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Abstract: In holography, the quantum extremal surface formula relates the entropy of a boundary state to the sum of two terms: the area term and the
entropy of bulk fields inside the entanglement wedge. As the bulk effective field theory suffers from UV divergences, the second term must be
regularized. It has been conjectured since the work of Susskind and Uglum that the renormalization of Newton's constant in the area term exactly
cancels the difference between different choices of regularization for bulk entropy. In this talk, | will explain how the recent devel opments on von
Neumann algebras appearing in the large N limit of holography allow to prove this claim within the framework of holographic quantum error
correction, and to reinterpret it as an instance of the ER=EPR paradigm. Thistalk is based on the paper arXiv:2302.01938.

Zoom link: https://pitp.zoom.us/j/974351543872pwd=0OHY rRW9OuSW5V eHRFUId1dmtVbmJiZz09
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The Quantum Extremal Surface Formula

® The Quantum Extremal Surface (QES) Formula is one of
the cornerstones of holography.

S(p) = %ZN) + S(pbulk)-

2 is the quantum extremal surface associated to the
subregion. It is defined by extremizing the RHS.
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The Quantum Extremal Surface Formula

® The Quantum Extremal Surface (QES) Formula is one of
the cornerstones of holography.

S(p) = 3((52) + S(Pbulk)-

2 is the quantum extremal surface associated to the
subregion. It is defined by extremizing the RHS.

® |n the case of one side of a two-sided black hole, QES reduces
to the calculation of black hole entropy.

S(pL) = lj(g:) + S(pL,buik)-
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Ambiguities in QES

® Even though QES is fundamental, it is not so straightforward
to properly define each of its terms!
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Ambiguities in QES

® Even though QES is fundamental, it is not so straightforward
to properly define each of its terms!

® |n the effective field theory description, the entropy Sp, of
quantum fields across the horizon is infinite: needs to be
regulated.

Pirsa: 23030108 Page 5/108



Ambiguities in QES

® Even though QES is fundamental, it is not so straightforward
to properly define each of its terms!

® |n the effective field theory description, the entropy Sp, of
quantum fields across the horizon is infinite: needs to be
regulated.

® |f Gy is zero or perturbatively small in the effective field
theory the area term also blows up.
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Ambiguities in QES

Even though QES is fundamental, it is not so straightforward
to properly define each of its terms!

In the effective field theory description, the entropy Sy, of
quantum fields across the horizon is infinite: needs to be
regulated.

If Gy is zero or perturbatively small in the effective field
theory the area term also blows up.

On the boundary if Gy is taken to be zero then the entropy
term also blows up: Gy needs to be taken
small but nonzero.
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The Susskind—Uglum conjecture

® There seems to be an arbitrariness in the choice of UV cutoff
in the EFT, but since the boundary quantity is UV-finite, QES
itself cannot be dependent on this choice of cutoff.
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The Susskind—Uglum conjecture

® There seems to be an arbitrariness in the choice of UV cutoff
in the EFT, but since the boundary quantity is UV-finite, QES
itself cannot be dependent on this choice of cutoff.

® Susskind—Uglum conjecture: The renormalization of the

area term (i.e. Newton's constant) exactly cancels that of the
bulk entropy term!
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The Susskind—Uglum conjecture

® There seems to be an arbitrariness in the choice of UV cutoff
in the EFT, but since the boundary quantity is UV-finite, QES
itself cannot be dependent on this choice of cutoff.

Susskind—Uglum conjecture: The renormalization of the
area term (i.e. Newton's constant) exactly cancels that of the
bulk entropy term!

This talk: recent discussions on the large N limit of
holography, as well as holographic

quantum error correction, allow to formulate this conjecture
precisely and prove it.
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QOutline

® | - Large N von Neumann algebras
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QOutline

® | - Large N von Neumann algebras

® || - Code subspace renormalization
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QOutline

® | - Large N von Neumann algebras
® || - Code subspace renormalization

® |l - Proof of the Susskind—Uglum conjecture
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Large N von Neumann algebras
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The Leutheusser—Liu construction

® Another more abstract way of saying that entanglement of
bulk fields in the EFT diverges at large N like that of a
subregion in a QFT is that there is an emergent type ///; von
Neumann algebra, recently identified by Leutheusser and Liu.
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The Leutheusser—Liu construction

® Another more abstract way of saying that entanglement of
bulk fields in the EFT diverges at large N like that of a
subregion in a QFT is that there is an emergent type ///; von
Neumann algebra, recently identified by Leutheusser and Liu.

® This algebra is constructed in the following way: introduce a
formal vacuum vector [Q2), and define the Hilbert space as
being spanned by operators of the form Tr(X1)...Tr(Xk) |2).
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The Leutheusser—Liu construction

® Another more abstract way of saying that entanglement of
bulk fields in the EFT diverges at large N like that of a
subregion in a QFT is that there is an emergent type ///; von
Neumann algebra, recently identified by Leutheusser and Liu.

® This algebra is constructed in the following way: introduce a
formal vacuum vector [Q2), and define the Hilbert space as
being spanned by operators of the form Tr(Xy)...Tr(Xxk) |2). ,

® The inner product of the Hilbert space is defined from the
limits of the correlation functions of single trace operators:

(Q|ATB|Q) = (A'B),.

This is known as the GNS construction.
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The Leutheusser—Liu construction

® Another more abstract way of saying that entanglement of
bulk fields in the EFT diverges at large N like that of a
subregion in a QFT is that there is an emergent type ///; von
Neumann algebra, recently identified by Leutheusser and Liu.

® This algebra is constructed in the following way: introduce a
formal vacuum vector [Q2), and define the Hilbert space as
being spanned by operators of the form Tr(X1)...Tr(Xk) |2).

® The inner product of the Hilbert space is defined from the
limits of the correlation functions of single trace operators:

(QATB|Q) = (A'B);.

This is known as the GNS construction.
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The Leutheusser—Liu construction

Another more abstract way of saying that entanglement of
bulk fields in the EFT diverges at large N like that of a
subregion in a QFT is that there is an emergent type ///; von
Neumann algebra, recently identified by Leutheusser and Liu.

This algebra is constructed in the following way: introduce a
formal vacuum vector [Q2), and define the Hilbert space as
being spanned by operators of the form Tr(Xy)...Tr(Xk) |2).

The inner product of the Hilbert space is defined from the
limits of the correlation functions of single trace operators:

(QATB|Q) = (A'B);.

This is known as the GNS construction.

The von Neumann algebra is defined as the bicommutant of
the single trace operators on one side of the thermofield
double, and is dual to operators in the EFT.
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Properties of the large N algebra

® Below the Hawking—Page temperature, the large N algebra
has type /: this means that the large N Hilbert space
factorizes between the right and the left. There is no
Einstein—Rosen bridge, just two entangled copies of
thermal AdS.
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Properties of the large N algebra

® Below the Hawking—Page temperature, the large N algebra
has type /: this means that the large N Hilbert space
factorizes between the right and the left. There is no
Einstein—Rosen bridge, just two entangled copies of
thermal AdS.

Above the Hawking—Page temperature, the gauge theory
deconfines and the large N algebra has type ///; (still type /
at any finite N!): entanglement pattern of quantum field
theory. A geometric Einstein—Rosen bridge appears
between the right and the left.
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Properties of the large N algebra

® Below the Hawking—Page temperature, the large N algebra
has type /: this means that the large N Hilbert space
factorizes between the right and the left. There is no
Einstein—Rosen bridge, just two entangled copies of
thermal AdS.

Above the Hawking—Page temperature, the gauge theory
deconfines and the large N algebra has type ///; (still type /
at any finite N!): entanglement pattern of quantum field
theory. A geometric Eingstein—Rosen bridge appears
between the right and the left.

This can be shown rigorously (paper to appear with L.
Santilli) from the fact that the spectral density of the large
N generalized free fields becomes continuous above the
Hawking—Page temperature.
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The bulk to boundary map

® |t is a bit tricky to think about holographic
quantum error correction in that context.
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The bulk to boundary map

® |t is a bit tricky to think about holographic
quantum error correction in that context.

® The code should map the N = oo type //l; von Neumann
algebra ML, or some perturbative correction of it, to the

large but fihite N type / von Neumann algebra B(#£) on
the boundary.
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The bulk to boundary map

® |t is a bit tricky to think about holographic
quantum error correction in that context.

® The code should map the N = oo type /ll; von Neumann
algebra ML, or some perturbative correction of it, to the
large but fihite N type / von Neumann algebra B(#H£) on
the boundary.

® Then one shouldn't trust the map when operators have energy
that starts scaling parametrically with N and break the EFT:
the code works pointwise at large N but not uniformly.
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Asymptotically isometric codes

® Faulkner and Li recently formalized this by introducing the
notion of asymptotically isometric code, from the large N
Hilbert space to the finite N boundary Hilbert space.

ViV —Iid — 0,

N—oo

¥

VA,’)’N(A)VN = VNA — 0.
N—o0
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Asymptotically isometric codes

® Faulkner and Li recently formalized this by introducing the
notion of asymptotically isometric code, from the large N
Hilbert space to the finite N boundary Hilbert space.

ViV - Iid — 0,

N—oo

VA,’YN(A)VN = VNA — 0.
N—o0

¥

These conditions are imposed for the weak and strong
operator topologies respectively, but NOT for the norm
topology. This is an abstract way of saying that only
pointwise convergence is required, rather than uniform
convergence.
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Asymptotically isometric codes

® Asymptotic conservation of modular flow (JLMS) can be
derived from this approach.
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Asymptotically isometric codes

® Asymptotic conservation of modular flow (JLMS) can be
derived from this approach.

® However if one wants to derive something like QES, the full
large N algebra cannot be considered: infinite entropy,

breakdown of EFT at each fixed N. Instead it must be

regulated. I
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Asymptotically isometric codes

® Asymptotic conservation of modular flow (JLMS) can be
derived from this approach.

® However if one wants to derive something like QES, the full
large N algebra cannot be considered: infinite entropy,

breakdown of EFT at each fixed N. Instead it must be
regulated. I

® How do we do this? Single out small (for example
finite-dimensional) subalgebras of the large N algebra.
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Part Il

Code subspace renormalization
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Type | and bounded entropy

® What does a good regulated subalgebra look like?
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Type | and bounded entropy

® What does a good regulated subalgebra look like?

® We want the regulated algebra to match the
bulk entropy term in the large N limit.
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Type | and bounded entropy

® What does a good regulated subalgebra look like?

® We want the regulated algebra to match the
bulk entropy term in the large N limit.

® |n order to hope for a finite entropy, the regulated algebra

must have type /: either finite-dimensional or B(H) for H a

separable Hilbert space. -
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Type | and bounded entropy

What does a good regulated subalgebra look like?

We want the regulated algebra to match the
bulk entropy term in the large N limit.

In order to hope for a finite entropy, the regulated algebra
must have type /: either finite-dimensional or B(H) for H a

separable Hilbert space. !

Schmidt decompositions can be defined for states on these
algebras, and von Neumann entropy is defined in the usual
way.
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Entanglement wedge reconstruction

® Entanglement wedge reconstruction is thought to be
equivalent to the QES formula.
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Entanglement wedge reconstruction

® Entanglement wedge reconstruction is thought to be
equivalent to the QES formula.
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Entanglement wedge reconstruction

® Entanglement wedge reconstruction is thought to be
equivalent to the QES formula.

® |t is a statement of complementary recovery: in the case of
the two-sided BH any operator in region L can be
reconstructed on the left boundary, and any operator in region
R can be reconstructed on the right boundary.
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Entanglement wedge reconstruction

® Entanglement wedge reconstruction is thought to be
equivalent to the QES formula.

® |t is a statement of complementary recovery: in the case of
the two-sided BH any operator in region L can be
reconstructed on the left boundary, and any operator in region
R can be reconstructed on the right boundary.

® |t can be proven (in a pointwise sense) for asymptotically
isometric codes. :
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Entanglement wedge reconstruction

Entanglement wedge reconstruction is thought to be
equivalent to the QES formula.

It is a statement of complementary recovery: in the case of
the two-sided BH any operator in region L can be
reconstructed on the left boundary, and any operator in region
R can be reconstructed on the right boundary.

It can be proven (in a pointwise sense) for asymptotically
isometric codes.

How do we now regulate the bulk algebra while still being able
to formulate entanglement wedge reconstruction?
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Entanglement wedge reconstruction

Entanglement wedge reconstruction is thought to be
equivalent to the QES formula.

It is a statement of complementary recovery: in the case of
the two-sided BH any operator in region L can be
reconstructed on the left boundary, and any operator in region
R can be reconstructed on the right boundary.

It can be proven (in a pointwise sense) for asymptotically
isometric codes.

How do we now regulate the bulk algebra while still being able
to formulate entanglement wedge reconstruction?

Then we also want compatibility with
complementary recovery.
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Constraints from complementary recovery

® We want to find a way to regulate the large N algebra that
respects the fundamental structure of complementary
recovery.
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Constraints from complementary recovery

®* We want to find a way to regulate the large N algebra that

respects the fundamental structure of complementary
recovery.

® We want something like:

ML s MR

e

L AR R
M)\ M)\
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Constraints from complementary recovery

®* We want to find a way to regulate the large N algebra that

respects the fundamental structure of complementary
recovery.

® We want something like:

ML L s MR H

g

MLy MR 3

® This is a nontrivial constraint: what should “7?" be?
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Takesaki's theorem

e Fortunately mathematicians (Takesaki) solved the problem for
us in 1972. The following statements are equivalent:
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Takesaki's theorem

e Fortunately mathematicians (Takesaki) solved the problem for
us in 1972. The following statements are equivalent:

® The commutant structure is preserved.
® Modular flow is conserved: for n € Mf and |¢) € H,,

Ap ($) By (P) 7 = Bpge (¥) 0 e ()",

Page 51/108



Takesaki's theorem

Fortunately mathematicians (Takesaki) solved the problem for
us in 1972. The following statements are equivalent:

The commutant structure is preserved.
Modular flow is conserved: for n € Mk and [¢)) € H,,

Appe () nlpp ()™ = AM?/;W)“”AM;(T?)-&-

I

There exists a faithful normal conditional expectation from
the large N algebra onto the subalgebra that leaves the state
[4) € H, invariant.
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Conditional expectations

* A conditional expectation from a von Neumann algebra M"
onto a (unital) subalgebra Mf is a map &, : ML — Mk
satisfying for ny, ny € M)"; and m e ML,

Ex(nimny) = m&Ey(m)na.
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Conditional expectations

* A conditional expectation from a von Neumann algebra M"
onto a (unital) subalgebra Mf is a map &, : ML — Mk
satisfying for ny, ny € M)"; and m € ML,

EA(Inlmng) = mé&x(m)ny.

® |f a state |¢) is in the space H) of invariant states under a
conditional expectation, then its Tomita—Takesaki
modular data associated to both the large and small algebras
coincide :

It (D)lren = In (D), B (D)l = B (¥).
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Conditional expectations

* A conditional expectation from a von Neumann algebra M"
onto a (unital) subalgebra Mf is a map &, : ML — Mt
satisfying for ny, ny € M)"; and m € ML,

Ex(nimny) = m&Ey(m)na.

If a state [¢)) is in the space H ) of invariant states under a
conditional expectation, then its Tomita—Takesaki

modular data associated to both the large and small algebras
coincide :

It (D)lren = It (D), B (D)l = B (¥).

From there the characterizations in terms of compatibility

with modular flow and commutant follow.
:
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Conditional expectations onto a type / factor

® |n the case of a type / subfactor, conditional expectations
allow to factor everything as a tensor product of low and high
energy contributions.
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Conditional expectations onto a type / factor

® |n the case of a type / subfactor, conditional expectations
allow to factor everything as a tensor product of low and high
energy contributions.

® More precisely, if the factor ML acts on a Hilbert space ‘H and
M)\ is a type | subfactor of ML, then

ML = Mf ® My©.
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Conditional expectations onto a type / factor

® |n the case of a type / subfactor, conditional expectations
allow to factor everything as a tensor product of low and high
energy contributions.

® More precisely, if the factor ML acts on a Hilbert space H and
M)"; is a type | subfactor of ML, then

ML = Mt @ M)fI

® Let &, be a conditional expectation MLt —» M)";. ‘H factorizes
as

H =1, ®H;,

and the Hilbert space of invariant states under £, is of the
form

H = Hy ® |x) -
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Conditional expectations onto a type / factor

® |n the case of a type / subfactor, conditional expectations
allow to factor everything as a tensor product of low and high
energy contributions.

® More precisely, if the factor Mt acts on a Hilbert space H and
M)"; is a type | subfactor of ML, then

ML = Mf ® My©.

® Let &, be a conditional expectation MLt —» M)";. ‘H factorizes
as

H =1, & H;,

and the Hilbert space of invariant states under £, is of the
form

® The conditional expectation and ) are the same data:

E(X ® X) = xA(XE)(X @ Id).
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Code subspace renormalization schemes

® A code subspace renormalization scheme (CSRS) is the
given data of:
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Code subspace renormalization schemes

® A code subspace renormalization scheme (CSRS) is the
given data of:

* A von Neumann factor M’ acting on a Hilbert space .

* A family of type / subfactors (M5)xca of M indexed by a
poset A.
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Code subspace renormalization schemes

A code subspace renormalization scheme (CSRS) is the
given data of:

A von Neumann factor M acting on a Hilbert space H.

A family of type I subfactors (M%)aca of M indexed by a
poset A.

A family of faithful normal conditional expectations
&M MAL.
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Code subspace renormalization schemes

A code subspace renormalization scheme (CSRS) is the
given data of:

A von Neumann factor M acting on a Hilbert space H.

A family of type I subfactors (M%)aca of M indexed by a
poset A.

A family of faithful normal conditional expectations
&M — MAL.

A family of faithful normal conditional expectations

B Mi—)M’,ﬁ, A= 1L

A reference cyclic separating state |2) invariant under all
these expectations.
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Expressing entropies in a CSRS

® Consider two algebras ML Mﬁ with A > u:

M)\ = M,u X MNL'
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Expressing entropies in a CSRS

® Consider two algebras ML Mﬁ with A > u:

M)\ = M,u X MML;

® As it is invariant under the conditional expectations, the
restriction of |¢) € H,, to Mt decomposes into:

Y =%y ® Xau ® X
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Expressing entropies in a CSRS

® Consider two algebras ML Mﬁ with A > u:

M)\ = M‘UJ X MNL'

® As it is invariant under the conditional expectations, the
restriction of |¢) € H,, to Mt decomposes into:
»

Y =%y ® Xau ® X

® Entropy can be expressed in terms of 3 pieces (as long as
they're all well-defined!):

Ils(w: ML)" = 5(1?#3 M:;) s S(X)\,ua M)I\-u) = HS(X)\: M;:’C)” :
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Expressing entropies in a CSRS

® Consider two algebras ML Mﬁ with A > u:
M)\ = M,u X M)\ﬂ'

® As it is invariant under the conditional expectations, the
restriction of |¢) € H,, to Mt decomposes into:

Y =%y ® Xau ® X

® Entropy can be expressed in terms of 3 pieces (as long as
they're all well-defined!):

Ils(wa ML)" = 5(1?#3 M:;) T S(X)\,ua M)I\-u) 5 HS(X)\: M;:’C)” :
i

® |t is the middle term that will be crucial in the proof of the
Susskind—Uglum conjecture.
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Link to exact quantum error correction

® A few years ago, Faulkner made the observation that the
structure of conditional expectation underpins exact
entanglement wedge reconstruction.

® The holographic map is identified with the
conditional expectation, complementary recovery and JLMS
with the conservation of modular data.
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Link to exact quantum error correction

® A few years ago, Faulkner made the observation that the
structure of conditional expectation underpins exact
entanglement wedge reconstruction.

® The holographic map is identified with the
conditional expectation, complementary recovery and JLMS
with the conservation of modular data.

® Here, the interpretation is different: conditional expectations
integrate out high energy degrees of freedom in the EFT.
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Link to exact quantum error correction

® A few years ago, Faulkner made the observation that the
structure of conditional expectation underpins exact
entanglement wedge reconstruction.

The holographic map is identified with the
conditional expectation, complementary recovery and JLMS
with the conservation of modular data.

Here, the interpretation is different: conditional expectations
integrate out high energy degrees of freedom in the EFT.

Both perspectives are related: one can see this regulation as
an exact code mapping a subalgebra of the code directly into
the N = oo von Neumann algebra.
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Link to exact quantum error correction

A few years ago, Faulkner made the observation that the
structure of conditional expectation underpins exact
entanglement wedge reconstruction.

The holographic map is identified with the
conditional expectation, complementary recovery and JLMS
with the conservation of modular data.

Here, the interpretation is different: conditional expectations
integrate out high energy degrees of freedom in the EFT.

Both perspectives are related: one can see this regulation as
an exact code mapping a subalgebra of the code directly into
the N = oo von Neumann algebra.

It makes sense that this exact structure remains in the large N
limit, as obstructions to exactness of reconstruction come
from nonperturbative corrections, which disappear in the
large N algebra.
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Part Il|

Proof of the SusskindI—Uqum conjecture
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Back to asymptotically isometric codes

®* We now have a consistent way of renormalizing the code
subspace.
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Back to asymptotically isometric codes

®* We now have a consistent way of renormalizing the code
subspace.

® Recall that there is an encoding map from the effective
theory at N = oo to the finite N theory

Wn: H — Hy @ HE.
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Back to asymptotically isometric codes

®* We now have a consistent way of renormalizing the code
subspace.

® Recall that there is an encoding map from the effective
theory at N = oo to the finite N theory

W : H — HE @ HR.

® However closeness to isometry and reconstruction properties
can only be formulated pointwise.
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Back to asymptotically isometric codes

We now have a consistent way of renormalizing the code
subspace.

Recall that there is an encoding map from the effective
theory at N = oo to the finite N theory

W : H — HE @ HR.

However closeness to isometry and reconstruction properties
can only be formulated pointwise.

Idea here: ask for stronger reconstruction properties, but only
for renormalized subalgebras.
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A smaller code

® Consider a renormalized Hilbert space H ) of a CSRS, and

a von Neumann factor M;'; acting on it. To simplify, we will
assume everything is finite dimensional of dimension
independent of N.
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A smaller code

® Consider a renormalized Hilbert space H ) of a CSRS, and

a von Neumann factor M;'; acting on it. To simplify, we will
assume everything is finite dimensional of dimension
independent of N.

® Then we can write

Hy = HE QHY,

M5 = B(H5) ® Id.
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A smaller code

® Consider a renormalized Hilbert space H ) of a CSRS, and
a von Neumann factor M;'; acting on it. To simplify, we will
assume everything is finite dimensional of dimension
independent of N.

® Then we can write

Hy = HEQHE,

M5 = B(H5) ® Id.

3
® The maps Vy : H — ’Hh ® ’Hﬁ induce a natural map
Hy — Hk @ HE under embedding of H, in H.
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A smaller code

Consider a renormalized Hilbert space H) of a CSRS, and
a von Neumann factor M;'; acting on it. To simplify, we will
assume everything is finite dimensional of dimension
independent of N.

Then we can write

Hy = HEQHE,

M5 = B(H5) ® Id.

3
The maps Vy : H —> ’Hh ® ’Hﬁ induce a natural map
Hy — Hk ® HE under embedding of H, in H.

It is for this restriction of the map that we will ask for
uniform reconstruction properties.
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Areas in approximate codes

® | will follow an approach due to Akers—Penington. Consider
the map Viy : H @ HE — HE @ HE.
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Areas in approximate codes

i

® | will follow an approach due to Akers—Penington. Consider
the map Viy : H5 @ HE — HE, @ HE.
® Define the Choi—Jamiolkowski state

CJ) = (Vi ® Id) [MAX) 1, ® [MAX) ,

where r, ¢ are reference systems of the same dimension as

LR.
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Areas in approximate codes

® | will follow an approach due to Akers—Penington. Consider
the map Viy : H @ HE — HE @ HE.
® Define the Choi—Jamiolkowski state

CJ) = (Vi @ Id) [MAX) 14 ® [MAX) ,

where r, ¢ are reference systems of the same dimension as
LR

® The area associated to this subdivision is defined by the
formula

A(Hy) = S(ICJ), LO).
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Areas in approximate codes

® | will follow an approach due to Akers—Penington. Consider
the map Viy : H5 @ HE — HE, @ HER.
® Define the Choi—Jamiolkowski state

CJ) = (Vi ® Id) [MAX) 14 ® [MAX) ,

where r, ¢ are reference systems of the same dimension as
LR

® The area associated to this subdivision is defined by the
formula

A(H5) = S(|6J), Le).

® There is only one value of area per code subspace, but the
area changes depending on the choice of code subspace!
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An approximate Ryu—Takayanagi formula

Following Akers and Penington, one can derive the following result:

e Suppose that for all unitary operators U)’;, Uf in M)"\- and

Mf, there exist unitary operators U)’; and Uf (chosen in a
measurable way) in B(H%) and B(HY) such that

H VNU)'?U)!\_|"HA T Ufgi-VN'HxH = 5N:

where éy decays faster than any polynomial in 1/N.
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An approximate Ryu—Takayanagi formula

Following Akers and Penington, one can derive the following result:

e Suppose that for all unitary operators U)’;, Uf in M)"\- and

Mf, there exist unitary operators U)’; and Uf (chosen in a
measurable way) in B(H%) and B(HY) such that

H VNU)'?U)!\_|"HA e Ufgi-VN'HxH = 5N:

where dy decays faster than any polynomial in 1/N.
® Then, for all |V) € H,,

S(1W) , ME) + A(HE) — S(V ) , B(HE))| — 0.
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Running the RG flow

® The crucial point,is that this formula is valid for any choice
of cutoff A (as long as it doesn’t depend on N).
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Running the RG flow

® The crucial point is that this formula is valid for any choice

of cutoff A (as long as it doesn’t depend on N).
® Then, we have both formulas for |W) € H,,:

S(W), ME) + A(HE) — S(Viu [9), BHE))| — 0,

S(IW), M) + A(H3) = S(Vi [W), B(HR))| -— 0.
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Running the RG flow

® The crucial point is that this formula is valid for any choice
of cutoff A (as long as it doesn’t depend on N).

® Then, we have both formulas for |W) € H,,:

(W), M) + A(H,) — S(Vi W), B(HR))| — 0,

S(IW), M) + A(H3) = S(Viy [W), B(HR))| -— 0.

® Recall how entropy factors out in a CSRS:

S(IW) s My) = S([W) , Mu) + S([W) , M),
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Running the RG flow

® The crucial point is that this formula is valid for any choice

of cutoff A (as long as it doesn’t depend on N).
Then, we have both formulas for (W) € H,,:

(W), M) + A(H,) — S(Vn W), B(HR))| — 0,

S(IW), M) + A(H3) = S(Vi W), B(HR))| -— 0.

Recall how entropy factors out in a CSRS:

S(IW) s My) = S([W) , Mu) + S([W) , M),

We get exactly Susskind—Uglum!

1AH,) = (S(1W), Ma) + A(H3))| — 0,

with M, = Mﬂ X M)\'u.
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Susskind—Uglum as ER=EPR

® This proof based on quantum error correciton provides a
reinterpretation of Susskind—Uglum.
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Susskind—Uglum as ER=EPR

® This proof based on quantum error correciton provides a
reinterpretation of Susskind-Uglum.

® What makes it work? The bigger the code subspace, the

smaller the entropy of the CJ state (i.e. the area term) will
be.

Page 91 sur 104
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Susskind—Uglum as ER=EPR

® This proof based on quantum error correciton provides a
reinterpretation of Susskind—Uglum.

® What makes it work? The bigger the code subspace, the

smaller the entropy of the CJ state (i.e. the area term) will
be.

® This is because the missing entropy is now counted as part of
the code subspace entropy!
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Susskind—Uglum as ER=EPR

® This proof based on quantum error correciton provides a
reinterpretation of Susskind—Uglum.

What makes it work? The bigger the code subspace, the

smaller the entropy of the CJ state (i.e. the area term) will
be.

This is because the missing entropy is now counted as part of
the code subspace entropy!

There is some entropy in the code that can be counted either
as bulk entropy or as geometry. Whether it is one of the
other amounts to making a choice of renormalization scale,
which is completely unphysical.
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Susskind—Uglum as ER=EPR

This proof based on quantum error correciton provides a
reinterpretation of Susskind—Uglum.

What makes it work? The bigger the code subspace, the

smaller the entropy of the CJ state (i.e. the area term) will
be.

This is because the missing entropy is now counted as part of
the code subspace entropy!

There is some entropy in the code that can be counted either
as bulk entropy or as geometry. Whether it is one of the
other amounts to making a choice of renormalization scale,
which is completely unphysical.

This is exactly ER=EPR: no physical distinction between

entanglement and geometry in gravity.
I
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Larger codes

® So far we assumed that the dimension of the renormalized
code subspace was fixed in N.

® However, the Akers—Penington technology also allows to

handle cases in which the dimension of the renormalized code
subspace varies with .
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codes

So far we assumed that the dimension of the renormalized
code subspace was fixed in N.

However, the Akers—Penington technology also allows to
handle cases in which the dimension of the renormalized code
subspace varies with .

If it grows subexponentially, all previous assumptions can be

lifted.
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codes

So far we assumed that the dimension of the renormalized
code subspace was fixed in N.

However, the Akers—Penington technology also allows to
handle cases in which the dimension of the renormalized code
subspace varies with .

If it grows subexponentially, all previous assumptions can be

lifted.

If it grows exponentially, reconstruction becomes
state-dependent and the map V) can stop being
(approximately) isometric.
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codes

So far we assumed that the dimension of the renormalized
code subspace was fixed in N.

However, the Akers—Penington technology also allows to
handle cases in which the dimension of the renormalized code
subspace varies with .

If it grows subexponentially, all previous assumptions can be
lifted.

If it grows exponentially, reconstruction becomes
state-dependent and the map V) can stop being
(approximately) isometric.

Unitary reconstruction becomes too strong, only ask for
product unitaries defined in terms of a further decomposition
of the code subalgebra.
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Future directions

® So far this is still a proof in principle. Can one start with an
actual large N theory and construct a CSRS? Need to embed
this framework into the construction of Faulkner—Li.
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Future directions

® So far this is still a proof in principle. Can one start with an
actual large N theory and construct a CSRS? Need to embed
this framework into the construction of Faulkner-Li.

® What about code subspaces that are not invariant under a

conditional expectation? Can they be approximated by the
former in some way?
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Future directions

So far this is still a proof in principle. Can one start with an
actual large N theory and construct a CSRS? Need to embed
this framework into the construction of Faulkner—Li.

What about code subspaces that are not invariant under a

conditional expectation? Can they be approximated by the
former in some way?

Understand the case of large codes better.

QES as an instance of ER=EPR: link to the
swampland emergence proposal?
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