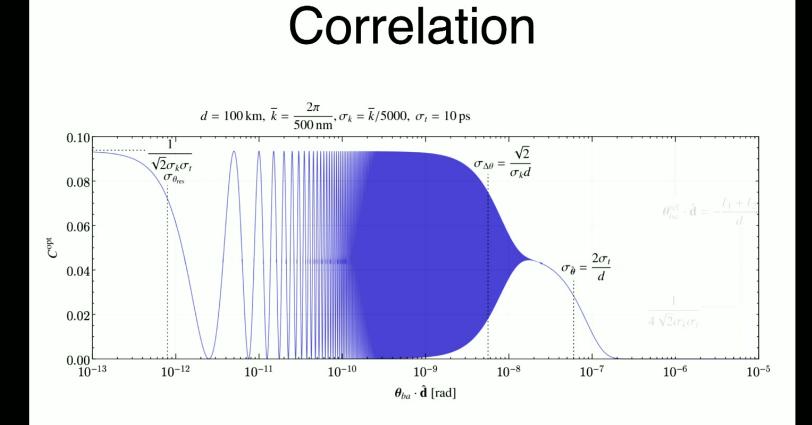
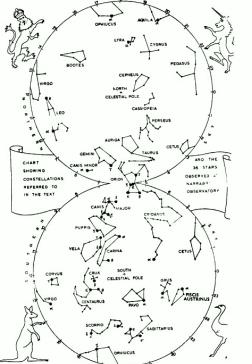
Title: Extended Path Intensity Correlation: Differential Astrometry with Microarcsecond Precision

Speakers: Marios Galanis Series: Cosmology & Gravitation Date: April 03, 2023 - 12:00 PM URL: https://pirsa.org/23040081

Abstract: The angular resolution of a stellar interferometer, as for a single telescope, becomes better at smaller wavelengths and larger baselines. The goal for ground detectors would then be optical interferometers with baselines as long as the Earth's diameter. The latter goal has been achieved in radio, but it becomes prohibitive in the optical, as the electromagnetic field oscillates too rapidly to record and analyze directly over km-long baselines. Intensity interferometry relying on second-order correlations can make this possible: rather than the amplitude and phase of incoming light, we need only count photons. This technique has a long history and to date the best measurements of nearby stellar radii, dating back to the 1950s. Its main limitations are the need for very bright sources and its narrow field of view, restricting kilometer-long baselines to sources only a few ?as away. In this talk, I will propose an optical-path modification of astronomical intensity interferometers, which introduces an effective time delay in the two-photon interference amplitude, splitting the main intensity correlation fringe into others at finite opening angles, allowing for differential astrometry of multiple compact sources such as stars or quasar images. Together with the exponential progress in the field of single photon detection, such a modification will immensely increase the scope of intensity interferometry and, time permitting, I will talk about some promising applications, which include astrometric microlensing of stars and quasar images, binary-orbit characterization, exoplanet detection, Galactic acceleration measurements and calibration of the cosmic distance ladder, all at unprecedented relative astrometric precision.


Zoom link: https://pitp.zoom.us/j/92041231568?pwd=cWo2c0hwTEdmOTRCc042SHNxRWw5UT09

Extended Path Intensity Correlation: Differential Astrometry with Microarcsecond Precision

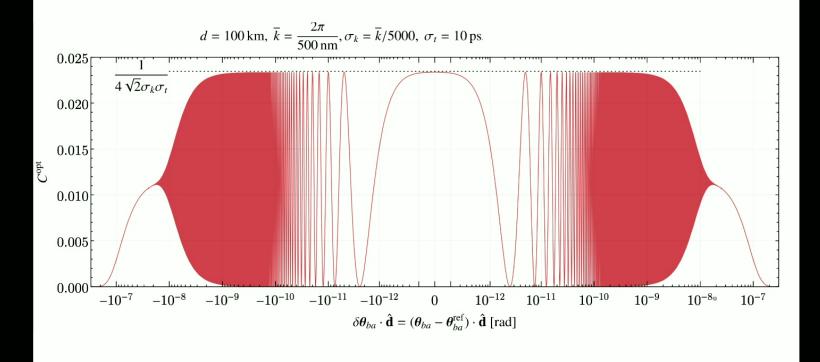

Marios Galanis Perimeter Institute

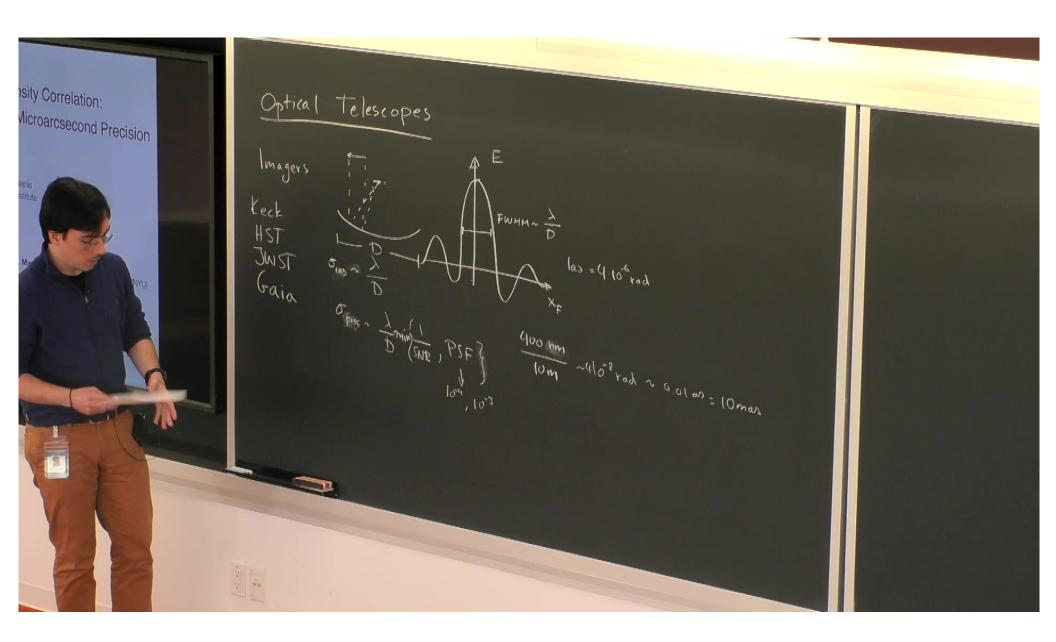
In collaboration with: Ken Van Tilburg (NYU & CCA), Masha Baryakhtar (UW), Neal Weiner (NYU)

arXiv: 2304.xxxxx

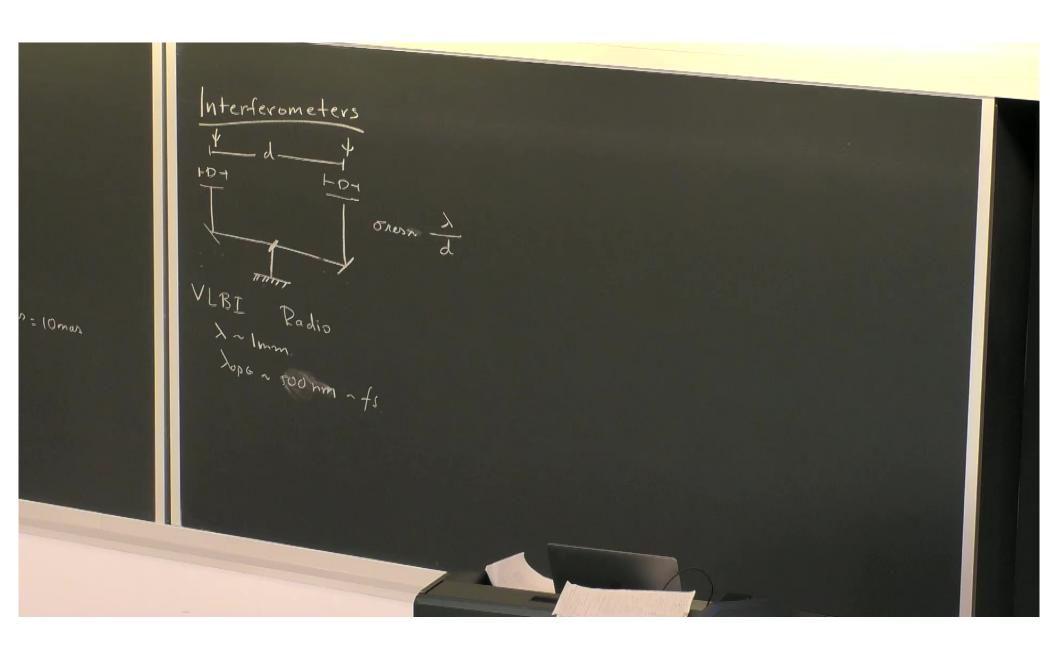
Narrabri Stellar Intensity Interferometer

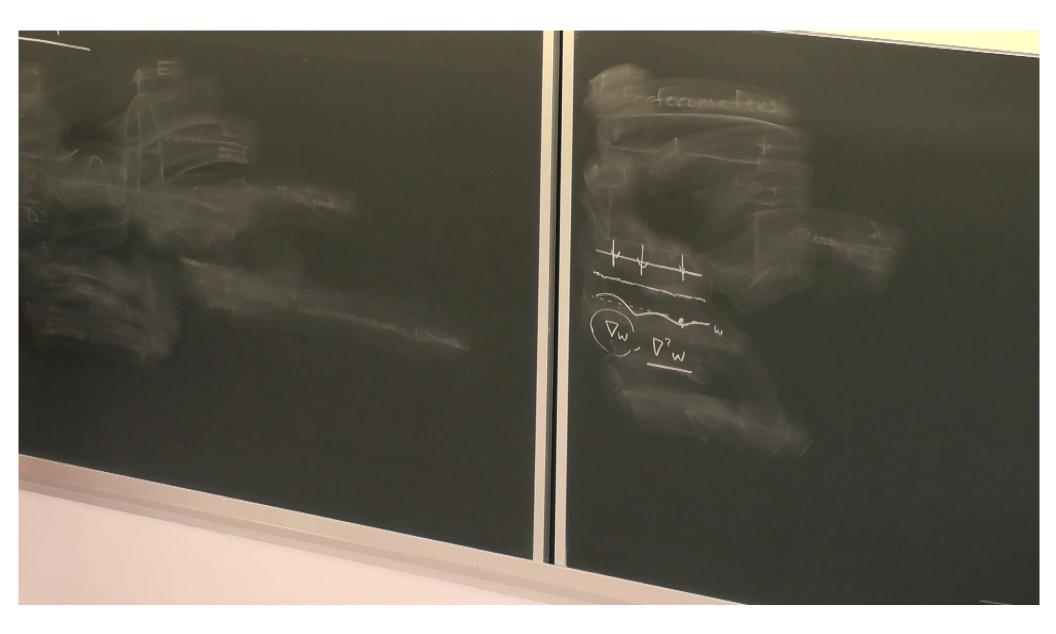
ar number	Star name	Туре В 3 (Vp)	Zero-baseline correlation $c_{\rm N} \pm \sigma$ 0.98 ± 0.05	Angular d $\times 10^{-3}$ se	Temperature	
				$\theta_{\rm UD} \pm \sigma$	$\theta_{LD} \pm \sigma$	$[T_{e}(F) \pm \sigma]/K$
472				1.85 ± 0.07	1.92 ± 0.07	13 700 ± 600
1713	βOri	B 8 (Ia)	0.98 ± 0.08	2.43 ± 0.05	2.55 ± 0.05	$11\ 500\pm700$
1790	y Ori	B 2 (III)	1.03 ± 0.07	0.70 ± 0.04	0.72 ± 0.04	$20\ 800 \pm 1300$
1903	e Ori	BO(Ia)	0.86 ± 0.07	0.67 ± 0.04	0.69 ± 0.04	24500 ± 2000
1948	ζOri	O 9.5 (Ib)	0.60 ± 0.06	0.47 ± 0.04	0.48 ± 0.04	26 100 ± 2200
2004	к Ori	B 0.5 (Ia)	1.18 ± 0.09	0.44 ± 0.03	0.45 ± 0.03	$30\ 400\pm 2000$
2294	βCMa	B1 (II-III)	1.07 ± 0.08	0.50 ± 0.03	0.52 ± 0.03	$25\ 300 \pm 1500$
2326	α Car	F0(Ib-II)	0.75 ± 0.22	6.1 ± 0.7	6.6 ± 0.8	7500 ± 250
2421	y Gem	A 0 (IV)	1.17 ± 0.09	1.32 ± 0.09	1.39 ± 0.09	9600 ± 500
2491	α CMa	A 1 (V)	0.91 ± 0.06	5.60 ± 0.15	$5 \cdot 89 \pm 0 \cdot 16$	10.250 ± 150
2618	€ CMa	B 2 (II)	0.89 ± 0.06	0.77 ± 0.05	0.80 ± 0.05	$20\ 800 \pm 1300$
2693	δ CMa	F 8 (Ia)	0.93 ± 0.18	3.29 ± 0.46	3.60 ± 0.50	
2827	η CMa	B 5 (Ia)	0.99 ± 0.09	0.72 ± 0.06	0.75 ± 0.06	$14\ 200\pm 1300$
2943	a CMi	F 5 (IV-V)	0.98 ± 0.10	$5 \cdot 10 \pm 0 \cdot 16$	$5 \cdot 50 \pm 0 \cdot 17$	6500 ± 200
3165	ζPup	O 5 (f)	1.04 ± 0.08	0.41 ± 0.03	0.42 ± 0.03	$30\ 700 \pm 2500$
3207	γ^2 Vel	WC 8+O 9 (I)		0.43 ± 0.05	$0-44 \pm 0.05$	$29\ 000 \pm 3000$
3685	β Car	A 1 (IV)	1.01 ± 0.06	1.51 ± 0.07	1.59 ± 0.07	9500 ± 350
3982	a Leo	B7(V)	1.12 ± 0.07	1.32 ± 0.06	$1-37 \pm 0.06$	$12\ 700\pm800$
4534	β Leo	A 3 (V)	1.17 ± 0.10	1.25 ± 0.09	1.33 ± 0.10	9050 ± 450
+662	y Crv	B 8 (III)	0.97 ± 0.10	0.72 ± 0.06	0.75 ± 0.06	$13\ 100 \pm 1200$
4853	βCru	B 0.5 (111)	0.88 ± 0.03	0.702 ± 0.022	0.722 ± 0.023	27900 ± 1200
5056	α Vir	B1 (IV)		0.85 ± 0.04	0-87±0-04	$22\ 400 \pm 1000$
5132	« Cen	B1 (III)	1.02 ± 0.07	0.47 ± 0.03	0.48 ± 0.03	$26\ 000 \pm 1800$
5953	δ Sco	B 0.5 (IV)	0.75 ± 0.07	0.45 ± 0.04	0.46 ± 0.04	
6175	ζOph	O 9.5 (V)	1.01 ± 0.12	0.50 ± 0.05	0.51 ± 0.05	
6556	α Oph	A 5 (III)	0.94 ± 0.09	1.53 ± 0.12	1.63 ± 0.13	8150 ± 400
6879	e Sgr	A 0 (V)	1.02 ± 0.06	1.37 ± 0.06	1.44 ± 0.06	9650 ± 400
7001	a Lyr	A 0 (V)	0·99 ± 0·04	3.08 ± 0.07	3.24 ± 0.07	9250 ± 350
7557	α Aql	A 7 (IV, V)	0.94 ± 0.06	2.78 ± 0.13	2.98 ± 0.14	8250 ± 250
7790	α Pav	B 2.5 (V)	1.01 ± 0.07	0.77 ± 0.05	0.80 ± 0.05	$17\ 100 \pm 1400$
8425	α Gru	B 7 (IV)	1.11 ± 0.08	0.98 ± 0.07	1.02 ± 0.07	$14\ 800 \pm 1200$
8728	a PsA	A 3 (V)	1.02 ± 0.08	1.98 ± 0.13	$2 \cdot 10 \pm 0 \cdot 14$	9200 ± 500


1965–1974


Narrabri Stellar Intensity Interferometer

CUT		Star name	Туре	Zero-baseline correlation	Angular diameter $\times 10^{-3}$ sec of arc		Temperature
EHT	Star number		- 77-	$c_{\rm N} \pm \sigma$	$\theta_{\rm UD} \pm \sigma$	$\theta_{\rm LD} \pm \sigma$	$[T_{e}(F) \pm \sigma]/K$
	472	α Eri	B 3 (Vp)	0.98 ± 0.05	1.85 ± 0.07	1.92 ± 0.07	$13\ 700 \pm 600$
M87* April 11, 2017	1713	βOri	B 8 (Ia)	0.98 ± 0.08	2.43 ± 0.05	2.55 ± 0.05	$11\ 500 \pm 700$
M87 April 11, 2017	1790	y Ori	B 2 (III)	1.03 ± 0.07	0.70 ± 0.04	0.72 ± 0.04	$20\ 800 \pm 1300$
	1903	e Ori	BO (Ia)	0.86 ± 0.07	0.67 ± 0.04	0.69 ± 0.04	24500 ± 2000
	1948	ζOri	O 9.5 (Ib)	0.60 ± 0.06	0.47 ± 0.04	0.48 ± 0.04	26 100 ± 2200
	2004	к Ori	B 0.5 (Ia)	1.18 ± 0.09	0.44 ± 0.03	0.45 ± 0.03	$30\ 400\pm 2000$
	2294	βCMa	B1 (II-III)	1.07 ± 0.08	0.50 ± 0.03	0.52 ± 0.03	$25\ 300 \pm 1500$
	2326	α Car	F 0 (Ib-II)	0.75 ± 0.22	6.1 ± 0.7	6.6 ± 0.8	7500 ± 250
	2421	γ Gem	A 0 (IV)	1.17 ± 0.09	1.32 ± 0.09	1.39 ± 0.09	9600 ± 500
	2491	α CMa	A1(V)	0.91 ± 0.06	5.60 ± 0.15	$5 \cdot 89 \pm 0 \cdot 16$	10.250 ± 150
	2618	e CMa	B 2 (II)	0.89 ± 0.06	0.77 ± 0.05	0.80 ± 0.05	$20\ 800 \pm 1300$
	2693	o CMa	F 8 (1a)	0.93 ± 0.18	3.29 ± 0.46	3.60 ± 0.50	
	2827	η СМа	B 5 (Ia)	0.99 ± 0.09	0.72 ± 0.06	0.75 ± 0.06	$14\ 200\pm 1300$
	2943	a CMi	F 5 (IV-V)	0.98 ± 0.10	$5 \cdot 10 \pm 0 \cdot 16$	$5 \cdot 50 \pm 0 \cdot 17$	6500 ± 200
	3165	ζPup	O 5 (f)	1.04 ± 0.08	0.41 ± 0.03	0.42 ± 0.03	$30\ 700 \pm 2500$
	3207	γ^2 Vel	WC 8+O 9 (I)		0.43 ± 0.05	$0-44 \pm 0.05$	$29\ 000 \pm 3000$
	3685	β Car	A 1 (IV)	1.01 ± 0.06	1.51 ± 0.07	1.59 ± 0.07	9500 ± 350
	3982	a Leo	B 7 (V)	1.12 ± 0.07	1.32 ± 0.06	1.37 ± 0.06	$12\ 700 \pm 800$
	4534	β Leo	A 3 (V)	1.17 ± 0.10	1.25 ± 0.09	1.33 ± 0.10	9050 ± 450
50 μ as	+662	y Crv	B 8 (III)	0.97 ± 0.10	0.72 ± 0.06	0.75 ± 0.06	$13\ 100 \pm 1200$
	4853	βCru	B 0.5 (III)	0.88 ± 0.03	0.702 ± 0.022	0.722 ± 0.023	27.900 ± 1200
April 5 April 6 April 10	5056	α Vir	B1 (IV)		0.85 ± 0.04	0.87 ± 0.04	22400 ± 1000
Арт о Арт о Арт 10	5132	« Cen	B1 (III)	1.02 ± 0.07	0.47 ± 0.03	0.48 ± 0.03	$26\ 000 \pm 1800$
	5953	δ Sco	B 0.5 (IV)	0.75 ± 0.07	0.45 ± 0.04	0.46 ± 0.04	
	6175	ζOph	O 9.5 (V)	1.01 ± 0.12	0.50 ± 0.05	0.51 ± 0.05	
	6556	α Oph	A 5 (III)	0.94 ± 0.09	1.53 ± 0.12	1.63 ± 0.13	8150 ± 400
	6879	€ Sgr	A 0 (V)	1.02 ± 0.06	1.37 ± 0.06	1.44 ± 0.06	9650 ± 400
	7001	a Lyr	A 0 (V)	0·99 ± 0·04	3.08 ± 0.07	3.24 ± 0.02	9250 ± 350
	7557	a Aql	A 7 (IV, V)	0.94 ± 0.06	2.78 ± 0.13	$2 \cdot 98 \pm 0 \cdot 14$	8250 ± 250
	7790	α Pav	B 2.5 (V)	1.01 ± 0.07	0.77 ± 0.05	0.80 ± 0.05	$17\ 100 \pm 1400$
Prightness Terraneusture (109 K)	8425	α Gru	B7 (IV)	1.11 ± 0.08	0.98 ± 0.07	1.02 ± 0.07	$14\ 800 \pm 1200$
Brightness Temperature (10^9 K)	8728	a PsA	A 3 (V)	1.02 ± 0.08	1.98 ± 0.13	$2 \cdot 10 \pm 0 \cdot 14$	9200 ± 500


1965–1974


Correlation - Extended FOV

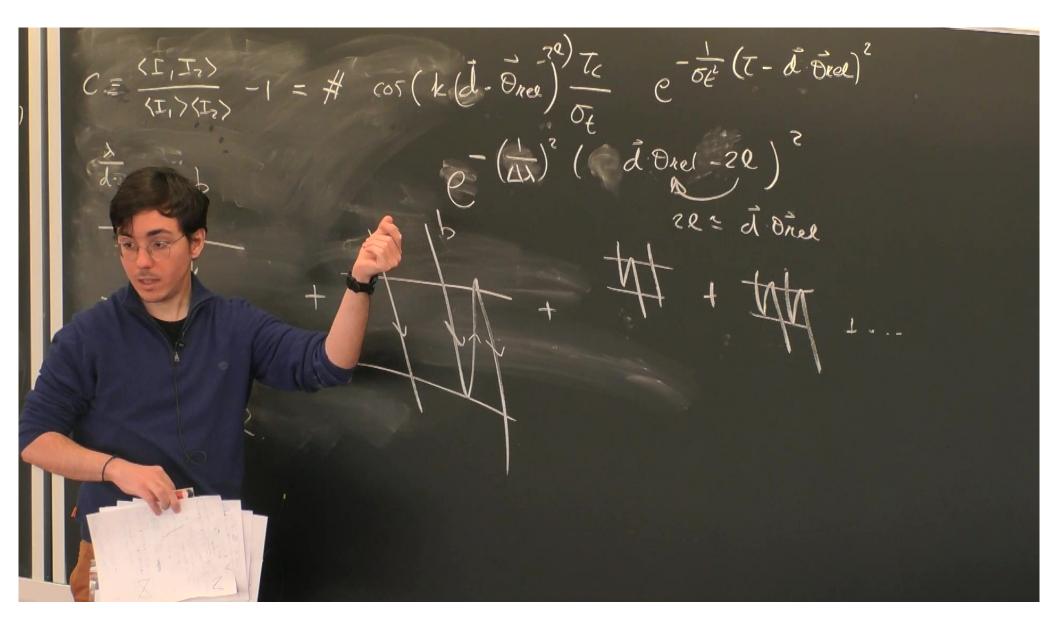
Optical Telescopes sion E Imagers Keck FWHM~ D HST Juist las = 4.10 "rad 5 rep 5 pres -400 hm PSF (SNR) ~410= rad ~ 0.01 an = 10 mas lom 10-4 A

Intensity Interferometry lation: cond Precision Hanburry - Brown & Twiss $\sigma_{=}^{2} \langle n^{2} \rangle - \langle n \rangle^{2} = \langle n \rangle$ $\frac{\sigma_{(I)}}{\langle I \rangle} = \frac{\langle n \rangle}{\langle n \rangle} \rightarrow 0$ $\langle n \rangle \rightarrow 0$ 19505 $\frac{\delta \omega}{\omega} = \delta \tau$ $E = A \sum_{i=1}^{\infty} cor(\omega_i t)$ 1/2 Hg (Ì 5 $\langle I \rangle$ $\mathbb{I} \sim N^{2}a^{2} + \sum_{\substack{i=1\\(i=1)}}^{i} (o\sigma((\omega_{i}, \omega_{j}))) (i)$ Jw-1

Intensity Interferometry lation: cond Precision Hanburry - Brown & Twiss 19505 $\frac{\delta \omega}{\omega} = 0.1$ E = A $\sum_{i=1}^{\infty} cor(\omega_i t)$ 1/2 Hg F $\langle I \rangle$ of 1) To $I \sim N^{2}a^{2} + \sum_{ij} c_{0\sigma}((\omega_{i}, \omega_{j})k)$ Jw-1

Intensity Interferometry on: d Precision Hanburry-Brown & Twiss $\int_{1}^{2} \frac{1}{2} \left\{ n^{2} \right\} - \left\{ n \right\}^{2} = \left\{ n \right\}$ $\int_{0}^{2} \frac{\sigma(t)}{\langle t \rangle} = \frac{1}{\langle n \rangle} \xrightarrow{1} 0$ $\int_{0}^{2} \frac{\sigma(t)}{\langle t \rangle} = \frac{1}{\langle n \rangle} \xrightarrow{1} 0$ $\int_{0}^{2} \frac{\sigma(t)}{\langle t \rangle} = \frac{1}{\langle n \rangle} \xrightarrow{1} \frac{\sigma(t)}{\langle t \rangle}$ $\frac{\omega}{\omega} = \omega_1$ $E = A \gtrsim cor(\omega_i t)$ 11/2 Hg 5, $I \sim N^2 a^2 + \sum_{(ij)} c_{0\sigma}((\omega_{i}, \omega_{j}) \epsilon)$

Tc~~~~fs Tc ~ Δλ Ha of a ns 1950s PMTS & 10ps SNISPDS SPADS E = A 2 e'wit + di $\begin{aligned} &\langle E[\hat{S}_{-} \langle \tilde{z} \tilde{z} | A; A_{j}^{*} e^{i(\omega_{j} - \omega_{j}) \ell + (\vartheta_{i} - \vartheta_{j})} \rangle \\ &= \tilde{z} A_{j}^{2} \longrightarrow \int dk f(\ell) \end{aligned}$


Intensity Interferometry Hanburry - Brown & Twiss $E_{j} = A e^{i\omega t - ikkaj} + (4\omega(t - taj)) + B e^{i\omega t - ikkajt} + i4s(t - taj)$ 19505 $\frac{\delta\omega}{\omega} = \delta 1$ E = A Z cor($\omega_i(t)$) kal 112 **: - Hg T F Ea,1 - Rai $|I_2\rangle = E, E, E, E_2 E_2$

Intensity Interferometry Ď Hanburry - Brown & Twiss 19505 E ;= $\frac{\delta \omega}{\omega} = 6\pi$ $E = A \sum_{i=1}^{\infty} cor(\omega_i t)$ KAL. $C = \frac{\langle I, J_2 \rangle}{\langle I, \rangle \langle I_2 \rangle} - 1 = \# \cos(k \cdot d \cdot \overline{\Theta}_{new}) \frac{T_c}{\sigma_{\tilde{t}}}$ 1. Hg e i wt - ikkbi+ e + idb(t - kbj) $\langle I, I \rangle_{\sigma}$ 2 TAPEIBRE $\begin{array}{c} & (t_{a_1} = t_{a_2} + t_{b_2} = t_{b_1}) \\ & (t_{a_1}(t_{-t_{a_1}}) - t_{a_1}(t_{-t_{a_2}} + \tau_{-t_{a_2}}) \\ & + d_{b_1}(t_{-t_{b_2}} + t_{b_1}) \\ & + d_{b_2}(t_{-t_{b_2}} + t_{b_1}) \\ \end{array}$ T= tax - tax = th, - the

- toi $C = \frac{\langle I, J_2 \rangle}{\langle I, \rangle \langle I_2 \rangle} - 1 = \# \cos(k d \cdot \Theta_{red}) \frac{T_c}{\sigma_t} e^{-\frac{1}{\sigma_t^2} (T - d \theta_{red})^2}$ $= \frac{\lambda}{d}$ $e^{-(\frac{1}{\Delta \lambda})^2 (k d \theta_{red})^2}$ ik rebit + 146(+ - 26;) $T = ka_2 - ka_1$ $T = kb_2 - kb_1$ - tb,) (t-taztz the

+ (4.1+-10) $C = \frac{\langle I, J_2 \rangle}{\langle I, \rangle \langle I_2 \rangle} - 1 = \# \cos(k \cdot \vec{d} \cdot \vec{\Theta}_{red}) \frac{T_c}{\sigma_{\tilde{t}}} e^{-\frac{1}{\sigma_{\tilde{t}}^2} (T - \vec{d} \cdot \vec{\Theta}_{red})^2}$ $= \frac{\lambda}{d_{\tilde{t}}} e^{-(\vec{d} \cdot \vec{d}_{red})^2} (\vec{d} \cdot \vec{\Theta}_{red})^2$ e + ido(t - 26j) - Rai $T = \frac{1}{2} - \frac{1}{2} \frac{1}{2} - \frac{1}{2} \frac{1}$ - Kaz+ Kbz- Kb, FOV _ AX -tai) - da(t-taz+z) taz = th, - the

= $\# \cos(kd \cdot \vec{\Theta}_{red}) \frac{T_c}{\sigma_t} = \frac{1}{\sigma_t^2} (T - \vec{d} \cdot \vec{\Theta}_{red})^2$ $= \left(\frac{1}{\Delta \lambda}\right)^2 (\vec{d} \cdot \vec{\Theta}_{red})^2$ <<u>(I,)</u> (I,)(I,) à.a 0

