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Abstract: In any approach to quantum gravity, the quantum representation theory of the "algebra’ of Cauchy hypersurface deformations plays a
crucial role. Its faithful implementation is a key step towards constructing a valid theory of quantum gravity as it ensures quantum spacetime
diffeomorphism covariance. Bergmann and Komar were the first to consider the possibilty of a corresponding quantum "group”. Its construction is
mathematically challenging in more than 1+1 spacetime dimensions because one leaves the realm of Lie algebras and Lie groups. After an
introduction to these concepts, we show that the Bergmann Komar "group” can indeed be faithfully implemented in a weakly self-interacting
truncation of 3+1 quantum gravity with two propagating polarisations. We then discuss possible implications for the actual, untruncated theory.
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Canonical QG and hypersurface deformation algebra (HDA)
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Canonical approach to classical & quantum GR has long tradition

Classical: Initial value formulation, numerical integration of Einstein equations,
BH merger simulations ... [Arnowitt,Deser,Misner,. ]

Quantum: QG as a constrained QFT [Bergmann, DeWitt, Dirac, Komar,Wheeler,..]
Key assumption: Globally hyperbolic spacetimes (M, g)

= M = R X o [Geroch, Sanchez & Bilal]

M can be foliated by leaves t — X; = ¢ (“3+1” split: space+time)

Legendre transform for constrained systems (Dirac algorithm): (g, g) — (q. P)
(3-metric on o, conj. momentum), Poisson brackets {.,.}.

plus: spatial diffeomorphism and Hamiltonian constraints Da; a=1,2,3, C
(temporal-spatial, tempof2l-temporal components of Einstein eqns)
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Canonical QG and hypersurface deformation algebra (HDA)

rsurface Deformation Algebra (HDA)

@ Let Q:= y/det(q), smeared constraints:
Didl=[ &xiPGa; Olfl=F dPXfC

@ Classical HDA b [Hojman, Kuchar, Teitelboim]
{D[u], D[v]} = —Dl[u, v]], {D[u], C[f]} = —Clulf]],
{CIf], Clg]} = —D[g ' (M dN — N dM)]
@ Observations:

@ encodes local spacetime diffeomorphism covariance

@ lll-defined for degenerate metrics (Q = 0) due to g~

@ b not a Lie algebra due to g—': “open algebra, algebroid”

@ Formal exponentiation $ = exp(h) (“BK group”) not a (Lie) group.

@ Mathematically more precise: b’: Lie algebra generated by b, ' = exp(h’)
(drop ’ again)

@ Anomaly-free implementation of h or $§ major challenge in QG

0,

Thomas Thiemann

Pirsa: 23030107 Page 4/12



Canonical QG and hypersurface deformation algebra (HDA)

To allow for spinorial matter: use densitised triad Ef; 5}’"‘:‘:‘}?5‘3 = Q g?, conj.
momentum A, (canonical transf.) (ashtekarBarbero]

@ Every single term in C (vacuum, cosm. const., matter) couples to Ef

@ Motivates g’ion choice: in order that C be densely defined, pick vacuum s.t.
Ef" =4
@ = quantum degenerate vacuum Q Q2 =0

@ Proposition: This already fixes a rep. of CCR and AR of Narnhofer-Thirring type
via GNS (e.g. rep. used in LQG)

@ Corollary: At least one type of Weyl operators
WI[G] := exp(—i E[G]), w[F] := exp(—i A[F]) weakKly discont., HS not sep.

@ Since Da, C depend on A, not w[F], expect that at best $ implementable in this
rep. but not

@ Quantum Non-degeneracy: Smearing functions F need to have support
everywhere in order that quantum $) well defined (domain of ) 0,

Thomas Thiemann
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Canonical QG and hypersurface deformation algebra (HDA)

| ( f talk

Consider U(1)® model in 3+1: close relative of GR, technically simpler, still full
complexity of b

Quantum integrability: Q’ion programme can be completed
@ non-anomalous rep. of H

extension to full GR: additional steps (%g. renormalisation) necessary (outlook)

Thomas Thiemann
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U(1 :]3 Quantum Gravity and relation to classical GR

f classical U(1)® model

@ Hamiltonian definition [smolin):
Take Euclid. vac. GR in Ashtekar-Barbero variables, drop A? terms from C[f]
(weak Newtonian constant limit)

| *)

Lagrangian definition [Bakhoda, TT):
Take Euclid. vac. GR in self-dual variables [ashieka, drop A° terms from L

Almost Euclidian vacuum GR, but Abelian structure group
Consistent deformation of Euclidian vacuum GR [Baero}: 2 phys. d.o.f.
Possible connection to twistor string theory [abou-zeid, Hull, Mason)

© © 0 ¢

Vacuum constraints (curvature: H’;b = 2&9[3Afb]):
Z; = 8sE}', Da= R, E7, QC=é"§; Ry, Ef Ef

@ Classical hypersurf. def. alg. h unchanged

@ in particular: still non-trivial, non-polynomial struct. fns. =

Q@ ideal test laboratory for many technical/conceptual issues of QG [varadarajan et al] DOth
canonical and covariant

Thomas Thiemann
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U(1 :]3 Quantum Gravity and relation to classical GR

n of g'um non-deg. U(1)® QG

@ Narnhofer-Thirring type of rep.
< Q, W[F]Q >= 6r o, W[F] = exp(—i A[F]), E[G]Q =0, A[F] := / d3x i—f" Afé

@ F : form factor, generalised “holonomies” w[F] discont., “fluxes” E[G] cont.
@ Geometrical ops. diagonal, e.g. volume

V(R) w[F] Q = ¢ [/% dx /| det(F)|] w[F] &

g’'um non-deg dense domain: det(F) # 0

solution of Gauss constraint: c")aﬁa =

spatial diffeo D[u], Ham. constr. C[f]: ill-defined as A A

No rep. of h on #. But: can exponentiate $ := exp(h) on H

U(u, f) w[F] Q := exp(iD[u] + iC[f]) w[F] Q = w[(e*«.! - K)(0, F)] Q
Xyt HVF of D[u] + C[M], K(G, F) := !—;Dmomentum coordinate fn.

© © © ¢ ¢ ¢©
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U(1 _‘13 Quantum Gravity and relation to classical GR

s of U(1)® QG

to best of knowledge: first g'um realisation of Bergann-Komar “group” in 3+1

@ derived using standard point splitting reg.

@ U(u, f) densely defined, in fact unitary, reduces to spatial diffeo group ¢} . for
f=10

@ anomaly freeness realised: g'um algebra encoded by Hamiltonian flow of
classical constraints on non-deg. form factors

U(sf) U(tg) U(—sf) U(—tg)w[F] = w[Fs ], €5tC(:CO} wiF] = w[Fs ],

d? A
Fst— F fog =4
(o's dt[ s,t — Fst])s=t=0
@ qg'um non-degeneracy crucial: HVF otherwise ill-defined

A
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U1 )3 Quantum Gravity and relation to classical GR

FU(1)° QG

Abelian g'um electr. shift/gauge cov. diffeo [Giesel, TT 0s; Ashtekar, Varadarajan 21] all orders
Highly non-linear Ham. flow [exu‘f - K](0, F) computable at N-th order wrt u, f:

E.g. for u = 0, mod. det(F) N factors get with [B¢(F, G)]f = gy [f F;[(be]],b
Xe«F = B{(F, F), X: - F =2 Bi(F, B{(F, F}),
X7 - F =2 By(Bi(F,F),Bi(F,F)) + 4 Bi(F,B(F, B¢(F, F))), ..

Ham. constr. action: Mollify CNW-FF Ff(x) — T n, Jo Ay é(x,y), then:

1. action along whole graph (not only vertices), no abrupt loop attachment,
2. action on charges non-polynomial

C can be extended by “potential” V[E] (e.g. cosm. const.)
perfect match: op. constr. g'ion vs. red. phase sp. g'ion (relational observables)

Physical HS and Hamiltonian: non-linear, self-interacting electrodynamics:
N-point Wightman fns. not determined by 2-pt fn.

e.g. gauge fix/solve for £3, Ay, a = 1,2, keep Z3 = 0:E%, Bf = eabCAg_b

H = [ ox B2 Poll?) (E) [EZ] " o

non-relational weak Dirac observables of CDJ type [capovilla, Dell, Jacobson]
Technically simpler Abelian Spin Foam Model

Thomas Thiemann
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Conclusion

QOutlook

U(1)® QG (almost) g'um integrable in Narnhofer-Thirring type of rep.
Convergence of ideas: canonical, covariant, relational observabiles, ...

can be considered paradigm model or “harmonic oscillator” of (L)QG in 4D
importance of g'um non-degeneracy: part of definition of HDA

© © © 0 ©

current LQG HS rep. for full GR: all states in domain of C quantum degenerate as
F supported on graphs ==> HDA implementation difficult. Why?

o)

U(1)3: HVFs preserve momentum polarisation of phase space

o)

full QG: C not polarisation preserving ==> graphs in LQG vital s.t. C has dense
inv. domain

@ Need A. g'um non-degeneracy (domain of h) and B. dense inv. domain (of C)

@ 1st approach: pert. theory around integrabl%model = consistent
deformation of (Euclidian) GR [garbero] '

@ 2nd approach: Non-pert., CQFT method = Hamiltonian Renormalisation rm:
i. Define family of g'um non-deg., dens. def. theories at finite resolutions
ii. construct infinite resolution theory using renormalisation flow
iii. ==> “transport” quantum non-degeneracy into new rep.

Thomas Thiemann
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Conclusion

1d Outlook

U(1)® QG (almost) g'um integrable in Narnhofer-Thirring type of rep.
Convergence of ideas: canonical, covariant, relational observables, ...

can be considered paradigm model or “harmonic oscillator” of (L)QG in 4D
importance of g'um non-degeneracy: part of definition of HDA

current LQG HS rep. for full GR: all states in domain of C quantum degenerate as
F supported on graphs ==> HDA implementation difficult. Why?

U(1)3: HVFs preserve momentum polarisation of phase space

full QG: C not polarisation preserving ==> graphs in LQG vital s.t. C has dense
inv. domain

Need A. g'um non-degeneracy (domain of h) and B. dense inv. domain (of C)

@ 1st approach: pert. theory around integrable model = consistent
deformation of (Euclidian) GR [Barbero]

@ 2nd approach: Non-pert., CQFT method = Hamiltonian Renormalisation rm:
.. Define family of g'um non-deg., dens. def. theories at finite resolutions
ii. construct infinite resolution theory using renormalisation flow
lii. ==> “transport” quantum non-degeneracy into new rep.
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