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Abstract: We present an improved formulation of 4-dimensional Lorentzian spinfoam quantum gravity with cosmologica constant. The construction
of spinfoam amplitudes uses the state-integral model of PSL(2,C) Chern-Simons theory and the implementation of simplicity constraint. The
formulation has 2 key features: (1) spinfoam amplitudes are all finite, and (2) With suitable boundary data, the semiclassical asymptotics of the
vertex amplitude has two oscillatory terms, with phase plus or minus the 4-dimensional Lorentzian Regge action with cosmological constant for the
constant curvature 4-simplex.
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Overview of Loop Quantum Gravity and Spinfoams

e Loop Quantum Gravity (LQG) is a background-independent and non-perturbative approach to quantum gravity in 3+1

dimensions.

e Background independence: Quantum Gravity = Quantum Spacetime Geometry

4-simplex v

(elementary cell)

4d triangulation K

e Non-perturbative quantum gravity: We construct the full transition amplitude of quantum gravity instead of perturbative

expansion

Spinfoam Amplitude: AK) = Z HAf(j) HA{J_(j, i) HAU(j, i)

{43} J
Ayg: amplitude associated to each triangle f in K. A.: amplitude associated to each tetrahedron e. A,: amplitude

associated to each 4-simplex v. {j,7}: intermediate states (spin-network state in LQG)
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Overview of Loop Quantum Gravity and Spinfoams

b o i - A i
Plebanski-Holst theory of GR: S = o / (Tr [(*B + B) /\]:(A)] + prox B A BEL _ |6T1- [(h[; T lB) A B})
J By g L o
B is sl;C-valued 2-form. F(.A) is the curvature of SL(2,C) connection A. ~ is the Barbero-Immirzi parameter.
¢ is Lagrangian multiplier saptisfying ¢/”5%¢; ;5c; = 0. x is the dual for the internal SL(2, C).
el 0 - prpe glJ gKL _ 17 JJKL Bl Al (Simplicit traint)
R € B = Ve = =iter et implicity constrain

The simplicity constraint reduces the Plebanski-Holst theory to GR in the tetrad-connection formulation.

Quantization of the Plebanski-Holst theory is a constrained BF theory

/ PADBDp &5 = / DADB 6(simplicty) ¢~ 3 Jss TI(:B+3B)AF]
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Overview of Loop Quantum Gravity and Spinfoams
/.@A.@BEZ@ e = /@A.@B d(simplicty) ¢ Io, TH|(+B+5 B)AF]

Spinfoam quantization:

e Let By be a 4-simplex. The above partition function should give the spinfoam vertex amplitude A, (local dynamics of LQG).

e Firstly quantize the BF theory, é

/@A.@B 6—-5— I, TEl(xB+2BYAF] /.@A 5(F(A)) . 1 '

‘ ' h =«
e Then quantize the simplicity constraint and impose the operator constraint to the BF theory.
e The Engle-Pereira-Rovelli-Livine-Freidel-Krasnov (EPRL-FK) model: The simplicity constraint results in the Y-map

Y :  4-valent SU(2) invariant tensor i, =  4-valent SL(2,C) invariant tensor Y'(¢.)
(Quantum tetrahedon in spin-network states) (Boosted quantum tetrahedon)
e | he vertex amp”tude f{v — TT[Y(?]) R ® }’(?5) . Spinfoam Amplitude: fl(’C) = Z Hdnn(;) ]:[;11.(]”
{j?i} f v
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Overview of Loop Quantum Gravity and Spinfoams

Semiclassical consistency: recovering discrete gravity dynamics in the semiclassical large-j regime
e Large-j asymptotics of vertex amplitude [Barrett et al 2009, Freidel and Conrady 2008]: o
A, = (A€ Resse 4 N e~ S Resse) [1 4+ O (1/5)]
Shegge i1s the Regge action (discrete Einstein-Hilbert action) of the 4-simplex.

e Recovering semiclassical discrete gravity dynamics on larger 4d simplicial complex [MH, Liu, Qu 2021-2023]

SSpinfoam V.S. SR.cggc

0.128

0.126

-0.010 =0.005
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Spinfoam LQG with cosmological constant

The cosmological observation confirms the positive cosmological constant A (dark energy) in our universe.

1
Einstein equation: Hi) = SRQ“U + Ag,, = 8aGT.,,

e The formulation of LQG needs to include the consmological constant.

In LQG, we treat the (bare) cosmological constant as a fundamental parameter of the theory.

A
Spinfoam Amplitude with A: AW () = 37 T[4V (6) [TANG. 0 [T A0 G
{j.-‘i} f e v

The EPRL-FK model (A = 0) has infra-red divergence due to the unbounded sum over spins. The cosmological constant A

should provide a natural (infra-red) cut-off to the state-sum and makes the amplitude finite.
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A brief history of the research on spinfoam with A

e Spinfoam model of 3d gravity with quantum SU(2) group (Tureav-Viro model):
— Finiteness,
— Semiclassical consistency: Recovering 3d Regge calculus (discrete GR) with positive A in the large-j asymptotics.
Lesson: Cosmological constant should regularize the QG model finite.
e Quantum Lorentz group spinfoam model of 4d gravity: [Noui, Roche 2002, MH 2010, Fairbairn, Meusburger 2010]
— The models are all finite.
— But the semiclassical limit is difficult to extract.
e Spinfoam model of 4d gravity with cosmological constant: [Haggard, MH, Kaminski, Riello 2014-2015]
The definition of the model is based on SL(2,C) Chern-Simons theory (on the boundary).
— The semiclassical limit reproduces correctly 4d Regge calculus with A (positive or negative)
— But the finiteness of the model is not manifest.
e This talk: Improved model of 4d gravity with cosmological constant: [MH 2021]

We have both
— Finiteness,

— The semiclassical limit reproduces 4d Regge calculus with A (positive or negative)
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Plebanski, BF, and boundary Chern-Simons

Plebanski formulation of GR: 4d gravity = BF theory + simplicity constraint

1 1 . a 1
BF theory: Spr = —= / by K*B + —B) A .F(A)] — —| | “Er l(*B + —B) A B]
2 i ol L2 e 9

< JB,

B is sl,C-valued 2-form. F(.A) is the curvature of SL(2,C) connection 4.  is the Barbero-Immirzi parameter.

* is the dual for the internal SL(2, C).

Simplicity constraint: B =4eAe relates B to cotetrad e.

Inserting the simplicity constraint to the BF action, we obtain the Holst action of gravity

SHolst = % / T l:(*ﬁ/\€+ %e/\e) /\.7-'(.,4)] — %/ Tr[(xe Ae) AeAe]
JB, j By

The Holst action of gravity is on-shell equivalent to the Einstein-Hilbert action

0SHolst ==  Einstein equation with A
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Plebanski, BF, and boundary Chern-Simons

The general procedure to construct the spinfoam amplitude:

1. Quantize the BF theory,

BF theory: Spr = —_1 / Ty K*BJr IB) /\}"(A)} = / T [(*B + IB) /\Bl
2, By 2 12 By 1

2. Impose the simplicity constraint at the quantum level

Zero cosmological constant: The partition function of BF + simplicity constraint give the EPRL-FK spinfoam
amplitude in LQG

Nonzero cosmological constant: Integrating out B field in [ dBdAe'®57 (Gaussian integral) gives the constraint

; A|B
A = % relating B to the curvature of the connection

Integrating out B field gives the boundary SL(2,C) Chern-Simons theory

3i 1 t 2 . [ - 5 9
. BdTrl(*—&-;)}'/\}'] —ngaTr(.A/\dA—l—EA/\A/\A)+—Tr‘/SSTl(A/\d.A+§A/\A/\A)
127

L el oy
Nlzy =

complex CS coupling constant: t=Fk(l+iy), &k
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Implementation of simplicity constraint

We need to impose the simplicity constraint B = +¢ A e to the quantum Chern-Simons theory

F(A) = S translate the constraint on B to the constraint on the Chern-Simons connection

The simplicity constraint has the 1st-class and 2nd-class components (according to the CS symplectic form)

1st-class constraint: {C;,C;} = f-;_jkC‘k

2nd-class constraint: {Ci.C,} = non-vanishing on the constraint surface
e Quantizing the 1st-class constraints and imposing them strongly
C; W) =0
e Imposing the 2nd-class constraints weakly with coherent states

|\p(p.q)>

The 2nd-class constraints are imposed on the label (p,q) (classical phase space point), where the coherent state is peaked.
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3i 1 t 2 L < 5 s
L BdTrl(*—&-;)}'/\}'] —ngaTr(.A/\dA—l—EA/\A/\A)+—Tr‘/SSTl(A/\d.A+§A/\A/\A)
127

el
Alggy = ¢

complex CS coupling constant: t=Fk(l+iy), &k
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Boundary of 4-simplex and defects

Consider the 4-manifold B4 (where BF theory lives) is a 4-simplex.
The boundary of 4-simplex is a 3-sphere triangulated by 5 tetrahedra

The SL(2,C) Chern-Simons theory is on the 3-sphere

The dual graph I's on the 3-sphere: 5 nodes dual to tetrahedra, 10 links dual to triangles

Dual graph of the triangulated sphere

The flux of B (relating to cotetrad) equals to the
F(A) = ——  magnetic flux of Chern-Simons connection on the

triangle

This motivates us to remove the dual graph (and the tubular

neighborhood) from the 3-sphere, to create the flux

53\ T's is the graph-complement 3-manifold

The SL(2,C) Chern-Simons theory is defined on S3 \ I';
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Chern-Simons theory and spinfoam amplitude

Spinfoam 4-simplex amplitude [Haggard, HM, Kaminski, Riello 2014]

e ] DADAc=iSestAA g (A, A)

Scs(A, A : SL(2,C) Chern-Simons action on S

Ur, (A, A) : Wilson graph on I's with representation labels j

The semiclassical consistency: We take j large and A small with jA fixed. By the

stationary phase approximation of the path integral,
A7 = (fCetBund 4o SRt ) [1 £ 01 5)]

It correctly reproduces the classical Regge action (discrete Einstein-Hilbert action) with

A in 3+1 dimensions.

Drawback: The model is an infinite dimensional formal functional integral. The finiteness is obscure.
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State integral model of SL(2,C) Chern-Simons theory

The quantum Chern-Simons theory is defined on an ideal triangulation of the 3-manifold.

The 3-manifold S® \ I's can be decomposed by 5 idea octahedra, each of which is 4 ideal tetrahedra (tetrahedra with vertices truncated)

o) Ocliz)

Chern-Simons partition function on

an ideal tetrahedron: quantum dilogarithm

o0

1— gi+lp1

[1 cE

io |
Ua(u | m) = ¢ St
g >1
R ol I |
5o S
e q = exp (4—:”) g = exp (i:-’-‘) z = exp [%(-iby - m)] Z = exp [% (-fb'l,u + m)}
bh* = . Re(b) > () Faddeev 1995, Kashaev 1996,
1 Skt Dimofte, Gaiotto, Gukov, 2011-2015
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State integral model of SL(2,C) Chern-Simons theory

WA (p|m) is analytic in the upper-half plane Im(p) > 0

Considering a, 3 > 0, we have the following property (useful for the finiteness)

e'QT-wﬁ"’lIJ;_x,(p + mf|m)‘

2

exp [—2Z3u] [ = 00

- ; Q=b+b>0
exp [—QT’__Tp.(oe + 8- Q/2)] i — —00

Therefore e~ 21U o (1 + ia|m) is a Schwartz function of y if a, 3 is inside the open triangle B(A):
B(A) = {(a,B) € R*|a, >0, o+ 8 < Q/2}.

a, 3 € P(A) is called a positive angle structure. HithoHe a0i
Andersen, Kashaev 2014

2mi

The Fourier transform [ due™s “#W 5 (u|m) is convergent if the integration contour is shifted away

from the real axis while & = Im(u), = Im(v) belong to ‘B(A)
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State integral model of SL(2,C) Chern-Simons theory

Chern-Simons partition function on ideal octahedron

Zoct(ix, pby, pzlmx, my,mz)
= Wx (,Et_x"mx) WA (‘uyl’!ny) LN (ptz‘??lz) WA (p,{_.l[_.-'lmn.-')

pw =1tQ — px — py — iz, Mw = —Mx — My — My

e~ Xibinig, ({pi +ia;} | {m;}) is a Schwartz function of pux, py, pz, if (ax,Bx,ay, By,az,Bz) € RS is

contained by a non-empty open polytope B(oct) Do =5
0.3

(&, 3) € P(oct) is a positive angle structure o)

of the ideal octahedron. .

-0.1

0.2

-0.3

Theorem: The partition function of SL(2,C) Chern-Simons theory converges absolutely if the 3-manifold admits a positive

angle structure Dimofte 2014

Andersen, Kashaev 2014
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State integral model of SL(2,C) Chern-Simons theory

ou " CS partition function on S\ T's [MH 2021]

5
Zgss\r, = Fourier transform - H Zoct(s)

a=1]1
which is a finite sum of 15-dimensional integrals (state

inegral model).

The space of postive angle structures is not empty

P(S*\Ts) = P(oct)

- Zgnr, converges absolutely.
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Quantum simplicity constraint

7 Dual graph of the triangulated sphere
A The flux of B equals to the magnetic flux of Chern-
F(A) = It

3 Simons connection on the triangle
Of = elMBr/3  holonomy around the triangle

Discrete simplicity constraint on each tetrahedron:

3 timelike normal N7, B}JNJ = (0 for all tetrahedron faces f.

Near each node, all four O of the tetrahedron

can be conjugated to SU(2) simultaneously.

4-holed sphere

Definition: Semiclassically the simplicity constraint restricts the moduli spaces of SL(2,C) flat connections on 4-holed

spheres to the ones that can be gauge-transformed to SU(2) flat connections.
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Quantum simplicity constraint

The 1st-class component of the simplicity constraint: Dual graph of the triangulated sphere

The eigenvalue of Oy is the exponental area

41y | : I} :
Af.:cxp(_}:,jf)eU(l)’ Jf:o‘i’“-’

The CS level k ~ A~! gives a cut-off of the area.

All Ay are mutually commutative in quantum Chern-Simons theory.

The 1st-class simplicity constraint is imposed strongly to the CS par-

tition function

Zss\rb ({Af}\ {Xa:],mfb})

“4d area = 3d area” gives a restriction to the positive angle structure, as an analog of the similar consistency condition

in the EPRL model [Ding, MH, Rovelli 2010].
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Second-class simplicity constraint
Fixing all Ay,

Semiclassical

! . 2nd-cl 1 :
The moduli space of SL(2, C) flat connection cgns(t:r:isnst The moduli space of SU(2) flat connection

v

on 4-holed sphere is 4 real dimensional on 4-holed sphere is 2 real dimensional

(non-compact space) (compact space)

Weakly impose the 2nd-class constraint to the CS partition function:

1. Express the CS partition function in the coherent state basis

A4, p) = (¥p | Zss\1y)
where p labels the point in the moduli space where the coherent state is peaked

2. Imposing the semiclassical second-class constraint to the coherent state label p

The resulting spinfoam vertex amplitude A, is a finite sum of absolutely convergent finite-dimensional integrals.
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Gluing 3-manifold through 4-holed sphere corresponds to taking inner product L?(R) @ C*

> [dusimpuim = 3 [ dudv fn | m) 50,0)n0) £ )
meL/kE mn€L/ kL
- Z /d,udu f(p|m) [/dp (| m)T,(v | n)| f'(v|n)
mned/ kL’ *

Restrict p integral to the compact moduli space of SU(2) flat connection.
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The finiteness of spinfoam amplitude

The full amplitude on a 4d simplicial complex

(k—1)/2 .
AK) = Z H Ar(Gr) /d,u(p) H A4, p)
jf:]/z f » v
Theorem: A(K) is finite, provided that du(p) is regular on the compact moduli space. MH 2021
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Large-j asymptotics of the 4-simplex amplitude

The semiclassical limit is j — o0 and A = 0 (k — o0) with jA fixed

The stationary phase analysis can be applied to the finite-dimensional integral A,(j,p) = (¥, | Zgs\r,)

With the boundary condition corresponding to a non-degenerage 4-simplex, the integral has exactly 2 critical points corre-

sponding to the constant curvature 4-simplex geometry with opposite orientations. Haggard, MH, Kaminski, Riello 2014-2015

The asymptotics of the amplitude
‘41? sl (U’,‘,.-;_e‘isug-_q_qe,,-\+C = _L/,jf_e_isltemre,:\—c) [1 X O (1/.})] MH 2021

SRegge,n 15 the 4d Regge action with cosmological constant, C' is a geometry-independent constant.
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Conclusion & Outlook

« The 4d spinfoam amplitude with cosmological constant is constructed with the state-integral model of CS theory
« The spinfoam amplitudes are all finite.
« The semiclassical behavior of 4-simplex amplitude reproduces 4d Regge calculus with cosmological constant

« This spinfoam model is so far the best 4-dimensional analog of the Tureav-Viro model.

Some interesting future perspectives: SL(2,C)ei | SU(2)

« Simplicity constraint and SL(2,C) | SU(2) interface: Analog of Y-map

. Degrees of divergence and radiative corrections in the small A limit > '

« Numerical computation, critical points and Lefschetz thimbles
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