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Abstract: Recent progressin AAS/CFT has provided a good understanding of how the bulk spacetime is encoded in the entanglement structure of the
boundary CFT. However, little is known about how spacetime emerges directly from the bulk quantum theory. We address this question in an
effective 3d quantum theory of pure gravity, which describes the high temperature regime of a holographic CFT. This theory can be viewed as a
$g$-deformation and dimensional uplift of JT gravity. Using this model, we show that the Bekenstein-Hawking entropy of a two-sided black hole
equals the bulk entanglement entropy of gravitational edge modes. These edge modes transform under a quantum group, which defines the data
associated to an extended topological quantum field theory Our calculation suggests an effective description of bulk microstates in terms of
collective, anyonic degrees of freedom whose entanglement |eads to the emergence of the bulk spacetime. Finally, we give a proposal for obtaining
the Ryu Takayanagi formula using the same quantum group edge mode

Zoom link: https://pitp.zoom.us/j/98275430953?pwd=TzdTUXIvVWU4Y m1jcWRWbkgxZnhM dz09

Pirsa: 23030104 Page 1/44



The holographic principle

A
4G

A
Spr = Sgen = m— Sout

4G

AdS holography

A lot of progress in building a dictionary relating bulk and boundary quantities.

Main lesson: the bulk spacetime geometry is encoded in the entanglement structure of
the boundary QM

Can we understand the emergence of spacetime directly from the bulk? Are bulk
quantum information quantities like entanglement entropy well defined?

Bekenstein-Hawking Generalized entropy

In QG, deg. of freedom in a spatial region resides on its boundary

ume anti-de Sitter space . N

canformal
boundary
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GCELL

CFTp

CFTg

Quantum Extremal Surface (QES) Prescription

A
ScrT = Sgen = % + Shulk

What is the bulk microstate interpretation of the area term?

Interesting because it measures the entanglement that makes up spacetime (Van
Raamsdonk)

Folklore: Sy, = entanglement entropy of bulk quantum gravity

Bulk spacetime is fluctuating. What is entangled with what?

Diffeo invariance —> gravitational degrees of freedom are non local: how do we
factorize the Hilbert space?
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The factorization problem in bulk gauge theory (Harlow)

AdS Schwarzchild ER bridge

S
CFTy |- Moovl  CFTg

Bulk charges must be exist that split the wormhole-crossing Wilson line into gauge inv. operators.

In the low energy effective gauge theory, these are entanglement edge modes (Donnelly-Freidel)

They transform under a surface symmetry GGs and contribute to the bulk entanglement entropy:

Sv = —tr py log pv = Spuic + Sedge Sedge ~ logdima
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The factorization problem in bulk quantum gravity

Lidiayiion —>E a|da
a

[l e~o

logdim a

A

4G
Perhaps the QES area term is the entanglement entropy of quantum gravity edge
modes which glues together the space-time (J Lin, D. Harlow, Donnelly-Friedel, GW-Donnelly)

An exact description of the bulk edge modes would require solving bulk QG, i.e.
solving IIB string theory...
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The shrinkable boundary condition

Bottom-up approach: Introduce edge modes as an extension of the EFT Hilbert space, constrained by a
shrinkable boundary condition e (Hawkmg, Mathur, Jafferis Kolchmeyer, GW—Donnelly)

G, T~T+ 8 T~T+0

Z(ﬁ) = - @ — t]:‘Ve—ﬁH

Sgc-n = (1 = /88,5) 10g Z(ﬂ) = —trypy log PV

L /R:

Shrinkable BC can be incorporated into extended TQFT describing 2D gauge theory, Chern Simons theory,
topological A model strings (Donnelly,Kim,Jiang, GW). Also applied to 2D JT gravity (Jafferis Kolchmeyer)

This talk: apply the same strategy for AdS3 gravity ~ PSL(2,R) x PSL(2,R) Chern Simons theory
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3d gravity as a PSL(2,R) xPSL(2,R) gauge theory

I k[ 2
= — —A)=— [ ANdA+=-ANANA i
Ien 16:C /\/E(R ) 47r/ ANdA + 3 ANAN (Witten)

Dynamical spacetime geometry is encoded into the field space:

_ T e

A=e+tw A:eww‘\____,_ Spin connection
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3d gravity as a PSL(2,R) xPSL(2,R) gauge theory

1 k[ 2
= —— —A)=— [ ANdA+=-ANANA i
Ien 16:C /\/E(R ) 47r/ ANdA + 3 ANAN (Witten)

Dynamical spacetime geometry is encoded into the field space:

- ~— " Vielbein

A=etw A:e_w\____,_ Spin connection

BTZ black holes can be identified with Wilson line in CS theory:

CS theory description

(ML) L M a=(M,J)  Representation label

What are the bulk edge modes that will factorize these gravitational Wilson lines?

The naive gauge theory answer - PSL(2,R)xPSL(2,R) edge modes- is NOT correct because
the shrinkable BC for gauge theory and gravity is different
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Shrinkable boundary condition for gauge theory vs gravity

Shrinkable B.C. for gauge theory is local and generically leads to an infinite EE

7
O — e A =10 Pexp%}l:l

Shrinkable B.C. for gravity is non-local due to the Gauss Bonnet theorem (Jafferis
Kolchmeyer), and should give finite EE

Igravity =) / \/§R =1- ﬁK
disk

adisk

j;{ w = 2m —> no conical singularity
ddisk

To describe gravity, gauge theory has to modified

e.g For 2D JT gravity = PSL(2,R) BF gauge theory+ defect
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3d gravity as a topological phase

The question of edge modes in 3d gravity is directly related to a proposal by Jackson-McGough-
Verlinde:

3d gravity is a topological phase in which BH entropy = topological entanglement entropy

= EE of anyon edge modes

Anyons are collective degrees of freedom describing a topological phase. They are described by a
TQFT defined by a modular tensor category Rep(LG) or Rep ( U,(G))

This proposal suggests bulk edge modes are described by gravitational anyons. What
is the bulk TQFT and the associated modular tensor category?
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Verlinde-McGough-

Jackson observed:

BH entropy as topological entanglement entropy?

(M, J)

M a=(M,J)

A(M, J)

4G

=log S§ ~—— Virasoro modular S-matrix
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’ BH entropy as topological entanglement entropy?

(M, J)

................. O\V‘<O a=(M,J)

Verlinde-McGough-
Jackson observed:

A(M, J)

VaEE log S§ ~—— Virasoro modular S-matrix

Puzzle: The edge modes in CS theory with shrinkable BC A, = 0 gives:

SEE =

“Area” __ Topological

0
+ log Sa edge ™ entanglement entropy
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The boundary partition function
We define an effective theory by truncating to the vacuum block in the dual channel

Z(7,7) = |xo(=1/7)I°

To go back to the original channel , write in terms of modular transformed Virasoro characters
We use Liouville notation ( but the boundary theory is NOT the Liouville CFT):

h=p*+Q*/4 h=p2+Q%/4 Q=>b+b"" c=1+6Q*

Z(1,T) = Z So” So? xp (T) x5 (T)

p,p

o0

SoP+ = /2 sinh(2mbp, ) sinh(27b ' p, ) Xo(7T) = /dp Sg Npll— 1 /%)
0
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Summary of our work:

Define an effective AdS3 gravity theory describing the high temperature limit of a
holographic CFT. (Jackson-McGough-Verlinde, Ghosh-Maxfield-Turiaci, Cotler-Jensen).

We find QES formula = bulk entanglement entropy

Gravity

A :
E = logdlma ﬁ ﬁ

Gauge theory

a € Rep(SL; (2,R) ® SL; (2,R)) a € Rep(PSL,(2,R) ® PSL,(2,R))

Suggest that the bulk theory is an extended topological quantum field theory associated
to the representation category Rep(SL; (2,R) ® SL; (2,R))

The TQFT gives subregion wave functions, bulk factorization maps, and a bulk
entanglement entropy that agrees the single interval RT formula

Main message: The gauge theory TEE arises from cutting a CS Wilson line
inserted on a fixed background. The gravitational entropy arises from cutting a
Wilson line that ““makes up the spacetime itself”.
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BH entropy as topological entanglement entropy?

(ML) s M a=(M,J)

Verlinde-McGough- A(M ,J )
Jackson observed: 4G

=log S§ ~—— Virasoro modular S-matrix

Puzzle: The edge modes in CS theory with shrinkable BC A, = 0 gives:

“Area” :
- 0 __ Topological
VEE = € g log Sa SCES entanglement entropy

But SO — () for the Virasoro S-matrix, and BH entropy is finite. So gravity modifies the usual
CS computation
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Summary of our work:

Define an effective AdS3 gravity theory describing the high temperature limit of a
holographic CFT. (Jackson-McGough-Verlinde, Ghosh-Maxfield-Turiaci, Cotler-Jensen).

We find QES formula = bulk entanglement entropy

Gravity

A :
E = logdlma m ﬁ

Gauge theory

a € Rep(SL; (2,R) ® SL, (2,R)) a € Rep(PSL,(2,R) ® PSL,(2,R))

Suggest that the bulk theory is an extended topological quantum field theory associated
to the representation category Rep(SL; (2,R) ® SL; (2,R))

The TQFT gives subregion wave functions, bulk factorization maps, and a bulk
entanglement entropy that agrees the single interval RT formula

Main message: The gauge theory TEE arises from cutting a CS Wilson line
inserted on a fixed background. The gravitational entropy arises from cutting a
Wilson line that ““makes up the spacetime itself”.
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Outline

Part 1:Definition of 3d gravity

® Boundary partition function and its thermal entropy

® Bulk path integral and shrinkable boundary condition

Part 2: Bulk factorization

e SL;(2,R) and the co product

e Bulk entanglement entropy in 3d gravity

Conclusions
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The boundary partition function

Consider a modular invariant, holographic CFT (gap + sparse spectrum)

The torus partition function with temperature ?

written in terms of Virasoro characters X (7) :

and chemical potential » can be

- 2m o =9 T:L h- <1 1_51/24+001 m
9= oo =il Xh (7) =l () =g L[l( q")
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The boundary partition function

Z(T, T )micro = My, 5, xn(T)x3(T) = Z Morxn(=1i7)
h.h hh

. - P =

In the high temperature limit where 7 << A =h " h

Z(Ta f)micro s |X0(_1/7)|2

In the dual channel, the vacuum block dominates
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The boundary partition function
We define an effective theory by truncating to the vacuum block in the dual channel

Al = e VilE

To go back to the original channel , write in terms of modular transformed Virasoro characters
We use Liouville notation ( but the boundary theory is NOT the Liouville CFT):

h=p* +Q*/4 h=p2+Q%/4 Q=>b+b"" c=1+6Q*

Z(1,T) = Z So” So? xp (T) x5 (T)

p,p

o0

SoP+ = /2 sinh(2mbp, ) sinh(27b ' p, ) Yolm) = /dp Sg ol —1 /%)
0
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The boundary partition function
We define an effective theory by truncating to the vacuum block in the dual channel

Zmm =)

To go back to the original channel , write in terms of modular transformed Virasoro characters
We use Liouville notation ( but the boundary theory is NOT the Liouville CFT):

h=p*+Q%/4 h=p2+Q%/4 Q=>b+b"" c=1+6Q*

Z(1,T) = Z So” So? xp (T) x5 (T)

p,p

o0

SoP+ = /2 sinh(2mbp, ) sinh(27b ' p, ) Xo(7) = /dp Sg Nopll— 1 /)
0
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The boundary partition function
We define an effective theory by truncating to the vacuum block in the dual channel

Z(7,7) = xo(=1/7)I°

To go back to the original channel , write in terms of modular transformed Virasoro characters
We use Liouville notation ( but the boundary theory is NOT the Liouville CFT):

h=p*+Q*/4 h=p2+Q%/4 Q=b+b"" c=1+6Q*

Z(T,T) = Z So” So? xp (T) X5 (T)

p,p

o0

SoP+ = /2 sinh(2mbp, ) sinh(27b ' p, ) Xo(7T) = /dp Sg Xpl—1/T)
0

Pirsa: 23030104 Page 22/44




The boundary partition function

Our effective 3d gravity theory is defined by the grand canonical partition function

8 2 ) _9
crpEeninn(p )

[n(r)[*

i +o0  p+oo .
Z(B, 1) = Tr[e PEHHTI] / / dp dp ST
0 0

p* +p’ 2 2

(p, P) are Virasoro primaries with energy and angular momentum H = 7 Jd=p —p

p Qb
SO ; S(] is a density of states for the primaries ~ black holes microstates

n(7) ~ descendants =boundary gravitons
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Black hole entropy
In the ultra high temperature limit, 3/¢ << 1 the partition function is dominated by p,p

[eL
Moreover when c¢>>1—3b>>1 Sg ~ exp(27rbp) = exp( TO) Cardy density of states

S = 27 lee 25 )t s )

: ~__ 4GwN
M*l 45 = p*z + 15*2 c= :;léds Brown-Hennauex
N
J* — *2 _I-)*Q :

Explains Verlinde’s observation, but does not have manifest entanglement interpretation
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The bulk path integral

\ PSL(2,R)x PSL(2,R) CS theory path integral on the solid torus with

(te,p, ©) AdS3 B.C. is equal to the vacuum character. (Cotler-Jensen, Freidel)

t ~tp+ Zle. T — Ixo(—1/7)> = fd[A]d[A]e-S[A,fI]

Usual bulk interpretation: Vacuum module=perturbative fluctuations around a single Euclidean BTZ saddle:

27 ¢ | T i
Z(t,7)= |exp(— =) H : ? £ Try e P2

n=2 + = exp(@)

/ \ Fluctuations about BTZ=boundary gravitons

Euclidean BTZ 1-loop exact (Maloney -Witten)

Generalized

entropy: Sgen = (1 — B8p)log Z(B) ~ (1 — ﬁ@g)e_IﬂH 9572(B)] No stat. mech. interpretation

Pirsa: 23030104 Page 25/44




The shrinkable boundary condition

In the boundary theory, there is a natural canonical interpretation in both channels

Z(r,7) = Ixo(-1/7)" Z(r,7) = ) _ 50" So” xp(T)x5 (7)
pp

Time @

(tEapa(P) tl?"‘“tjli""f3

semi-classical channel quantum statistical channel
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The shrinkable boundary condition

In the boundary theory, there is a natural canonical interpretation in both channels

Z(7,7) = Ixo(=1/7)[ Z(r,7) = ) 50" So” xp(1)x5 (7)

Time ¢

tg ~tg + B

semi-classical channel quantum statistical channel

In the bulk, defining a trace in the quantum channel requires shrinkable boundary condition e and bulk edge
modes:

2(6) - - lin — Sgen = (1~ 535) log Z(P)

A0 = —try py log pv
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Bulk edge modes from local holography

The shrinkable boundary condition allows us to define a factorized state:

\~ -
| v ’
'\ -'
. 5
o 4
R \ 7
h X
y .
i ;
i Y
e
Ko
————————— o)
u

View e as abstract boundary condition. We propose an associated factorization map incorporating quantum group edge modes :

Ay e —— SL7(2,R) edge modes
E
Hbulk L, R —— vVirasoro edge modes

We identify 7 with the co product on SL;r (2,R) , which satisfies the shrinkablility constraint.
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. What is SL (2, R)

Definition (Teschner)

c d

e s . 12 oy
(a b) a,b,c,d o operatorsoan(R@JR) ab—qba, dc—qg ‘ca bd =gi°ab, ed— g’tde

with positive spectrum bc=cb, ad—da= (q1/2 = qflfg)bc

A more useful Characterization

A quantum (semi) group G is defined by the algebra of L?(G) functions on G. This algebra has a product and co-

product:
(f1(9), f2(9)) = fi(g) - f2(9)  Product f(g) = f(91,92) = f(91-92) Coproduct
A basis for this non commutative algebra is given by products of matrix elements 9i,5, * * * 91,3, =101
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Peter Weyl theorem

A group G acts on L?(G) via the regular representation:

f(g) = f(hrghy')

Peter Weyl Theorem: the regular rep decomposes into representations Vg of G:

L*(G) = 9rVr @ Vg

Basis and completeness

Ry (9) a,b=1,...dimR 8(g,9') = Z Ra(9) R, (9')

R.a,b

This means we can define a symmetry G by Rep(G)
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Peter Weyl theorem

A group Gactson [?(@) via the regular representation:

flg) = f(hrghy')

Peter Weyl Theorem: the regular rep decomposes as

s
LQ(G) = / du(R)Vg @ V3 Plancherel measure
Basis and completeness
Ra(9) trp(1) = dim R = du(R) 3g—4) fdu (9)R;,(d")

This means we can define a symmetry G by Rep(G)
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. Peter Weyl theorem for Rep(SL (2, R))

L*(SLy(2,R)") can be defined via the continuous series reps V,, of SL,(2,R)

LQ(SLq+ (2,R)) = / dim,(p) V, ® Vpe dim,p = /2 sinh(27bp) sinh(27b™ ' p) q= ei“bz

Dp=0

The Plancherel measure distinguishes this from the spectral decomposition of L?*(SL,(2,R))

This equation says V}, should be viewed as a complete set of representations of SL_ (2, R)

The representation matrices sz (g9) with the measure dim, (p) have been computed by Ip
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Why does Rep(SL; (2,R)) show up in 3d gravity?

Ponsot/Teschner showed that Rep (SLq,+ (2,R)) solves the Virasoro modular bootstrap ~ Liouville
theory

Y
For gq=¢€™, c=1+ 6(b+ b )2 there is a one to one map ( a ““functor”)

Rep(SL; (2,R)) Rep(Vir)
VpSL;“ G Vi
Representation ring Fusion Algebra
dim, p e Sg
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Co-product as a factorization map

Lt (G) has a natural factorization map given by the co product

i: (@) = LA(C)® L3(G)

dim R \
Rup(9) = Ran(91 - 92) = D Rac(91)Ren(92)
c=1 i =
The c indices labels edge modes which form a singlet under the :
: : g= Pexp / A
diagonal action of G
Each basis state has an entanglement entropy of logdim R v v
g1 g2

We will identify L? (SL,;r (2,R)) asthe zero mode subspace of the black hole

. “subregion” variables
Hilbert space

—> each black hole state in the representation ( P, ﬁ) has an entanglement entropy

Sy = log (dim, pdim, p)
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>

The two-sided bulk phase space (Hennaux,Woux,Ranjbar)

Asymptotic gauge AdS3 asymptotic BC
theory BC—>WZW —>Virasoro edge modes
edge modes
0 L(p,T)
< A=A, i
At A‘P 0 L5 Y 1 0

The phase space of two-sided geometries is parameterized by 4 stress tensor components Lr/r(t, ), Ly /r(t, @) (Banados).
They are components of the gauge fields A,, A, at the L/Rboundaries. The L/R stress tensor zero modes are linked because

of the ER bridge
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The two-sided bulk phase space (Hennaux,Woux,Ranjbar)

<>

Asymptotic gauge AdS3 asymptotic BC
theory BC—>WZW —>Virasoro edge modes
edge modes
Q- Elp 1)
S A=A, ( 0
At A(p 0 t ¥ 1 0

The phase space of two-sided geometries is parameterized by 4 stress tensor components Lr/g (t,¢), Lr/r(t, ) (Banados).
They are components of the gauge fields A, A, at the L/R boundaries. The L/R stress tensor zero modes are linked because

of the ER bridge

2 cosh(p/2) = trPexp ( %dcpAﬁp)

Phase space zero modes = Virasoro Primaries

(p,p) < (M, J)

Ml yqs = p° +p°

J:p2_p2
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The two-sided Bulk Hilbert space

The bulk Hilbert space Hbulk is built out of Virasoro Reps Vp

(p,P)
7 R
V,®V, = span{H 1 H L&, D)k
¢ J
Left-right entanglement creates 5 iy =
an ““entanglement” Wilson line H = d/.L(p) Vp ® Vp ’ Hbulk — H & 7‘[

Czech-Lamprous-Susskind
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The two-sided Bulk Hilbert space

L A~
/' N The bulk Hilbert space Hbuik is built out of Virasoro Reps Vp
(D: P ) ‘//_\ 15 P I =R
VP ® Vp = span{H L-n-i H L—nj |p>}
z J
Left-right entanglement creates i L
an ““entanglement” Wilson line H = dp, (p) Vp &® Vp

Czech-Lamprous-Susskind

Using the relation between Rep(Vir) and Rep (SL; (2,IR)),we define H as the fusion of one sided Hilbert spaces:

H="HL s 2r) HR Hr = / du(p)V, ® V! Hr =
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Explicit realization of the zero mode Hilbert space (Drinfeld-Sokolov)

Concretely, we identify the normalized zero mode wavefunction with a representation
matrix of element of SL_ (2, R)

|p) = |P i iR) Indices are frozen due to AdS B.C.

(9|p,ir,ir) = +/dim, (g) €L*(SL; (2,R))

(g |P irs) = 4/dim subregion Wavefunctions

Co product 7: |p iLiR> dS plLS X lp31R>

=
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. Bulk Entanglement entropy=BH entropy
Bulk Hartle Hawking state :

LA SL; (2, R) measure
= |HH,B#L)® |HH,6’IL>

" .
HHo — / dp, /dim, (p)e~ 7P (1= gV 2 |piLig) ® Imrmpg
HH) g, L 9Dy ¢(P) % | ) ® | )

mr=mpg
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6 Bulk Entanglement entropy=BH entropy
Bulk Hartle Hawking state :

e SL; (2, R) measure
= |HHg,)®|HHg,)

|HH) f dp,/dimy(p)e” 77 (1-in) Z gV |pigip) ® |mpmp)

mp=mpg

Co-product is a factorization map satisfying shrinkability.

B
[HH) 5., _*f oy f ds e" T # |pips) @ |psig)(...)

PV-/ dp[ o e
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. Bulk Entanglement entropy=BH entropy
Bulk Hartle Hawking state :

SRRy SL; (2, R) measure
= |HH,B#L)® |HH,6’IL>

: -
HH);z, = / dp, /dim, (p)e~ 7P (1= gV ?|piLig) ® Imrmpg
[HH) g, L ooy q(P) > | ) ® | )

mr=mpg

Co-product is a factorization map satisfying shrinkability.

o0 o0 8 )
[HH),,, — f dpf ds e W |piss) @ psig)(. ..
0 —00

(6. @] oo 8 !
pv = / dp / ds e T3 |pi; s) @ (psigl(...)
0 —00

: : A
= —trpy logpy = Ogen — logdim, p* dim, p* = el
Shrinkability and / Semi-classical
1 loop exactness limit
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Comments on the bulk edge modes

Asymptotic AdS 3 boundary conditions fixes metric at infinity. This gives Virasoro edge modes,
which arise from a Drinfeld reduction that freezes the zero mode degrees of freedom

At the bulk entangling surface , there is no reason to fix the metric. So the zero mode in the
bulk is liberated and corresponds to the sum over matrix indices.

Bulk quantum group edge modes lead to a finite entanglement entropy. In contrast, bulk
Virasoro edge modes would give an infinite entanglement entropy in the shrinking limit, due to
the tower of descendants at infinite temperature

Rep (SL;r (2,IR)) is known to be the modular tensor category associated to Teichmuller TQFT.
Recently this TQFT has been used to compute 3d gravity amplitudes using surgery

( Eberhardt...et al). Our work suggests that this TQFT also computes bulk entanglement
entropy.
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RT from bulk entanglement entropy

Consider the holographic CFT calculation of single interval entanglement entropy in the global
vacuum state. Near the entangling surface, the (AdS) Rindler observer experiences high
temperatures, where our bulk theory is valid.

The situation is completely analogous to the black hole case. We will find that after a conformal
map, the single interval reduced density matrix maps to chiral copy of the black hole reduced
density matrix on one side.

L

[

<l
-

log dim, p* — glog
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