (Edge mark accuracy)
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Summary

® |msets can be used to define arbitrary conditional independence
models;

® they have particularly nice properties when applied to DAGs.

® Some of those properties are replicated in MAGs, but
(unfortunately) not all of them!

® Problem is that (for some graphs) it is not possible to describe the
model without using conditional independences that repeat sets.

Describing these graphs is an open problem, and seems to be
combinatorially difficult.

R.J. Evans and Z. Hu, University of Oxford
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Summary

® |msets can be used to define arbitrary conditional independence
models;

® they have particularly nice properties when applied to DAGs.

® Some of those properties are replicated in MAGs, but
(unfortunately) not all of them!

® Problem is that (for some graphs) it is not possible to describe the
model without using conditional independences that repeat sets.

Describing these graphs is an open problem, and seems to be
combinatorially difficult.

® |msets that do represent the models can be used to give a new
consistent score, which is easier to compute than the BIC.

® We have also developed a greedy algorithm for quickly learning
simple MAGs.
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Thank you!
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