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Final comments on
causal compatibility for

classical models




Up to now we have considered
The problem of causal compatibility:

Which causal structures are compatible with the data?
(nontrivial if some or all of the data is purely observational)

irsa: 23040000 Page 3/87



X =f\T,2) Restricted functional dependences

‘ Y = g(A\, 2, X)  Linear dependences
* Monotonic functions

C 23 @ @ Pr * Symplectic functions
Fa * Local noise is additive

* symmetries
Pxy|z = 2AF,Q0X,f(A2,2)0Y,g(AT,x) EA
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X =f\T,2) Restricted functional dependences

‘ Y = 9(A, 2, X)  Linear dependences
* Monotonic functions

C 23 @ @ Pr * Symplectic functions
Fa * Local noise is additive

* symmetries
Pxy|z = 2AF,Q0X,f(AQ,2)0Y,g(AT,x) EA

Restricted distributions of latents
* Only Gaussian distributions
e Restricted cardinalities
* symmetries
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Strength of Strength of

causal O( causal

conclusions assumptions

Scope for new techniques all along the spectrum
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X =f(\T,2) e

Y_g(/\QX) gegyg
‘ P/\GP/\

Q® Pr Pr € Pr

P Po € Po

Pxy|z = 2A,Q0X,f(AQ,2)0Y,g(A,F,X) PN = Pxy|z € Pxvy|z
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Adjudicating between
causal models




The problem of adjudicating between causal models

Given a set of causal structures that are all compatible with the data,
which is most likely to be the correct explanation?
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Contrast:;

Causal explanations of the infinite-run statistics predicted by an
operational theory

VS.

Causal explanations of the finite-run statistics accumulated in a real-
world experiment or observation
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Example of contrast:
No-go theorem establishing that the idealized statistics predicted by

operational quantum theory are incompatible with a classical causal
model having the causal structure of the Bell DAG.

VS.
An analysis technique for finite-run experimental data that can rule out

with high confidence the possibility of a classical causal model having the
causal structure of the Bell DAG
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Example of contrast:

No-go theorem establishing that the idealized statistics predicted by
operational quantum theory are incompatible with a classical causal
model having the causal structure of the Bell DAG.

E.g., Bell’'s 1964 argument which appealed to perfect correlations
Hardy’s 1993 argument which appealed to events with probability O

VS.
An analysis technique for finite-run experimental data that can rule out
with high confidence the possibility of a classical causal model having the

causal structure of the Bell DAG
E.g., The noise-robust inequalities proposed by CHSH
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Model preference in the idealized scenario

Given the observational dominance order, it makes sense to prefer the
models that are lowest in the order, since these are the most falsifiable
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Saturating

Triangle

Instrumental
Chain & Fork

2|1-Factorizing

Factorizing

Collider
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Triangle class
Saturating class

7 parameters >9 parameters
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Parameter counting does not
capture falsifiability

See also the notion of VC
dimension
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Observe P such that

S L C|T
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Requires fine-tuning

Observe P such that

S L C|T
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Principle of faithfulness/no fine-tuning:

Prefer those causal models for which the conditional independence
relations are a consequence of the causal structure rather than the
values of the parameters
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Finite-run statistics and
model-fitting
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The low bar:

Not underfitting the data
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Data

&

Best-fit linear
model of the data
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Data
&

Best-fit polynomial
model of the data
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Data

&

Best-fit linear
model of the data

Error

= x2 between the
data and the model
that best fits the data
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linear model polynomial model

By the low bar:
This model preferred because it
has a better x-squared value
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The high bar:

Predictive power
not underfitting the data

and also
not overfitting the data
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Test Data
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Test Data

&

Best-fit linear
model of the
Training Data
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Test Error

= x? between the
test data and the
model that best fits
the training data
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linear model polynomial model

By higher bar:
This model preferred because it makes better
predictions about unseen data
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linear model polynomial model

Signature of overfitting:
Lower training error

Higher test error
By higher bar:
This model preferred because it makes better
predictions about unseen data
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Observe P such that to good approximation

S L C|T
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Observe P such that to good approximation
S 1C|T

If the deviations are a statistical fluctuations, the model on the right
will tend to overfit the data by mistaking these for real features
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Estimating strengths of
causal mechanisms from

observational data




Given a hypothesis about the correct causal structure
How does one estimate the strengths of various

parameters of the causal model, in particular the
strength of causal mechanisms?
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ldentifiability of
parameters in a structural

equation model




=
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A=pv B = pA

pwlv | AN A=uv | B=pu
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= (1 = 0) Poo = q1 + 419243

= PiH= Po1 = 414243
g2 = p(v = 0) P10 = 414293
g3 = p(A = 0) N

P10 — 414243
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v 7 A
A B
A= pv B = uA

Poo = q1 +_§1QQQ3
Po1 = (£1 QQQB (01]
P10 — 4149243

P11 = 4149293

[00] > [10]

Page 37/87



A 7, v H A
W % A B
A=)\ B=v A=pv B = pA
Poo i Q1C{2 Poo = q1 + 414293
Po1 = 9192 - Po1 = 19273 01)
Pio = 9142 P10 = 419293
P10 = q192 P11 = 19293

[10] [00] k [10]

(11]
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A=v(pdp) B=v(Adp)

PooP11 = Po1P10
P11P10 > PooPo1
P11Po1 > PooP10

[00]

Some paramaters are not identifiable
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In the general case, the observational data only
implies a range of possibilities for the tuple of
parameters in the causal model
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fid» fﬂipa freset—Oa freset—l
Ppia =20 r(a)Pr(f)

Pp = %[fid] + %[fﬂip] P, = %[freset—o] + %[freset—l]
~1{11\,1({0 0
PB|A:;(C1)C1))+;(?_8) PBA_E(O 0)+§(1 1)
¥ (1)
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Identifiability concerns particular elements of model classes

Instrumental graph G Interrupted version G’
y( ) X7 input
Py \nx P
0‘ PX|/\Z dase
Px |1z
(2 P
Pxy|z = 2APx\nzPyinx P Pxyizx# = 2A Px|nzPyiax# P
The counterfactual world
The actual world is an where a Sp|it_n0de
element of the model class intervention is made on X
for the graph G & every other parameter

remains the same
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Actual world G Counterfactual world G’

Px\w Py wx
Py \w x - X an input
PW PW
G _
Py x = 2w Priwxtw|x P%,X = 2w PyywxPw

What X teaches us about Y

Definition of do-conditional

G . G/
FYlao(x) ‘= Py |x
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Actual world G

Pxw

Py ywx
Py

Pﬁx = 2w PyiwxPw|x
What X teaches us about Y

Definition of do-conditional

G . G/
PYlao(x) = Py |x

Counterfactual world G’

Py iwx
X an input

Py

/

Pﬁx = 2w PyywxPw

The counterfactual world
where an intervention is made on X
& every other parameter remains
the same
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o I — | 1
— . J L

<
P - ﬂ
X Xy < W v
i Puw
W
S
X S i
\YI‘A\J
A fp 1Y
w,q! L)
S Pwlx
P}%X = 2w PyiwxPw|x
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| Y
- % Pl —

Puix

— Pﬁx = 2w PyiwxPw|x

X

A 1D Y 5 Y
) ‘fl&(\ds
@ W

2w Pyywx Pw

il
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Recall:

Knowing the do-conditional Py,4,, we can infer the
possible dist'ns over functions, i.e., the P such that

Py dox = 250y s(x)Pr(f)

One can sometimes learn more about P¢ by looking beyond
Py,40x (recall example of Vernam cypher)

But one often settles for just inferring Py,4,x

Page 50/87



When X and Y are not only connected by a directed path but also
by a common cause, then the regular conditional Py is not equal to
the do-conditional Py,4,x --- this is confounding
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Actual world G

Pxw
Pyywx
Py
G — G
PYIdO(X)'— PY|X

Py identifiable

Pyywx  identifiable

G —
Py|do(X) = 2w PY|WXPW

Pirsa: 23040000

Counterfactual world G’

Py iwx
X an input

Py

/

P}Cle = 2w PyywxPw

identifiable
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P(recovery | drug) > P(recovery | no drug)
P(recovery | drug, male) < P(recovery | no drug, male)

P(recovery | drug, female) < P(recovery | no drug, female) \/

Therefore: stratify the data by the common cause
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Actual world

Standard conditional

Pgrir = Z PrircPa|T
G

Pirsa: 23040000

Counterfactual

Do-conditional

Priaor = Y _ Prirc P
G
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P(recovery | drug) > P(recovery | no drug)
P(recovery | drug, male) < P(recovery | no drug, male)

P(recovery | drug, female) < P(recovery | no drug, female)

P(recovery | drug) = P(recovery | no drug) =
P(recovery | drug, male) P(male|drug) + > P(recovery | no drug, male) P(male|drug) +

P(recovery | drug, female) P(female|drug) P(recovery | no drug, female) P(female|drug)

P(recovery | do drug) = P(recovery | do no drug) =
P(recovery | drug, male) P(male) + < P(recovery | no drug, male) P(male) +
P(recovery | drug, female) P(female) P(recovery | no drug, female) P(female)
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Consider DAG G with variable X and set of variables Z

Pzx = ( 11 PZ?;Pa(ZZ-)) Pxpa(x) Pzldo(x) = 11 Pz 1pa(z,)
ALY / ’Z.ZzEV
By Markov condition in G By Markov condition in G’
therefore
Pz.x

P2jdo(x) = Pxpa(x)
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The parental adjustment formula

Suppose Y € X UPa(X)

Pyido(x) = 2. Prixpax)Pra(x)

Pa(X)
Proof: Recall that B Defining W/ by W := W/ U Pa(X)
Pzido(x) = e
PX|Pa(X) PyW|do(X) == PyW’XPa(X)PX;;(X)—)
Take Z :=Y UIXV = Pyw|xpPa(x)PPa(x)
P _ IFywx
YWldo(X) — P
X|Pa(Xx)
Ppa(x
= Pywx o

Pxpa(x)
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The parental adjustment formula

Suppose Y € X UPa(X)

Pyldo(x) = 2. Pyrixpa(x)Pra(x)

Pa(X)
Proof: Recall that o Defining W/ by W := W’ U Pa(X)
Pzido(x) = Pa(x
Pxpa(x) Pywido(x) = Pyw’xpPa(x )PXS;(JB-)
Take Z =Y UW = Piw/ P
- YW/|XPa(X)4Pa(x)
P s
Y W|do(X) Px|Pa(x) Marginalize over W := W’ U Pa(X)
Ppa(x
= Prwx o o) Pyldox) = 2. Prixpax)Pra(x) qgp

Pxpa(x) Pa(X)
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But what about cases where the parents of X are latent?

(2
4
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Pxw

Py 1w x
Py

Py do(x) = 2w Pyyw xPw

This is a special case of parental adjustment

Pirsa: 23040000
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Backdoor paths between Xand Y
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Sets Z that satisfy the
backdoor criterion:

{A}, {A,C}, {A,C,D}, ...,
{B,C}, {A,B,C}, ...
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Sets Z that satisfy the
backdoor criterion:

Note: H is a descendent
of X so does not satisfy

{A}, {A,.C}, {ACD}, ..., the backdoor criterion

{B,C}, {A,B,C}, ...
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@ Py x
(X2 Px A
P
(L)
Py do(x) = 222 Py|do(2)Pz|do(x)
Consider Noting that the path between Xand Zin G is
blocked by the empty set because of the
5 |do(X) collider at Y, backdoor adjustment implies

Pzido(x) = Pz|x
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@ Pyix
(X Px|A
@ &

Py do(x) = 22 Py|do(2)Fz|x

Consider

Py|do(2)
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Z) Pyix
(X Px|A
D &

Pydo(x) = 22 Py|do(2)Fz|x
Noting that the backdoor path

Consider between Y and Z in G is blocked by
X, backdoor adjustment yields

Py|do(2)
Pydo(z) = 2x Py|zxPx
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Z) Pyix
(X Px|A
D i

Pyldo(x) = 2z (ZX' PY|ZX’PX’) Pyx/

frontdoor adjustment formula
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A frontdoor path between Xand Y in a DAG G is any path between Xand Y
that has an arrow out of X

The frontdoor criterion

In a DAG G, a set of variables Z satisfies the frontdoor criterion relative to
(X,Y) if

e Zintercepts all frontdoor paths from XtoY

* there is no backdoor path between X and Z, and

* All backdoor paths between Z and Y are blocked by X
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*  Zintercepts all frontdoor paths from XtoY
* there is no backdoor path between X and Z, and
* All backdoor paths between Z and Y are blocked by X

Sets Z that satisfy the
frontdoor criterion:

{F1} G}, ...
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@ Pyix
(X Px A
@ i

Pyldo(x) = 2z (ZX' PY|ZX’PX’) Pgx/

frontdoor adjustment formula
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*  Zintercepts all frontdoor paths from XtoY
* there is no backdoor path between X and Z, and
* All backdoor paths between Z and Y are blocked by X

Sets Z that satisfy the
frontdoor criterion:

K1} G}, ...
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*  Zintercepts all frontdoor paths from XtoY
* there is no backdoor path between X and Z, and
* All backdoor paths between Z and Y are blocked by X

Sets Z that satisfy the
frontdoor criterion:

{F1} G}, ...

Note: H cannot be in Z both because there is a backdoor path with X
and because there is a backdoor path with Y that is not blocked by X
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Sets Z that satisfy the
frontdoor criterion:

{F.1}, {G,1}, ...
Pylao(x) = 2_ Prrix 2 Prix'riPx
Fl X/

Pydo(x) = 2_ Parx X Pvix'crPx
GT X/
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Rule 1 (Insertion/deletion of observations)

P(Y | do(X),Z, W) = P(Y | do(X), W) if Y and Z are d-separated by X U W in G*, the graph
obtained from G by removing all arrows pointing into variables in X.

Rule 2 (Action/observation exchange)

P(Y | do(X),do(Z), W) = P(Y | do(X),Z, W) if Y and Z are d-separated by X U W in G', the
graph obtained from G by removing all arrows pointing into variables in X and all arrows
pointing out of variables in Z.

Rule 3 (Insertion/deletion of actions)

P(Y | do(X), do(Z), W) = P(Y | do(X), W) if Y and Z are d-separated by X U W in G*, the
graph obtained from G by first removing all the arrows pointing into variables in X (thus creating
G™) and then removing all of the arrows pointing into variables in Z that are not ancestors of any
variable in W in G*.
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Verma model M

@ PD|;u,C
0 PB|Ap,

Qee b,

Papcep = (Z PD,u,C'PB|Ap,Pu) Po1Pa

7
= @Bp|AC

Pascp
PciBPa

@BD|AC =

Pasep
is compatible with M

Pirsa: 23040000

Interrupted version M’

Ppluc#

Pois

Ppplac# = ZPDWC’#PBMMPM

U

Pascp

P .=
BD|AC PoisPa

is compatible with M’
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Verma model M

@ PD|;u,C
0 PB|Ap,

Qee b,

Papcp = (Z PD,u,C'PB|Ap,Pu) Po1Pa

7
= @Bp|AC

Pascp
PcipPa

@BD|AC =

Pasep
is compatible with M
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Interrupted version M’

Ppluc#

Pois

Ppplac# = ZPDWC’#PBMMPM

U

Pascp

P @ =
BD|AC PoisPa

is compatible with M’
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Consider DAG G with set of variables X and set of variables Z

Pzx = ( I1 PZiPa(Zi)) ( 11 PXj|Pa(Xj)) Pzido(x) = 11 Pyz.|Pa(z;)

1. 2;€Z 7: X;eX 1. 2;€EV
By Markov condition in G By Markov condition in G’
therefore
Pzx
Pgzido(x) =
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Verma graph G

@ PD|;u,C
0 PB|Ap,
o 2

0 W Py

Suppose we wish to determine Using Pzx
Pzldo(x) =
PBD|do(AC) (€6 Hj:XjeX PXj|Pa(Xj)
We obtain

p _ Pagep
BD|do(AC) = m
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Verma graph G

@ PD|;u,C
0 PB|Ap,
o 2

0 W Py

Suppose we wish to determine Using Pzx
Pzldo(x) =
PBD|do(AC) 65 Hj:XjeX PXj|Pa(Xj)
We obtain

p _ Pagep
BD|do(AC) = m
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Verma model M Interrupted version M’

(D) Poue Ppjuc#
‘9 PcoiB C* =c¢
Pplay Peis
e Pa PB|A,U,
Q Q PM PA
P,
Papcp = (Z PD,u,C'PB|Ap,PM) PC‘|BPA PBD|AC# = ZPD|MC#PB|AMPPJ
7
= @Bp|AC a
Pascp

QBDmc—-PmBPA
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Verma graph G

@ PD|;u,C
0 PB|Ap,
o 2

0 W Py

Suppose we wish to determine Using Pzx
Pzldo(x) =
PBD|do(AC) (65 Hj:XjeX PXj|Pa(Xj)
We obtain

p _ Pagep
BD|do(AC) = m
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Any identifiability result can be put into the service of
deriving causal compatibility constraints
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Putting upper and lower
bounds on do-conditionals




Instrumental graph

Py |do(x)
Not identifiable!

But one can find bounds in terms of the observed conditional

Pxy|z
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To find bounds on Py |do(x)(1]0) interms of Pxvy|z

Minimize/Maximize PY|do(X)(1|O) — Zg (er,g + pr,g)

Subjectto 0 <gqy, <1Vf,g
P00j0 = Gro,ro T Gro,id T Gid,ro T ¢id,id
P01)0 = Gro,r1 T Gro,fp T Gid,r; T Gid,fp

where p.,. = Pxy|z(zy|z) are given
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min ¥

[ Po1.o + Pro.o + Pro.1 + P11 )
1 — poo.1
I — poo.o

min 4

Pirsa: 23040000

{ P10.0 T P11.0 + Po1.1 + Pio.a )

1 — po1a
1 —po1o
P00.0 T P11.0 T P1o.1 + P11.1

( P10.0 T P11.0 + Poo.1 + P11.1 )

One obtains

< Pydo(x) (1/0) £ max

< Pygo(x)(1]1) < max

P1o.0 + P10 — Poo.l — P11 |
P1o.1
P10.0

Po1.0 T P10.0 — Poo.1 — Po1.1 )

P11.0

P11
—P00.0 — Po1.0 + Poo.1 T P11.1
—Po1.0 — P10.0 + P1o.1 + P11.1 )
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Next Lecture: Quantum
causal models




