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Abstract: In massless QED, we find that the classical U(1) axial symmetry is not completely broken by the Adler-Bell-Jackiw anomaly. Rather, it is
resurrected as a generalized global symmetry labeled by the rational numbers. Intuitively, this new global symmetry in QED is a composition of the
naive axial rotation and a fractional quantum Hall state. The conserved symmetry operators do not obey a group multiplication law, but a
non-invertible fusion algebra. We further generalize our construction to QCD, and show that the neutral pion decay can be derived from a matching
condition of the non-invertible global symmetry. Finally, we find a non-invertible Gauss law in axion-Maxwell theory.
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Mainly based on

[Choi-Lam-SHS 2205.05086 (PRL)]
[Choi-Lam-SHS 2208.04331 (PRL)]
[Choi-Lam-SHS, 2212.04499]

See also
[Cordova-Ohmori 2205.06243]

And

. . [Choi-Lam-SHS 2208.04331]
Yichul Choi  Ho Tat Lam [Roumpedakis-Seifnashri-SHS 2204.02407]

Stony Brook MIT [Choi-Cordova-Hsin-Lam-SHS 2204.09025]
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Chiral symmetry in QED

* Consider QED with a massless, unit charge Dirac fermion and U(1)

gauge group. .
L= = FnF* +i9(9, — 4, )y"¥
* The classical U(1), chiral symmetry acts as
i
LIJ—>exp(7y5)‘P , a~a+?2n

* Note that &« = 21 corresponds to the fermion parity, which is part of
the gauge symmetry.

* The Adler-Bell-Jackiw anomaly implies that the classical U(1) 4 chiral
symmetry fails to be a global symmetry quantum mechanically.
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ABJ anomaly

* The ABJ anomaly was discovered in the late 60s to explain the neutral
pion decay, 7° - yy.

x

* It successfully determined the coupling

: OFAF
T
8mfy

in the pion Lagrangian.

O/ @ENOO
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Svmmetry Found
i and Lost
ABJ anomaly? A conference for

Steve Adler's 60th birthday

* Conceptually, there is something slightly counterintuitive though.
* Usually, we celebrate when we discover the existence of a global symmetry.

* ABJ anomaly states that there is not a global symmetry that one would have
naively expected.

* So how come we can derive all these quantitative results from the absence of a
global symmetry?

* Of course, since the fine structure constant is small, we can treat the
electromagnetic gauge field as background. The T°F A F term follows from the
Wess-Zumino term, which captures all the ‘t Hooft anomalies, in the chiral
Lagrangian [Witten 1983].

* But wouldn’t it be nice if we can reinterpret these classic results from the
existence of a generalized global symmetry (rather than the absence thereof)?
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Is U(1)4 a symmetry in massless QED?

* Different responses:

“No. Period.”

“Yes, it is a symmetry in flat spacetime.”
“Yes, but it is not gauge-invariant.”
“Yes, it is an anomalous symmetry.”
“Yes, it is a background symmetry.”

Oh LI g 0 MBS

* Something is conserved (e.g., helicity), but there isn’t an ordinary
symmetry.

* |s there a straight answer to this question?

O/ @ENOO
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Non-invertible global symmetries

* We will show that the continuous, invertible U(1) 4 chiral symmetry is
broken by the ABJ anomaly to a discrete, non-invertible global
symmetry labeled by the rational numbers.

* In the pion Lagrangian, the coupling °F A F can be derived by
matching the non-invertible global symmetry in the UV QCD.

* Therefore, the neutral pion decay m° — yy can be understood in
terms of the non-invertible global symmetry.

0/ @O
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Noether current

Consider a conserved Noether current B B5E
0%jy = —0¢jc +0yj; =0 Wt

i=x,92

The charge is defined as

0= [&xj

Thanks to the conservation equation, it is conserved
atQ — jd3x atjt - j d3x aiji - 0

The U(1) unitary symmetry operator (the exponentiated charge) is

Uy = exp(i9Q) = exp(id f d3xj,) , 0,Ug =0
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Symmetry and topology

* For relativistic systems in Euclidean signature, the time direction is on the
same footing as any other spatial direction.

* We can therefore integrate the current on a general closed 3-manifold
M) in 4-dimensional Euclidean spacetime:

Ug= exp(iﬂfd?’xjt)

1

Ug(M®) = exp (i §

j, dnt
M3 H )

* The conservation equation d,Uy = 0 is now upgraded to the fact that
Ug (M) depends on M®) only topologically because d,j* = 0 (divergence
theorem).

Conserved — Topological

Pirsa: 23030078
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defect

exp (i19 55 dt jx)
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QED

k

: . 1 : :
* The axial current j; = ELIJySyulP obeys the anomalous conservation equation

a4
d*]==§ﬁFAF

Here the field strength is normalized such that ¢ F € 2nZ.
* Naively, we can define the symmetry operator

Uy(M) = exp(ia §, * j4)
* However, it is not
* Adler defined a symmetry operator that is formally conserved, but is not gauge invariant:

« 7y . . 1 »
U,(M) = explia §,, (x j* — —5AdA)]
Fact: The Chern-Simons action exp[i ﬁM (f—nAdA)] is gauge invariant iff N is an integer.

O/ @ENOO

Pirsa: 23030078 Page 11/40



Rational angles

* Let us be less ambitious, and assume the chiral rotation angle is a

fraction:
_21r
. YT
“ Uon (M) 56 2m 4 ' aamy”
— —_— e
2m eXP[M(N I )]

* The operator ﬁz_n(M) is still not gauge invariant because of the

N
fractional Chern-Simons term.

O/ @ENOO
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Fractional quantum Hall state

i
“———@ AdA”
4ntN Jy,

* In condensed matter physics, this action is commonly used to describe the
v = 1/N fractional quantum Hall effect (FQHE) in 2+1d.

* |t is however not gauge invariant. Fortunately, there is a well-known fix.

* The more precise, gauge invariant Lagrangian for the FQHE is

L i
(Eada + EadA)

where a is a dynamical U(1) gauge field living on the 2+1d manifold M.
* The two actions are related by illegally integrating out a to obtain

« )]
a=——

N
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Rational angles

* Let us be less ambitious, and assume the chiral rotation angle is a

fraction:
_21r
k a_ N
U (M) 56 2mi A L aday
— —_— e
2m eXP[M(N I )]

* The operator ffz_n(M) is still not gauge invariant because of the

N
fractional Chern-Simons term.

C/ EanN®O
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Fractional quantum Hall state

i
H_ AdA”
4ntN Jy,

* In condensed matter physics, this action is commonly used to describe the
v = 1/N fractional quantym Hall effect (FQHE) in 2+1d.

* |t is however not gauge invariant. Fortunately, there is a well-known fix.

* The more precise, gauge invariant Lagrangian for the FQHE is
I

[
—ada + —adA
(41r 21 )
where a is a dynamical U(1) gauge field living on the 2+1d manifold M.
* The two actions are related by illegally integrating out a to obtain

« )
a=——

N

C/ BN®O
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QED

: . 1 : :
* The axial current j; = ELIJySyulIJ obeys the anomalous conservation equation

q
N d*] =8?F/\F

Here the field strength is normalized such that ¢ F € 2nZ.
* Naively, we can define the symmetry operator

Uy (M) = exp(ia §, * j4)
* However, it is not
* Adler defined a symmetry operator that is formally conserved, but is not gauge invariant:

“ iy . . & »
Uy(M) = explia §,, (x j* — —5AdA)]
Fact: The Chern-Simons action exp[i ﬁM (f—nAdA)] is gauge invariant iff N is an integer.
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Fractional quantum Hall state

i
H_ AdA”
4ntN Jy,

* In condensed matter physics, this action is commonly used to describe the
v = 1/N fractional quantum Hall effect (FQHE) in 2+1d.

* |t is however not gauge invariant. Fortunately, there is a well-known fix.

* The more precise, gauge invariant Lagrangian for the FQHE is
I

[
—ada + —adA
(41r 21 )
where a is a dynamical U(1) gauge field living on the 2+1d manifold M.
* The two actions are related by illegally integrating out a to obtain

« )
a=——

N

C/ BN®O
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Back to QED

[Choi-Lam-SHS 2205.05086 (PRL), Cordova-Ohmori 2022]

* Motivated by the discussion of FQHE in 2+1d, we define a new
operator in 3+1d QED:

Ty ZTH - A » a:auxiliary field on
k “Uzn(M) = exp[% (_ j4 2 NAdA)] A: bulklga::;e :‘(ijeld N
N M n
l
Dy (M) = f[D 7@ m i+ oda + ada
N _* A R —
1/N @)y exp J 47_[(1 a Zna )
* The new operator is gauge-invariant and conserved (topological).

The FQH state “cures” the ABJ anomaly

C/ BN®O
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Non-invertible chiral symmetry in QED
[Choi-Lam-SHS 2205.05086 (PRL)]

* The price we pay is that it NOT unitary:

Dl/NXD1/N =C .
= f[Da]Mf [Da] exp[f (—ada — ﬂadat + —(a —a)dA)]

41T
= 1

e Cis the condensation defect [Kong 2013, Kong-Wen 2014, Else-Nayak 2017, Gaiotto-
JohnsonFreyd 2019, Choi-Cordova-Hsin-Lam-SHS 2022, Freed-Moore-Teleman 2022...] from
higher gauging [Roumpedakis-Seifnashri-sHs 2022] of the Zy subgroup of the
U(1) magnetic one-form symmetry.

14
/BN O
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Non-invertible chiral symmetry

Operator Gauge- Conserved Invertible?
invariant? | (topological)?
Up(M) = exp(ia §, * j*) v X N/A

“ oJ . . i | »
0 (M) = explia §y, (+ j* — -2 AdA)]

X

v

D1 (M) = f [Daly

2mi , IN i
exp[ (T*] == ada -

A
M 41 21 el

0/ @ENOO
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Non-invertible chiral symmetry

* |t is easy to generalize this construction to an arbitrary rational chiral
rotation « = 2mp/N with gcd(p,N) = 1.

Dp(M) = exp[j£ (Zﬂip * j4 + AVP[dA/N])]
N M

N
where cAN’p is the 2+1d minimal ZN TQFT [Hsin-Lam-Seiberg 2018].

* Therefore, the continuous, invertible U(1) 4 chiral symmetry is broken
by the ABJ anomaly to a discrete, non-invertible global symmetry

labeled by the rational numbers 1% € Q/Z.

C/ BN®O
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et o order disorder
Non-invertible symmetry - \"" .
7

5 ) line

* In recent years, there have been rapid developments of non-invertible
global symmetry [Bhardwaj-Tachikawa 2017, Chang-Lin-SHS-Yin-Wang 2018,..., Choi-
Cordova-Hsin-Lam-SHS 2021, Kaidi-Ohmori-Zheng 2021,...].

e [t is discovered in a variety of quantum systems, including Ising model
(Kramers-Wannier duality defect), axions, QED, QCD, etc.

* Lattice realization: anyonic chains [Feiguin et al. 2006, Gils et al. 2013,...,].

* In 1+1d, these symmetries are described by the mathematical theory
of fusion category. In higher dimensions, the mathematical language
for non-invertible symmetries is still under development [Freed-Moore-
Teleman 2022].

T T T T T T

T X, x, x, X, T
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Why are they “symmetries”?

Why should we think of the non-invertible conserved operators as generalized
global symmetries?

* They lead to conservation laws and selection rules [.., Choi-Lam-SHS 2022, Lin-Okada-
Seifnashri-Tachikawa 2022,...].

* Some non-invertible symmetries can be gauged [Brunner-Carqueville-Plencner 2014].

* They can have generalized anomalies, which lead to generalized ‘t Hooft

anomaly matching conditions. New constraints on renormalization group
flows [Chang-Lin-SHS-Wang-Yin 2018, Komargodski et al. 2020].

* This inclusion consolidates conjectures in quantum gravity [Rudelius-SHS 2020,
Heidenreich et al. 2021]:

no generalized global symmetry < completeness of gauge spectrum

18
/@M@ O
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Selection rule in QED

* The operator D,y acts invertibly on the

fermions as a chiral rotation with a =
2np/N.

* It acts non-invertibly on the ‘t Hooft lines
H(y) by the Witten effect:

H) > H) expC [ P

* The selection rule on the fermions on flat
space amplitudes from D,, /y are the same
as the naive U(1) 4 symmetry.

* Note that there is no U(1) instanton in flat
space because n3(U(1) = 0.
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1+1d Ising CFT vs. 3+1d QED

1+1d Ising CFT

3+1d QED

L3
non-invertible Kramers-Wannier defect

non-invertible chiral symmetry

Zgo) O-form symmetry

val) magnetic 1-form symmetry

order operator o

t Hooft line H

disorder operator u

D D
o| - |-o
Al 2O line

Kramers-Wannier
duality defect

O/ Ean®®O
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dyonic line
(a)
H H
‘t Hooft line T
exp (i [ F)

Zg,l) magnetic 1-form

Non-invertible symmetry surface

chiral symmetry
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Electron mass

* Let us explore various consequences of the non-invertible symmetry in
QED.

* Naturalness [t Hooft 1980]: Impose a global symmetry group G. The
Lagrangian should include all G-invariant terms with coefficients of order
one with no fine-tuning.

: 1 = :
e QED Lagrangian: £ = EFM_VF“V + zw(au — uﬁllu))/‘”llJ
* The electron mass term mWW violates the non-invertible global symmetry.

* Therefore, electron is naturally massless in QED because of the non-
invertible global symmetry.

* In contrast, s QED has no enhanced global symmetry at the massless
point — Coleman-Weinberg mechanism.
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‘t Hooft Naturalness

ITI2. NATURALNESS IN QUANTUM ELECTRODYNAMICS

Quantum Electrodynamics as a renormalizable model of
electrons (and muons if desired) and photons is an example of a
"natural" field theory. The parameters 4, me (and m,) may be small

independently. In par'ticular m, (and m,) are very small at large u.

The relevant symmetry here 1s chiral symmetry, for the electron
and the muon separately. e need not be concerned about the
Adler—-Bell-Jackiw anomaly here because the photon field being

Abelian cannot acquire non—-trivial topological winding numbers /.

/@O O
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‘t Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking (1980)
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Symmetry Found
and Losi
Symmetry Lost and Found i. .

[Choi-Lam-SHS 2205.05086 (PRL), Cordova-Ohmori 2022] Steve Adler's 60th birthday

Year

U(1) 4 1S a (non-invertible) symmetry!
2022

U(1) 4 is NOT a symmetry

Adler-Bell-Jackiw 1969
U(1) 4 is a symmetry

C/ BN®O

Pirsa: 23030078 Page 28/40



U(1) 43

Non-invertible symmetry in QCD

[Choi-Lam-SHS 2205.05086 (PRL)]
(PRL) UMem Ugm

* Below the electroweak scale, the massless QCD Lagrangian for the up
and down quarks has a chiral global symmetry (corresponding to ")

U(1) g3 (Z) — exp(lays03) (Z)

* It suffers from the ABJ anomaly with the electromagnetic U(1)zy,
gauge symmetry.

* By the exact same construction, we conclude that there is an infinite
non-invertible global symmetry D), /y in the UV QCD from U(1) 4.

* How does the IR pion Lagrangian capture this non-invertible global
symmetry?

C/ BN®O
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Pion

* The pion Lagrangian
1 2
LIR — E(aun'o) + Lg TCOF ANF 4+ -
* The pion field is compact, ° ~ 70 + 27 f,;, where f,, ~ 92.4MeV .

* The non-invertible global symmetry D, ,; shifts the pion field,

¥ > 0 — Zn%fn.

* The equations of motion in the presence of the non-invertible global
symmetry D,/ fix the coefficient g for 1°F A F, WhICh gives the
dominant contribution to the neutral pion decay n° - yy.

C/ BN®O
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Pion

LIR = l(a T[O)z + lg T[OF ANF

Dy v (M) = ex jA + N ol el
1 (M) p[f &4 + ada + —adA)]
* Inserting Dyyatx =0asa defect, the equations of motion are

« 70 EOM: n0|x=0+ — 1T0|x=0- = = %Tfn

* a EOM: Nda+F =0 _

« A EOM: 2ig(n° =g+ — M°lx=o-)F = —da

* Combining the above, it fixes g = ——

C/ BN®O
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Pion decay

e Conventionally, the pion decay 7" — yy is explained by the ABJ
anomaly. Of course, since the fine structure constant is small, we can
treat the electromagnetic gauge field as background, then the 7°F A
F follows from the ‘t Hooft anomaly matching.

* We have provided an alternative explanation for the pion decay as a
direct consequence from matching the non-invertible global
symmetry in the UV QCD.

* The non-invertible global symmetry gives an invariant
characterization of the ABJ anomaly in terms of the existence of a
generalized global symmetry, rather than the absence thereof.

O/ @ENOO
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Generalizations?

* Our construction does not generalize straightforwardly to the
following cases. It’s not to say that they are impossible.

1. Axial rotation with an irrational angle.

* No irrational quantum Hall state.

e See [Karasik 2022, Garcia Etxebarria-lgbal 2022] for an alternative
construction.

2. ABJ anomalies involving SU(N) gauge groups.
* No magnetic 1-form symmetry. No fractional SU(N) charge.
* Generalization for PSU(N) gauge groups [Cordova-Ohmori 2022].

3. 1+1d QED.

* No magnetic symmetry.

C/ BN®O
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Non-invertible CP symmetry
[Choi-Lam-SHS 2208.04331 (PRL)]

& ‘.“ E I 9 2 -
* It is commonly stated that CP s r=+
or T is violated whenever the %
. : 5 i — Invertible T -
0-angle is neither O or . LS ST — Nominvertible 9%
* U(1) gauge theory is time- 1 Duality Defect

‘ i » Triality Defect
reversal invariant for every

. 271 )3 reeemmeee i b
rational 8 angle S
np
N 6277?; /3~0 .0‘0‘0;2 '-m‘k“‘ em /3
* Non-invertible CP and time- N D§ -
% o Iz

reversal symmetry.

 Strong CP problem?

29
Q/ EBNQO
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Non-invertible symmetries of axions
[Choi-Lam-SHS 2212.04499]
fzd@/\ do + 1F/\F = OF AF
2e? 81?2
e 0(x) ~0(x) + 21r is the dynamical axion field, a periodic scalar field.

* When the axion-photon coupling |K| > 1, there is a higher group
symmetry [Hidaka-Nitta-Yokokura 2020x2, Brennan-Cordova 2020].

* Even at |K| = 1, there are non-invertible symmetries.
* The shift syn}r?etry O0(x) —» 0(x) + 2mp/N is a non-invertible 0-form
symmetry D p/N

* Furthermore, there is a non-invertible 1-form symmetry [choi-Lam-SHs 2022,
Yokokura 2022]. It gives a global symmetry interpretation of the classic results
of [Callan-Harvey 1985, Naculich 1988,...].

C/ BN®O
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Anomalous Gauss law

* In axion-Maxwell theory, Gauss law is

anomalous electric
i 1
——d*xF=——=dOANF
e? 42
* Hence there is no | -
that can be measured by the string

ordinary Gauss law.

* Indeed, monopoles can pair create and i
annihilate around an axion string to create
an electric particle.

C/ Ean®O
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Non-invertible Gauss law
[Choi-Lam-SHS 2212.04499]

e 2Tip 2Tip [ 1
(1) 2)) — —
UZE%(Z( ))_eXp( N Qpage)_e"p N i;) (_e_z F _4n29dA)
)3

* The naive Gauss law operator 170([1) (Z(z)) is not gauge invariant because of the
second term. The exponent is the “Page charge”, which is not gauge invariant.

* Use a 1+1d Zjy gauge theory to “cure” it.

2TTp LN
Dg) (2@) = f[D¢DC]E(2) exp j; (Nez *F +o—ddc +
»(2)

where ¢ is a compact scalar and c is a 1-form gauge field, both living on the Gauss
surface (.

Lp
21

i
Bdc + —qbdA)
2T

C/ En®O
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We choose a Euler counterterm to
normalize the sphere expectation value

of ‘.Dél) without any insertion to be 1.
N

Non-invertible Gauss law
[Choi-Lam-SHS 2212.04499]

A 2
D(%” (2@) = f [DpDc] ) exp f (Nez «F + —qbdc + %Gdc m —qbdA)
5(2)

. D( ) is gauge-invariant, topological (and in particular conserved), but non-

|nvert|ble. It is @ non-invertible 1-form global symmetry.

Non-invertible Gauss law
& N

2Tip

=e N @ = (!

charge-1 electron charge-1 monopole

C/ BN®O
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x

Constraints on symmetry breaking scales
[Choi-Lam-SHS 2212.04499]

* The generalized global symmetries are typically emergent in an RG
flow to the axion-Maxwell theory.

* The non-invertible symmetries lead to universal constraints on the
symmetry breaking scales in any UV completion of the axion model,
generalizing[Brennan-Cordova 2020]:

Consistent with anomaly inflow

Mejectric S mln(mmonopole» \ T) [Callan-Harvey 1985]

* T: axion string tension

O/ @O0
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Conclusion

* In massless QED and QCD, the continuous, invertible U(1) 4 symmetry is
broken by the ABJ anomaly into a discrete, non-invertible symmetry Dy, /y
labeled by rational numbers.

D1 (M) jg e jA + = ada + —adA
= — % — —
L exp| y GON )"t gpada+ 5 —add)]

* The non-invertible symmetry is a composition of the naive axial rotation
with a fractional quantum Hall state.

* To put it in the maximally offensive way, the neutral pion decays % — yy
because of the non-invertible global symmetry [Choi-Lam-SHS
2205.05086].

* Non-invertible Gauss law in axion-Maxwell theory [Choi-Lam-SHS
2212.04499].
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