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Abstract: We present a quantum algorithm for simulating the classical dynamics of 2*n coupled oscillators (e.g., masses coupled by springs). Our
approach leverages a mapping between the Schrodinger equation and Newton's equations for harmonic potentials such that the amplitudes of the
evolved quantum state encode the momenta and displacements of the classical oscillators. When individual masses and spring constants can be
efficiently queried, and when the initial state can be efficiently prepared, the complexity of our quantum algorithm is polynomial in n, almost linear
in the evolution time, and sublinear in the sparsity. As an example application, we apply our quantum algorithm to efficiently estimate the kinetic
energy of an oscillator at any time, for a specification of the problem that we prove is BQP-complete. Thus, our approach solves a potentialy
practical application with an exponential speedup over classical computers. Finally, we show that under similar conditions our approach can
efficiently simulate more general classical harmonic systems with 2*n modes.

Zoom link: https://pitp.zoom.us/j/91882209363?pwd=UndJRV daZW04RGtpL OM 2SE52RD JwZz09
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Simulating Harmonic Oscillators
Using Quantum Computers

Ryan Babbush, Dominic Berry, Robin Kothari, Rolando Somma, Nathan
Wiebe
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Exponential / Suspected Exponential
Speedups for Quantum Computing

Examples of new classes of problems are rare. Linear Systems

Applications are often hard to find because of the
limitations that quantum imposes.

Many examples have been found to be

dequantizable: (Recommendation Systems, Nearest

Centroid Classifiers, Quantum PCA, Topological Abelian Hidden
Data Analysis??) Subgroup

We want to understand what makes a problem
hard to dequantize and in turn understand what
tasks are true exponential speedups for quantum.

Factoring
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Finding Speedups for Differential Equations

* Nearly everything can be modeled by a linear differential equation.
* Let p be a probability density of N particles in D dimensions.

* log(dim(p)) € O(ND), meaning distribution is exponentially large
* Dynamics of probability density is given by

dp
4 = {p,H

Classical dynamics can be described by a linear differential eq.

* Awesome! Does this mean we get an exponential speedup for all
classical dynamics?
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No! No! No! we totally don’t...

* The differential equation for a single trajectory is generically non-

linear but can be solved in time O | poly (?

Initial p A :

* Monte Carlo sampling can be used to get samples from distribution.
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THISISA,

Ok Weird so are there any ODEs «
that give a quantum advantage

BUMMER, MAN
* Good News: The answer is totally yes

AL
)

* Bad News: The most straight forward answer is the Schrodinger
Equation.
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Why does this dequantization strategy fail for
the Schrodinger equation?

* Path Integration is the natural way to find trajectories for quantum
systems.

n"path Interfering
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* Each path can be computed in polynomial time.

* Phases nearly exactly cancel and variance in monte-carlo estimate is
exponentially large (sign problem).
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s interference all you need?

LOV K. GROVER AND ANIRVAN M. SENGUPTA

(length of support pendulum}) L

M (mass of support pendulum)

(L B ) 1‘:$lléllllllll+l (length of each pendulum)
\4

(mass of first pendulum) m /N

m/N (mass of each pendulum)

FIG. 1. N pendulums are suspended from a single pendulum.

* Grover showed that mechanical interference can be used to achieve a

Grover speedup.

* This speedup is impractical because of engineering constraints /

inability to error correct.

* Can we argue that mechanical interference is equivalent to quantum?
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Intuition for Mechanical Oscillators | 5 4.

* Problem: Assume we have a system of 2™ oscillators such that

E = Zmifciz/Z +Zkij(xl‘ — x])z/Z +Z ijsz/Z
i L,j J

* The dynamics is given by

cOpx; =2y, O x; = =X u (0 — %) — Ky

* |n one dimension:
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Why is this a good match with quantum:

't’s symplectic just like quantum

z
0)t

/;‘L\

H
Orbit |
H
H
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H
. :
' Welocity

X
[1)

* The motion of an oscillator rotates a point in a circle.
* Quantum y-axis rotations do exactly the same thing.
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How do we handle this generically?

* There are many different representations that we could use for the dynamics and they lead to different

complexity.

* Unitary dynamics preserves the 2-norm of the vector.

E=Zmi5ciz/2+zlfij(xi )/2"‘2 Kjj 1/2
i _ LJ

Y m1/2Ex1
-\fmzn/ZE.?.Czn

K
— (xl - X3)

\/Tﬂ(xl — X3)

Kznfl’zn

% (xgn_q — x3n)

i

This unit vector corresponds to a set of oscillators
with fixed internal energy.

The time evolution of this vector under the classical
equations of motions preserves the two-norm.
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Unitarity

* Equation of motion for x can be written as
m;E;(t) = Z Kjk (:L'k(t) — @ (t)) e

ki

* This is equivalentto  MZ(t) = —F#(t)

* If we define y = VMX, A := VM FVM ' = 0then )= —Aj(t)
* This implies () +iVA§(?t) —z\/_( (t) + iVAF(t) )

* Then in turn we can see that in our encoding we have unitarity:

() + iVAG(t) = VR (50) + iVAF(0) )
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Simplest Way to Simulate (OG HHL Method)

* Dynamics of Harmonic Oscillators can then be simulated by
simulating VA on an initial quantum state.

* We formally deal with this using

* Algorithm:

* Prepare initial state [y)

« Apply phase estimation coherently on state using e ~*At for t < M.
* LetAlv) = 4,|v), Xy ay [v)[0) = X, ay [V)IA,)
* Apply a square root operation reversibly: Y, a, [V)|1,) = X, a, |v)|Av)|\//1_v).
+ Apply phase 3, ay [v)I2,) [V y) = By ay e VB2, [V )

* |nvert transformations.
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Complexity of Algorithm

Problem 4. Let A = 0 be an N x N real-symmetric,
PSD, d-sparse matriz. Define the normalized state

S i 1)7(?))
W (t)) : \/‘E(iﬁ(f) : (23)

where E > 0 is a constant and [i(t) := vV Ajj(t) € CV.
Assume we are given oracle access to A and oracle
access to a unitary W that prepares the initial state

|(0)}. Given t and e, the goal is to output a state
that is e-close to |1p(t)) in Euclidean norm.

Theorem 4. Problem 4 can be solved with a quantum
algorithm that makes

t/| A~ t2
Q=0 (|A|"mxd log(1/€e) min (M 1‘_2))
€ €

(24)
queries to the oracles, uses O(Q) x polylog(N/e€)) two-
qubit gates, and uses W once.
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Complexity of Algorithm
d

Ir
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S i 1)7(?))
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Special Case with Positive Couplings

* A far simpler algorithm can be employed in the case where k;; = 0.

* The central idea behind it is to use a simplified idea for building the
square root of A.

* Let B be a matrix such that B¥B = A. Note B does not need to be
square.

« We choose B € CN°*N sych that for j < k

TN RV V)R if j =k
VMB |j, k) = {\/m(.ﬂ — k), ifj<k’
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Implementing Operator

JRR(ls) — [KY), ifj <k’

* An operator of the form VMB |j, k) = {\@U), if j =k
can be block encoded with

error € using O (log2 (1) operations. Block encoding const: vaxa

€
* |dea: Construct a large superposition over many ancilla states S 1)
H ; - or/2 =1 I*
« Perform inequality tests to see if 2 :

Kmaxkjk T N"”umxﬁ‘{j
21:‘ ITm

* Store result in qubit, uncompute arithmetic and swap j,k if 1.
» Apply additional Hadamard / Z gates to get mixture.

* Log scaling comes from cost of multiplication.
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Implementing Operator

Xy
J xtey

* An operator of the form VMB |j, k) = {MU) ifj=Fk
can be block encoded with WUJ?,E R}, Atk
: 1 , :
error € using O (log2 (E) operations. Block encoding const: vaxa
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* Perform inequality tests to see if . S

Kmaxkjk T N"”umxﬁ‘{j
22r 2Tm
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Full Simulatio

n Algorithm

* Next let H::—(é’fl ﬁj’

* We then have that

( ifl}j(’) )zeii‘H( ij(0) )
iBig(t)) iBT4(0)

B

&

* This shows that we can simulate the dynamics using Hamiltonian

simulation ideas.

* Using qubitization (with QSP to remove the arccos) to simulate the
dynamics through the block-encoding of B, we obtain

Theorem 1. Problem 1 can be solved with a quantum
algorithm that makes Q = O(7 +log(1/€)) queries to
the oracles for K and M., uses

: N max
G=0 (Q log? (—T il )) (3)
€ Mmin

two-qubit gates, and uses W once, where T =
/ / ;
tvRd > 1, N:= Kmax/ M min: Mmax > m; 2 Mmin >

0 and Kmax > Kk for all j,k € [N] are known quan-

tities.
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Intermission [Lde%l e 1o the JoLL

* We showed that we can
simulate exponentially
many harmonic oscillators
in polynomial time.

¥
[o gel surkelves a |reall
* Potential applications: |

Chemistry, Mechanical Eng,
Aeronautics...
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Intermission Ll woo tLeLDL,LH

* We showed that we can
simulate exponentially
many harmonic oscillators
in polynomial time.

* Potential applications:
Chemistry, Mechanical Eng,
Aeronautics...

Does this actually

give a speedup?
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Claim: Simulating Exponentially Large Systems
of Oscillators is BQP-Complete

* Proof: We showed the simulation is in BQP already.
* Next step: show that it is BQP-Hard.

 Strategy: Show that if you had a box that simulates any oscillator system, then
you could simulate a quantum computer with it.

* BQP Complete Problem: Given an input state |0), apply a sequence of
gates from a universal gate set {H, Tof f}".

* We choose H,Toff because the gate set is real-valued and can be
mapped to the oscillators easily.
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Feynman-Kitaev Clock

* |[dea is to take a Hamiltonian whose dynamics implements this circuit
and map it to an oscillator.

Problems

1. The off-diagonal entries of the Hamiltonian
would not be real negative numbers, i.e., they
cannot be related to spring constants;

2. The evolution of the oscillators is induced by
the v A rather than A, so the evolution prop-
erty of the Hamiltonian does not apply.

* Target operator: / /

n L

A=dly =D (IDE++I+1)) W, .
I=1 s
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Dealing with negativity

L
A=d4ly = (IDE+1+ ]+ 1)) @W;.
—1

f.:/f:ff-*\-\ T
To deal with square-roots we need to come up with a way to address the fact that that elements are negative.
Negative elements prevent us from working with our faster method for square roots.

If we want gate | to be X/TOFF we choose Wtobe X @ I, Toff ® I.
1010
1 0 101

vzl ltoo1
0110

If the gate you want at stage | is a Hadamard choose the gate to be
Ok so clearly something’s up: no negative numbers appear at all.
Trick is that we act on the states |0)|—), [1)]—).

This means that the “Hadamard” gate above does the correct thing while only involving positive coefficients.

Thus this Hamiltonian corresponds to an oscillator system and can be used to simulate an arbitrary quantum comp.
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Conclusions

* We provide a quantum algorithm for simulating systems of coupled
classical harmonic oscillators.

* We show an exponential speedup relative to classical methods.
* If our method can be dequantized then BPP=BQP.

* Future Work:
* Dissipative Quantum Dynamics
* Non-Quadratic Hamiltonians
» Do practical quantum advantages exist for our algorithm?
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