Title: 4-dimensional covariant Loop Quantum Gravity and complex Chern-Simons theory

Speakers: Muxin Han

Series: Quantum Gravity

Date: March 02, 2023 - 2:30 PM

URL: https://pirsa.org/23030085

Abstract: We present an improved formulation of 4-dimensional Lorentzian spinfoam quantum gravity with cosmological constant. The construction of spinfoam amplitudes uses the state-integral model of PSL(2,C) Chern-Simons theory and the implementation of simplicity constraint. The formulation has 2 key features: (1) spinfoam amplitudes are all finite, and (2) With suitable boundary data, the semiclassical asymptotics of the vertex amplitude has two oscillatory terms, with phase plus or minus the 4-dimensional Lorentzian Regge action with cosmological constant for the constant curvature 4-simplex.

Zoom link: https://pitp.zoom.us/j/92219187641?pwd=RUsvcWo2SHFmVTE3NmxDMUZIVEV2UT09

- Loop Quantum Gravity (LQG) is a *background-independent* and *non-perturbative* approach to quantum gravity in 3+1 dimensions.
- Background independence: Quantum Gravity = Quantum Spacetime Geometry



• Non-perturbative quantum gravity: We construct the full transition amplitude of quantum gravity instead of perturbative expansion

Spinfoam Amplitude: 
$$A(\mathcal{K}) = \sum_{\{j,i\}} \prod_f A_f(j) \prod_e A_e(j,i) \prod_v A_v(j,i)$$

 $A_f$ : amplitude associated to each triangle f in  $\mathcal{K}$ .  $A_e$ : amplitude associated to each tetrahedron e.  $A_v$ : amplitude associated to each 4-simplex v.  $\{j,i\}$ : intermediate states (spin-network state in LQG)

$$\text{Plebanski-Holst theory of GR:} \qquad S = -\frac{1}{2} \int_{\mathcal{B}_4} \left( \operatorname{Tr} \left[ \left( \star B + \frac{1}{\gamma} B \right) \wedge \mathcal{F}(\mathcal{A}) \right] + \varphi_{IJKL} B^{IJ} \wedge B^{KL} - \frac{|\Lambda|}{6} \operatorname{Tr} \left[ \left( \star B + \frac{1}{\gamma} B \right) \wedge B \right] \right)$$

B is  $\mathfrak{sl}_2\mathbb{C}$ -valued 2-form.  $\mathcal{F}(\mathcal{A})$  is the curvature of  $\mathrm{SL}(2,\mathbb{C})$  connection  $\mathcal{A}$ .  $\gamma$  is the Barbero-Immirzi parameter.  $\varphi$  is Lagrangian multiplier saptisfying  $\epsilon^{IJKL}\varphi_{IJKL}=0$ .  $\star$  is the dual for the internal  $\mathrm{SL}(2,\mathbb{C})$ .

$$\frac{\delta S}{\delta \varphi} = 0, \qquad \Rightarrow \qquad \epsilon^{\mu\nu\rho\sigma} B^{IJ}_{\mu\nu} B^{KL}_{\rho\sigma} = V \epsilon^{IJKL} \qquad \Rightarrow \qquad B^{IJ} = \pm e^I \wedge e^J, \qquad \text{(Simplicity constraint)}$$

The simplicity constraint reduces the Plebanski-Holst theory to GR in the tetrad-connection formulation.

Quantization of the Plebanski-Holst theory is a constrained BF theory

$$\int \mathcal{D}\mathcal{A}\mathcal{D}B\mathcal{D}\varphi \ e^{iS} = \int \mathcal{D}\mathcal{A}\mathcal{D}B \ \delta(\text{simplicty}) \ e^{-\frac{i}{2}\int_{\mathcal{B}_4} \mathrm{Tr}\left[\left(\star B + \frac{1}{\gamma}B\right) \wedge \mathcal{F}\right]}$$

$$\int \mathcal{D}\mathcal{A}\mathcal{D}B\mathcal{D}\varphi \ e^{iS} = \int \mathcal{D}\mathcal{A}\mathcal{D}B \ \delta(\text{simplicty}) \ e^{-\frac{i}{2}\int_{\mathcal{B}_4} \mathrm{Tr}\left[\left(\star B + \frac{1}{\gamma}B\right)\wedge\mathcal{F}\right]}$$

#### Spinfoam quantization:

- Let  $\mathcal{B}_4$  be a 4-simplex. The above partition function should give the spinfoam vertex amplitude  $A_v$  (local dynamics of LQG).
- Firstly quantize the BF theory,

$$\int \mathscr{D} \mathcal{A} \mathscr{D} B \ e^{-\frac{i}{2} \int_{\mathcal{B}_4} \mathrm{Tr} \left[ \left( \star B + \frac{1}{\gamma} B \right) \wedge \mathcal{F} \right]} = \int \mathscr{D} \mathcal{A} \ \delta(\mathcal{F}(A)) \ .$$



- Then quantize the simplicity constraint and impose the operator constraint to the BF theory.
- The Engle-Pereira-Rovelli-Livine-Freidel-Krasnov (EPRL-FK) model: The simplicity constraint results in the Y-map

$$Y:$$
 4-valent SU(2) invariant tensor  $i_e$   $\hookrightarrow$  4-valent SL(2,C) invariant tensor  $Y(i_e)$ 

(Quantum tetrahedon in spin-network states)

(Boosted quantum tetrahedon)

$$\bullet \ \ \text{The vertex amplitude} \ A_v = \mathrm{Tr}\Big[Y(i_1) \otimes \cdots \otimes Y(i_5)\Big]. \qquad \ \ \text{Spinfoam Amplitude:} \qquad A(\mathcal{K}) = \sum_{\{j,i\}} \prod_f \dim(j) \prod_v A_v(j,i)$$



Semiclassical consistency: recovering discrete gravity dynamics in the semiclassical large-j regime

• Large-j asymptotics of vertex amplitude [Barrett et al 2009, Freidel and Conrady 2008]:

$$A_v = \left( \mathcal{N}_+ e^{iS_{Regge}} + \mathcal{N}_- e^{-iS_{Regge}} \right) \left[ 1 + O\left(1/j\right) \right]$$



 $S_{Regge}$  is the Regge action (discrete Einstein-Hilbert action) of the 4-simplex.

• Recovering semiclassical discrete gravity dynamics on larger 4d simplicial complex [MH, Liu, Qu 2021-2023]

$$S_{Spinfoam}$$
 v.s.  $S_{Regge}$ 





Pirsa: 23030085 Page 6/30

#### Spinfoam LQG with cosmological constant

• The cosmological observation confirms the positive cosmological constant  $\Lambda$  (dark energy) in our universe.

Einstein equation: 
$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu}$$

- The formulation of LQG needs to include the consmological constant.
- In LQG, we treat the (bare) cosmological constant as a fundamental parameter of the theory.

$$\text{Spinfoam Amplitude with } \Lambda : \qquad A^{(\Lambda)}(\mathcal{K}) = \sum_{\{j,i\}}^{\Lambda} \prod_f A_f^{(\Lambda)}(j) \prod_e A_e^{(\Lambda)}(j,i) \prod_v A_v^{(\Lambda)}(j,i)$$

• The EPRL-FK model ( $\Lambda=0$ ) has infra-red divergence due to the unbounded sum over spins. The cosmological constant  $\Lambda$  should provide a natural (infra-red) cut-off to the state-sum and makes the amplitude finite.

#### A brief history of the research on spinfoam with $\Lambda$

- Spinfoam model of 3d gravity with quantum SU(2) group (Tureav-Viro model):
  - Finiteness,
  - Semiclassical consistency: Recovering 3d Regge calculus (discrete GR) with positive  $\Lambda$  in the large-j asymptotics.

Lesson: Cosmological constant should regularize the QG model finite.

- Quantum Lorentz group spinfoam model of 4d gravity: [Noui, Roche 2002, MH 2010, Fairbairn, Meusburger 2010]
  - The models are all finite.
  - But the semiclassical limit is difficult to extract.
- Spinfoam model of 4d gravity with cosmological constant: [Haggard, MH, Kaminski, Riello 2014-2015]

The definition of the model is based on SL(2,C) Chern-Simons theory (on the boundary).

- The semiclassical limit reproduces correctly 4d Regge calculus with  $\Lambda$  (positive or negative)
- But the finiteness of the model is not manifest.
- This talk: Improved model of 4d gravity with cosmological constant: [MH 2021]

We have both

- Finiteness,
- The semiclassical limit reproduces 4d Regge calculus with  $\Lambda$  (positive or negative)







#### A brief history of the research on spinfoam with $\Lambda$

- Spinfoam model of 3d gravity with quantum SU(2) group (Tureav-Viro model):
  - Finiteness,
  - Semiclassical consistency: Recovering 3d Regge calculus (discrete GR) with positive  $\Lambda$  in the large-j asymptotics.

Lesson: Cosmological constant should regularize the QG model finite.

- Quantum Lorentz group spinfoam model of 4d gravity: [Noui, Roche 2002, MH 2010, Fairbairn, Meusburger 2010]
  - The models are all finite.
  - But the semiclassical limit is difficult to extract.
- Spinfoam model of 4d gravity with cosmological constant: [Haggard, MH, Kaminski, Riello 2014-2015]

The definition of the model is based on SL(2,C) Chern-Simons theory (on the boundary).

- The semiclassical limit reproduces correctly 4d Regge calculus with  $\Lambda$  (positive or negative)
- But the finiteness of the model is not manifest.
- This talk: Improved model of 4d gravity with cosmological constant: [MH 2021]

We have both

- Finiteness,
- The semiclassical limit reproduces 4d Regge calculus with  $\Lambda$  (positive or negative)

Pirsa: 23030085 Page 12/30

#### Plebanski, BF, and boundary Chern-Simons

Plebanski formulation of GR: 4d gravity = BF theory + simplicity constraint

BF theory: 
$$S_{BF} = -\frac{1}{2} \int_{\mathcal{B}_4} \operatorname{Tr} \left[ \left( \star B + \frac{1}{\gamma} B \right) \wedge \mathcal{F}(\mathcal{A}) \right] - \frac{|\Lambda|}{12} \int_{\mathcal{B}_4} \operatorname{Tr} \left[ \left( \star B + \frac{1}{\gamma} B \right) \wedge B \right]$$

B is  $\mathfrak{sl}_2\mathbb{C}$ -valued 2-form.  $\mathcal{F}(\mathcal{A})$  is the curvature of  $\mathrm{SL}(2,\mathbb{C})$  connection  $\mathcal{A}$ .  $\gamma$  is the Barbero-Immirzi parameter.  $\star$  is the dual for the internal  $\mathrm{SL}(2,\mathbb{C})$ .

Simplicity constraint:  $B = \pm e \wedge e$  relates B to cotetrad e.

Inserting the simplicity constraint to the BF action, we obtain the Holst action of gravity

$$S_{\text{Holst}} = -\frac{1}{2} \int_{\mathcal{B}_4} \text{Tr} \left[ \left( \star e \wedge e + \frac{1}{\gamma} e \wedge e \right) \wedge \mathcal{F}(\mathcal{A}) \right] - \frac{\Lambda}{12} \int_{\mathcal{B}_4} \text{Tr} \left[ \left( \star e \wedge e \right) \wedge e \wedge e \right]$$

The Holst action of gravity is on-shell equivalent to the Einstein-Hilbert action

 $\delta S_{
m Holst} \implies {
m Einstein equation with } \Lambda$ 

#### Plebanski, BF, and boundary Chern-Simons

The general procedure to construct the spinfoam amplitude:

1. Quantize the BF theory,

BF theory: 
$$S_{BF} = -\frac{1}{2} \int_{\mathcal{B}_4} \operatorname{Tr} \left[ \left( \star B + \frac{1}{\gamma} B \right) \wedge \mathcal{F}(\mathcal{A}) \right] - \frac{|\Lambda|}{12} \int_{\mathcal{B}_4} \operatorname{Tr} \left[ \left( \star B + \frac{1}{\gamma} B \right) \wedge B \right]$$

2. Impose the simplicity constraint at the quantum level

Zero cosmological constant: The partition function of BF + simplicity constraint give the EPRL-FK spinfoam amplitude in LQG

Nonzero cosmological constant: Integrating out B field in  $\int dB d\mathcal{A} \, e^{iS_{BF}}$  (Gaussian integral) gives the constraint

$$\mathcal{F}(\mathcal{A}) = \frac{|\Lambda|B}{3}$$
 relating B to the curvature of the connection

Integrating out B field gives the boundary  $SL(2,\mathbb{C})$  Chern-Simons theory

$$\frac{3i}{4|\Lambda|} \int_{\mathcal{B}_4} \operatorname{Tr} \left[ \left( \star + \frac{1}{\gamma} \right) \mathcal{F} \wedge \mathcal{F} \right] = \frac{t}{8\pi} \int_{S^3} \operatorname{Tr} (\mathcal{A} \wedge d\mathcal{A} + \frac{2}{3} \mathcal{A} \wedge \mathcal{A} \wedge \mathcal{A}) + \frac{\bar{t}}{8\pi} \int_{S^3} \operatorname{Tr} (\bar{\mathcal{A}} \wedge d\bar{\mathcal{A}} + \frac{2}{3} \bar{\mathcal{A}} \wedge \bar{\mathcal{A}} \wedge \bar{\mathcal{A}})$$

complex CS coupling constant: 
$$t=k(1+i\gamma), \quad k=\frac{12\pi}{|\Lambda|\ell_P^2\gamma}\in\mathbb{Z}_+$$

#### Implementation of simplicity constraint

We need to impose the simplicity constraint  $B=\pm e\wedge e$  to the quantum Chern-Simons theory

$$\mathcal{F}(\mathcal{A}) = rac{|\Lambda|B}{3}$$
 translate the constraint on  $B$  to the constraint on the Chern-Simons connection

The simplicity constraint has the 1st-class and 2nd-class components (according to the CS symplectic form)

1st-class constraint:  $\{C_i, C_j\} = f_{ij}^k C_k$ 

2nd-class constraint:  $\{C_i, C_j\} = \text{non-vanishing on the constraint surface}$ 

• Quantizing the 1st-class constraints and imposing them strongly

$$\hat{C}_i |\Psi\rangle = 0$$

• Imposing the 2nd-class constraints weakly with coherent states

$$|\Psi_{(p,q)}\rangle$$

The 2nd-class constraints are imposed on the label (p,q) (classical phase space point), where the coherent state is peaked.

#### Plebanski, BF, and boundary Chern-Simons

The general procedure to construct the spinfoam amplitude:

1. Quantize the BF theory,

BF theory: 
$$S_{BF} = -\frac{1}{2} \int_{\mathcal{B}_4} \operatorname{Tr} \left[ \left( \star B + \frac{1}{\gamma} B \right) \wedge \mathcal{F}(\mathcal{A}) \right] - \frac{|\Lambda|}{12} \int_{\mathcal{B}_4} \operatorname{Tr} \left[ \left( \star B + \frac{1}{\gamma} B \right) \wedge B \right]$$

2. Impose the simplicity constraint at the quantum level

Zero cosmological constant: The partition function of BF + simplicity constraint give the EPRL-FK spinfoam amplitude in LQG

Nonzero cosmological constant: Integrating out B field in  $\int dB d\mathcal{A} \, e^{iS_{BF}}$  (Gaussian integral) gives the constraint

$$\mathcal{F}(\mathcal{A}) = \frac{|\Lambda|B}{3}$$
 relating B to the curvature of the connection

Integrating out B field gives the boundary  $SL(2,\mathbb{C})$  Chern-Simons theory

$$\frac{3i}{4|\Lambda|} \int_{\mathcal{B}_4} \operatorname{Tr} \left[ \left( \star + \frac{1}{\gamma} \right) \mathcal{F} \wedge \mathcal{F} \right] = \frac{t}{8\pi} \int_{S^3} \operatorname{Tr} (\mathcal{A} \wedge d\mathcal{A} + \frac{2}{3} \mathcal{A} \wedge \mathcal{A} \wedge \mathcal{A}) + \frac{\bar{t}}{8\pi} \int_{S^3} \operatorname{Tr} (\bar{\mathcal{A}} \wedge d\bar{\mathcal{A}} + \frac{2}{3} \bar{\mathcal{A}} \wedge \bar{\mathcal{A}} \wedge \bar{\mathcal{A}})$$

complex CS coupling constant: 
$$t=k(1+i\gamma), \quad k=\frac{12\pi}{|\Lambda|\ell_P^2\gamma}\in\mathbb{Z}_+$$

#### Implementation of simplicity constraint

We need to impose the simplicity constraint  $B=\pm e\wedge e$  to the quantum Chern-Simons theory

$$\mathcal{F}(\mathcal{A}) = rac{|\Lambda|B}{3}$$
 translate the constraint on  $B$  to the constraint on the Chern-Simons connection

The simplicity constraint has the 1st-class and 2nd-class components (according to the CS symplectic form)

1st-class constraint:  $\{C_i, C_j\} = f_{ij}^k C_k$ 

2nd-class constraint:  $\{C_i, C_j\} = \text{non-vanishing on the constraint surface}$ 

• Quantizing the 1st-class constraints and imposing them strongly

$$\hat{C}_i |\Psi\rangle = 0$$

• Imposing the 2nd-class constraints weakly with coherent states

$$|\Psi_{(p,q)}\rangle$$

The 2nd-class constraints are imposed on the label (p,q) (classical phase space point), where the coherent state is peaked.

# Boundary of 4-simplex and defects

Consider the 4-manifold  $\mathcal{B}_4$  (where BF theory lives) is a 4-simplex.

The boundary of 4-simplex is a 3-sphere triangulated by 5 tetrahedra

The SL(2,C) Chern-Simons theory is on the 3-sphere

The dual graph  $\Gamma_5$  on the 3-sphere: 5 nodes dual to tetrahedra, 10 links dual to triangles



$$\mathcal{F}(\mathcal{A}) = \frac{|\Lambda|B}{3}$$

The flux of B (relating to cotetrad) equals to the magnetic flux of Chern-Simons connection on the triangle

This motivates us to remove the dual graph (and the tubular neighborhood) from the 3-sphere, to create the flux

 $S^3 \setminus \Gamma_5$  is the graph-complement 3-manifold

The  $SL(2,\mathbb{C})$  Chern-Simons theory is defined on  $S^3 \setminus \Gamma_5$ 



#### Chern-Simons theory and spinfoam amplitude



Spinfoam 4-simplex amplitude [Haggard, HM, Kaminski, Riello 2014]

$$A_v^0 := \int D\mathcal{A}D\bar{\mathcal{A}} e^{-iS_{CS}(\mathcal{A},\bar{\mathcal{A}})} \Psi_{\Gamma_5}(\mathcal{A},\bar{\mathcal{A}})$$

 $S_{CS}(\mathcal{A}, \bar{\mathcal{A}}):$   $\mathrm{SL}(2, \mathbb{C})$  Chern-Simons action on  $S^3$ 

 $\Psi_{\Gamma_5}(\mathcal{A}, \bar{\mathcal{A}})$  : Wilson graph on  $\Gamma_5$  with representation labels j

The semiclassical consistency: We take j large and  $\Lambda$  small with  $j\Lambda$  fixed. By the stationary phase approximation of the path integral,

$$A_v^0 = \left( \mathcal{N}_+ e^{iS_{\text{Regge},\Lambda}} + \mathcal{N}_- e^{-iS_{\text{Regge},\Lambda}} \right) \left[ 1 + O\left(1/j\right) \right].$$

It correctly reproduces the classical Regge action (discrete Einstein-Hilbert action) with  $\Lambda$  in 3+1 dimensions.

Drawback: The model is an infinite dimensional formal functional integral. The finiteness is obscure.

The quantum Chern-Simons theory is defined on an ideal triangulation of the 3-manifold.

The 3-manifold  $S^3 \setminus \Gamma_5$  can be decomposed by 5 idea octahedra, each of which is 4 ideal tetrahedra (tetrahedra with vertices truncated)







Chern-Simons partition function on

an ideal tetrahedron: quantum dilogarithm

$$\Psi_{\Delta}(\mu \mid m) = \begin{cases} \prod_{j=0}^{\infty} \frac{1 - q^{j+1}z^{-1}}{1 - \widetilde{q}^{-j}\widetilde{z}^{-1}} & |q| < 1, \\ \prod_{j=0}^{\infty} \frac{1 - \widetilde{q}^{j+1}\widetilde{z}^{-1}}{1 - q^{-j}z^{-1}} & |q| > 1. \end{cases}$$

$$q = \exp\left(\frac{4\pi i}{t}\right), \, \widetilde{q} = \exp\left(\frac{4\pi i}{t}\right), \, z = \exp\left[\frac{2\pi i}{k}(-ib\mu - m)\right], \, \widetilde{z} = \exp\left[\frac{2\pi i}{k}\left(-ib^{-1}\mu + m\right)\right]$$

$$b^2 = \frac{1 - i\gamma}{1 + i\gamma} \qquad \text{Re}(b) > 0$$

Faddeev 1995, Kashaev 1996, Dimofte, Gaiotto, Gukov, 2011-2015

 $\Psi_{\Delta}(\mu|m)$  is analytic in the upper-half plane  $\mathrm{Im}(\mu)>0$ 

Considering  $\alpha, \beta > 0$ , we have the following property (useful for the finiteness)

$$\left| e^{-\frac{2\pi}{k}\beta\mu} \Psi_{\Delta}(\mu + i\alpha|m) \right|$$

$$\sim \begin{cases} \exp\left[ -\frac{2\pi}{k}\beta\mu \right] & \mu \to \infty \\ \exp\left[ -\frac{2\pi}{k}\mu(\alpha + \beta - Q/2) \right] & \mu \to -\infty \end{cases} \qquad Q = b + \bar{b} > 0$$



Therefore  $e^{-\frac{2\pi}{k}\beta\mu}\Psi_{\Delta}(\mu+i\alpha|m)$  is a Schwartz function of  $\mu$  if  $\alpha,\beta$  is inside the open triangle  $\mathfrak{P}(\Delta)$ :

$$\mathfrak{P}(\Delta) = \{ (\alpha, \beta) \in \mathbb{R}^2 | \alpha, \beta > 0, \ \alpha + \beta < Q/2 \}.$$

 $\alpha, \beta \in \mathfrak{P}(\Delta)$  is called a *positive angle structure*.

Dimofte 2014 Andersen, Kashaev 2014

The Fourier transform  $\int d\mu \, e^{\frac{2\pi i}{k}\nu\mu} \Psi_{\Delta}(\mu|m)$  is convergent if the integration contour is shifted away from the real axis while  $\alpha = \operatorname{Im}(\mu)$ ,  $\beta = \operatorname{Im}(\nu)$  belong to  $\mathfrak{P}(\Delta)$ 

Chern-Simons partition function on ideal octahedron

$$\begin{split} Z_{\text{oct}}(\mu_{X}, \mu_{Y}, \mu_{Z} | m_{X}, m_{Y}, m_{Z}) \\ &= \Psi_{\Delta} \left( \mu_{X} | m_{X} \right) \, \Psi_{\Delta} \left( \mu_{Y} | m_{Y} \right) \, \Psi_{\Delta} \left( \mu_{Z} | m_{Z} \right) \, \Psi_{\Delta} \left( \mu_{W} | m_{W} \right) \\ \mu_{W} &= iQ - \mu_{X} - \mu_{Y} - \mu_{Z}, \quad m_{W} = -m_{X} - m_{Y} - m_{Z} \end{split}$$



 $e^{-\frac{2\pi}{k}\sum_{i}\beta_{i}\mu_{i}}Z_{\mathrm{oct}}\left(\{\mu_{i}+i\alpha_{i}\}\mid\{m_{i}\}\right) \text{ is a Schwartz function of }\mu_{X},\mu_{Y},\mu_{Z}\text{, if }(\alpha_{X},\beta_{X},\alpha_{Y},\beta_{Y},\alpha_{Z},\beta_{Z})\in\mathbb{R}^{6}\text{ is }$ 

contained by a non-empty open polytope  $\mathfrak{P}(oct)$ 

 $(\vec{\alpha}, \vec{\beta}) \in \mathfrak{P}(\text{oct})$  is a positive angle structure of the ideal octahedron.



**Theorem:** The partition function of SL(2,C) Chern-Simons theory converges absolutely if the 3-manifold admits a positive angle structure

Dimofte 2014 Andersen, Kashaev 2014



CS partition function on  $S^3 \setminus \Gamma_5$  [MH 2021]

$$\mathcal{Z}_{S^3 \setminus \Gamma_5} = ext{Fourier transform} \cdot \prod_{a=1}^5 Z_{ ext{oct(a)}}$$

which is a finite sum of 15-dimensional integrals (state inegral model).

The space of postive angle structures is not empty

$$\mathfrak{P}(S^3 \setminus \Gamma_5) = \mathfrak{P}(\operatorname{oct})^{\times 5}$$

 $\mathcal{Z}_{S^3\setminus\Gamma_5}$  converges absolutely.

#### Quantum simplicity constraint

 $\mathcal{F}(\mathcal{A}) = \frac{|\Lambda|B}{3} \qquad \begin{array}{c} \text{The flux of $B$ equals to the magnetic flux of Chern-} \\ \text{Simons connection on the triangle} \end{array}$ 

 $O_f = e^{|\Lambda|B_f/3}$  holonomy around the triangle

Discrete simplicity constraint on each tetrahedron:

 $\exists \ {\rm timelike} \ {\rm normal} \ N^J, \quad B_f^{IJ}N_J=0 \ {\rm for \ all} \ {\rm tetrahedron} \ {\rm faces} \ f.$ 

Near each node, all four  $O_f$  of the tetrahedron can be conjugated to SU(2) simultaneously.



**Definition:** Semiclassically the simplicity constraint restricts the moduli spaces of  $SL(2,\mathbb{C})$  flat connections on 4-holed spheres to the ones that can be gauge-transformed to SU(2) flat connections.

#### Quantum simplicity constraint

The 1st-class component of the simplicity constraint:

The eigenvalue of  $O_f$  is the exponental area

$$\lambda_f = \exp\left(\frac{4\pi i}{k}j_f\right) \in \mathrm{U}(1), \qquad j_f = 0, \frac{1}{2}, \cdots, \frac{k-1}{2}$$

The CS level  $k \sim \Lambda^{-1}$  gives a cut-off of the area.

All  $\lambda_f$  are mutually commutative in quantum Chern-Simons theory. The 1st-class simplicity constraint is imposed strongly to the CS partition function

$$\mathcal{Z}_{S^3\setminus\Gamma_5}\left(\{\lambda_f\},\,\{\mathcal{X}_{a=1,\cdots 5}\}\right)$$

Dual graph of the triangulated sphere



"4d area = 3d area" gives a restriction to the positive angle structure, as an analog of the similar consistency condition in the EPRL model [Ding, MH, Rovelli 2010].

# Second-class simplicity constraint

Fixing all  $\lambda_f$ ,

The moduli space of  $SL(2,\mathbb{C})$  flat connection on 4-holed sphere is 4 real dimensional (non-compact space)



The moduli space of  $\mathrm{SU}(2)$  flat connection on 4-holed sphere is 2 real dimensional (compact space)

Weakly impose the 2nd-class constraint to the CS partition function:

1. Express the CS partition function in the coherent state basis

$$A_v(j,\rho) = \langle \Psi_\rho \mid \mathcal{Z}_{S^3 \setminus \Gamma_5} \rangle$$

where  $\rho$  labels the point in the moduli space where the coherent state is peaked

2. Imposing the semiclassical second-class constraint to the coherent state label  $\rho$ 

The resulting spinfoam vertex amplitude  $A_v$  is a finite sum of absolutely convergent finite-dimensional integrals.

Gluing 3-manifold through 4-holed sphere corresponds to taking inner product  $L^2(\mathbb{R})\otimes \mathbb{C}^k$ 

$$\sum_{m \in \mathbb{Z}/k\mathbb{Z}} \int d\mu f(\mu \mid m) f'(\mu \mid m) = \sum_{m,n \in \mathbb{Z}/k\mathbb{Z}} \int d\mu d\nu f(\mu \mid m) \left[ \delta(\mu,\nu) \delta_{m,n} \right] f'(\nu \mid n)$$

$$= \sum_{m,n \in \mathbb{Z}/k\mathbb{Z}} \int d\mu d\nu f(\mu \mid m) \left[ \int d\rho \Psi_{\rho}^{*}(\mu \mid m) \Psi_{\rho}(\nu \mid n) \right] f'(\nu \mid n)$$

Restrict  $\rho$  integral to the compact moduli space of SU(2) flat connection.

Pirsa: 23030085 Page 27/30

# The finiteness of spinfoam amplitude

The full amplitude on a 4d simplicial complex

$$A(\mathcal{K}) = \sum_{j_f=1/2}^{(k-1)/2} \prod_f A_f(j_f) \int d\mu(\rho) \prod_v A_v(j,\rho)$$

**Theorem:**  $A(\mathcal{K})$  is finite, provided that  $d\mu(\rho)$  is regular on the compact moduli space.

#### Large-j asymptotics of the 4-simplex amplitude

- $\bullet$  The semiclassical limit is  $j\to\infty$  and  $\Lambda\to 0$   $(k\to\infty)$  with  $j\Lambda$  fixed
- The stationary phase analysis can be applied to the finite-dimensional integral  $A_v(j,\rho)=\langle \Psi_\rho\mid \mathcal{Z}_{S^3\backslash\Gamma_5}\rangle$
- With the boundary condition corresponding to a non-degenerage 4-simplex, the integral has exactly 2 critical points corresponding to the constant curvature 4-simplex geometry with opposite orientations.

  Haggard, MH, Kaminski, Riello 2014-2015
- The asymptotics of the amplitude

$$A_v = \left( \mathscr{N}_+ e^{iS_{Regge,\Lambda} + C} + \mathscr{N}_- e^{-iS_{Regge,\Lambda} - C} \right) \left[ 1 + O\left(1/j\right) \right]$$
 MH 2021

 $S_{Regge,\Lambda}$  is the 4d Regge action with cosmological constant, C is a geometry-independent constant.

Pirsa: 23030085 Page 29/30

#### Conclusion & Outlook

- The 4d spinfoam amplitude with cosmological constant is constructed with the state-integral model of CS theory
- The spinfoam amplitudes are all finite.
- The semiclassical behavior of 4-simplex amplitude reproduces 4d Regge calculus with cosmological constant
- This spinfoam model is so far the best 4-dimensional analog of the Tureav-Viro model.

#### Some interesting future perspectives:

- Simplicity constraint and SL(2,C) | SU(2) interface: Analog of Y-map
- Degrees of divergence and radiative corrections in the small  $\Lambda$  limit
- Numerical computation, critical points and Lefschetz thimbles

.



Pirsa: 23030085 Page 30/30