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Abstract: No-hair theorems prevent black holes in General Relativity (GR) from being characterized by any property other than their mass, electric
charge, and spin. Scalar fields provide perhaps the smplest way to generalize GR, and it turns out that cases exist where the no-hair theorems can be
evaded and black holes with scalar hair may emerge. In this talk | will examine the notion of nontrivial scalar field configurations arising in the
strong regime of gravity near black holes, but also compact neutron stars and wormholes. | will go over the concept of spontaneous scalarization of
compact objects and discuss the viability of scalarized solutions against observations.
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— Gravity in General Relativity (GR) can be expressed through the
Einstein-Hilbert action.

1
SGR — Z / d4X v —E R (1)

— GR faces challenges:

e Non renormalizable e Unconstrained in the strong field

e Issues with singularities e Dark energy and dark matter

Volker Springel/ MPE/Kavli Foundation 3
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— To tackle these i1ssues new terms are introduced

e scalar or vector fields (¢, A...)

e curvature corrections (R?, R?°R,,, R*™*“R,pq, *R R...)

Quantum General Dark Dark

GR+4-corrections

Gravity Relativity Matter Energy

10-3° 1020 10-5 1010 1025 [m]
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Roadmap
of modified gravity!

Lorentz
Einstein Violation

New physics in strong gravity?

IFront. Astron. Space Sci. 5, 44 (2018), arXiv:1807.09241
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No-hair theorems and evasions
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No-hair theorems

If we assume:

1. isolated configuration - asymptotic flatness
2. stationary spacetime, at the endpoint of gravitational collapse

3. local stability, .e. U” > 0 (m%; > 0)

The scalar equation
g Y. e —U(o (2)

admits only the trivial solution, ¢ =constant GR.
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Evading the no-hair theorem

Nonminimal couplings in Horndeski:

» Horndeski theory includes a metric and a scalar (+derivatives) and leads to

2nd order equations of motion

» |t contains nonminimal couplings of the scalar with curvature

()2
X =— (vz(b) ) _G3(¢9X@*D© / G4(@X)R + G4X[(D¢)2 o (v.uvf/c.b)2]9

B | | | |
Gs(0, X) G, V'V ¢ — %X (0¢)* — 304(V,V,0)? + 2(V,V,6)°

» It leads to far more complicated scalar equations of motion
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Shift symmetry

Can we narrow down the space of theories?

Let’s start with shift symmetry, ¢ — ¢ + ¢, which

e protects ¢ from acquiring a mass (massive scalars would decay exponentially
around compact objects)
e calculations are simpler and there exists a conserved current V,,J* =0

A no-hair theorem was derived in this case provided that:
1. staticity, asymptotic flatness, spherical symmetry are assumed

2. J? is finite at the horizon and J &< V¢
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Shift symmetry

It turns out that the only way to accomplish that while respecting shift symmetry
corresponds to the choice Gs = —4In/X|. This choice corresponds to the
following theory

5~ / d*x V=g {R +Xtag %] G = R Ry — 4R R, + R (3)

The scalar equation yields
Vo =a¥9 (#0 for curved spacetimes) (4)

= ¢ =+ constant, for curved backgrounds.

10
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Shift symmetry

In shift-symmetric Horndeski we can define 3 classes of theories, namely

Class 1: &,['=0, g] =0, Vg,

—~
S O
S N

Class 2: |lim &[0 =0, g] =0.

g1

Class 3: All the rest. (7)

A minimally coupled scalar field belongs in class 1, while sGB belongs in class 2.

In general for shift symmetry

[,(2) — E(l) + (}Og , 41Q = (}/ n,%4°? (8)
H

11
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Shift symmetry

From an EFT point of view, additional terms eventually will contribute, i.e.

S~ / d*x\/—g [R + X(1+ 006 + kX) + a¢¥ + v G, V*pV ¢ + .. ] (9)

Black holes with a regular scalar field profile are found under the conditions:

I: r? —5760°y — 24ar?(8ac+ o) >0,

I:  [24avr, + (4o + o)r}] \/rf — 57602y — 240(8a + o) rf

S [r,? — 5760y — 240(8ar + U)r,ﬂ #0.

Minimum black hole mass = r, > ;™"

12
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Shift symmetry

In shift symmetry we can employ a perturbative approach

2
2M >
R S dla % 10
8t ( " ) ( +;gtt(r)a ) ( )
b=co+ ) Oni" (11)
n=1

» which traces the emergence of a finite radius singularity in the black hole
Interior.

» saturation of the existence conditions is associated with naked singularities!

13
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Scalarization
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Scalarization in Neutron Stars

c3 ; |
d*x/—g (R — 28" 0,00,0) + Sm [0m, €2 g, . 12
167rG/ xv/—g ( 8" Ouyp P) + Sm [Ym, €7V g, | (12)

S =

e Scalar eq. yields U o< ... a'(p)T.
e If, for some ¢ = ¢, a'(¢d0) = 0= GR.

e Take a(p) = Bop?/2.

e Estimating the energy

2
f:c/2 Bop? /2
E ~ 2 _Fel = Bowe/
nergy =~ mc ( IR +e

For large M/R minima start forming. i
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Scalarization in Neutron Stars

3 .
¢ 4 ) . Da(p
S=Te¢ / d*xv/—g (R — 28" 0,00, 0) + Sm [Vm, € ¥) g, ] . (12)
e Scalar eq. yields Up o< ... a' (p) T. .
% %
e If, for some ¢ = 0@9 a'(¢po) = 0= GR. B % v f
+ ""%:? \ -‘ . :
: Ll
L = ; 2 \\ \“ ,"J,/
e Take a(y) = Pop~/2. i
. P
: : 0 g
e Estimating the energy )
2 o, =0
pz/2 B2 )2 ——o
Energy &~ mc? | ——<L—— + efovc/ |
gy Gm/ Rcz + By<0 % large slope = scalar charge
For large M/R minima start forming. ”
Fig. taken from arXiv:gr-qc/0402007
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Scalarization in Black Holes

We may promote the linear coupling to a generic one

s- L 'd‘*x\/——g[R—%(a@)%f(@)%]. (13)

B 2K

2
— My

— The scalareq. O¢p = —F(¢)¥9 = [0+ "(¢0)¥ |6 = 0.

— We are interested in theories that are connected to GR and therefore accept
GR as a solution — f/(¢0) =0, —f"(¢)¥ >0 123

L Antoniou et al. Phys. Rev. Lett. 120 (2018) 13, 131102
2Silva et al. Phys. Rev. Lett. 120 (2018) 13, 131104
3Doneva et al. Phys. Rev. Lett. 120 (2018) 13, 131103 15
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Scalarization in Black Holes

We may promote the linear coupling to a generic one

B |
- 2k

S PeNer: [R - %(8@)2 - f((p)%] . (13)

2
— Mg

— The scalareq.  O¢ = —F(¢)¥9 = |0+ "(¢0)¥ |6 = 0.

— We are interested in theories that are connected to GR and therefore accept
GR as a solution — () =0, —f"(¢9) ¥ > 0.

If mgﬁ < 0 —— non-trivial scalarized solutions .
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Scalarization in Black Holes

48 M?

I R [ipa SR [ Xﬁ)

(r2 + x2)® (

e For x = 0= % > 0 scalarization requires " (¢) > 0.

e For Y # 0 — ¢ < 0 spin-induced scalarization for f"(¢o) < O.

— The minimal model satisfies the conditions above and contains all terms
that contribute to the instability at a linear level

B2 S~ /@ 1 5,
= (1 + XT) R+ X +vG*"V,oV,¢" G%% - Emf,)(pz (14)

16
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Issues of scalarization models

— Models of scalarization usually face a number of problems:

. Cosmological consistency

Neutron-star constraints

Stability (the exponential coupling yields stable solutions but does not satisfy
our conditions)

. Well posedness

17
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Cosmological attractor

Evolution of scalars in a cosmological background:

e L=R+X-—myd?/2 = & oxe H3H-2)
e L=R+X+f(p) = &; x e'ng(Cle*“t + Coe¥t) for f ~ ¢?
e L=R+ h(¢)R+ X+ f(¢)G, let's see what happens for f, h ~ ¢

: O,
The scalar equation reads?

b +3Ho + mi(t)p =0, (15)

— T

friction term
L Antoniou et al. Phys. Rev. D 103 (2021) No. 2, 024012

18
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Cosmological attractor

A

— We need to keep an eye on the sign of m%. = SR/2 — aG

<
-
Q ) .
« U \/ ——
- 2
S gl RD g-(2) € 1/z MD A

7| T S |
= x=1 :

= ol o
-------- B=0 B=02 — f=1 N
_]. - H L
1010 BBN i 3600 0.4

— Provided 3 > [ an attractor is retrieved

19
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Stability of black holes

* MO ~ 1.174 ] : B=07

0.07 1 1 L 1 L 1 1 1 1 1 L 1 1 1 1 1 L 00 | L 1 1 | L 1 1 1 L L 1 1 1 L | 1 1 1 | L 1 1 1
0.6 0.8 1.0 1%, 1.168 1.170 212 1.174 1.176 1.178 1.180

A

» Scalarization threshold is unchanged for (3
» The properties of solutions present differences

20
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Stability of black holes

Perturbing the scalar field and metric around the scalarized background

In order to study QNMs for stability the master equation used is

a2¢(1) (92@(1) @¢(1)
2 B 5(1) 1
gV o — o + C(A 5 + U(r)s™ =0, (17)
The scalar is decomposed as

O ~ e—iwtgl(?w) Y,m(g, L,Q) e—imso (18)

— Unstable modes are only found for 3 < 5. ~ 1
21
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Neutron star constraints

The parameter space for scalarized neutron stars in EsRGB: 2:

[P B )

6000

4000

2000

« [kn ] 2]
o

—2000

—4000

—6000 i
—200 —100 0 100 200

2Ventagli et al. Phys. Rev. D 104 (2021) 12, 124078

22
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Neutron star constraints

The parameter space for scalarized neutron stars in EsRGB: :

6000

4000

2000

0

(0" [km2]

—2000

—4000

—6000 o
—200 —100 0 100 200

B
—Neutron star scalarization is suppressed for o, 5 > 0

22
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Thank you!

Questions?
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