Title: Symmetry Lost and Found

Speakers: Shu-Heng Shao

Series: Quantum Fields and Strings

Date: March 28, 2023 - 2:00 PM

URL: https://pirsa.org/23030078

Abstract: In massless QED, we find that the classical U(1) axial symmetry is not completely broken by the Adler-Bell-Jackiw anomaly. Rather, it is resurrected as a generalized global symmetry labeled by the rational numbers. Intuitively, this new global symmetry in QED is a composition of the naive axial rotation and a fractional quantum Hall state. The conserved symmetry operators do not obey a group multiplication law, but a non-invertible fusion algebra. We further generalize our construction to QCD, and show that the neutral pion decay can be derived from a matching condition of the non-invertible global symmetry. Finally, we find a non-invertible Gauss law in axion-Maxwell theory.

Zoom link: https://pitp.zoom.us/j/93832561140?pwd=czFFSkVvYS9RbXRjOTJPQVFhL2hGZz09

Pirsa: 23030078 Page 1/40

Symmetry Lost and Found

Shu-Heng Shao YITP, Stony Brook University

Pirsa: 23030078 Page 2/40

Yichul Choi Ho Tat Lam Stony Brook MIT

Mainly based on [Choi-Lam-SHS 2205.05086 (PRL)] [Choi-Lam-SHS 2208.04331 (PRL)] [Choi-Lam-SHS, 2212.04499]

See also [Cordova-Ohmori 2205.06243]

And
[Choi-Lam-SHS 2208.04331]
[Roumpedakis-Seifnashri-SHS 2204.02407]
[Choi-Cordova-Hsin-Lam-SHS 2204.09025]

Chiral symmetry in QED

• Consider QED with a massless, unit charge Dirac fermion and U(1) gauge group.

$$\mathcal{L} = \frac{1}{4e^2} F_{\mu\nu} F^{\mu\nu} + i \overline{\Psi} (\partial_{\mu} - i A_{\mu}) \gamma^{\mu} \Psi$$

• The classical $U(1)_A$ chiral symmetry acts as

$$\Psi \to \exp\left(\frac{i\alpha}{2}\gamma_5\right)\Psi$$
 , $\alpha \sim \alpha + 2\pi$

- Note that $\alpha=2\pi$ corresponds to the fermion parity, which is part of the gauge symmetry.
- The Adler-Bell-Jackiw anomaly implies that the classical $U(1)_A$ chiral symmetry fails to be a global symmetry quantum mechanically.

Pirsa: 23030078 Page 4/40

ABJ anomaly

- The ABJ anomaly was discovered in the late 60s to explain the neutral pion decay, $\pi^0 \to \gamma \gamma$.
- It successfully determined the coupling

$$\frac{i}{8\pi^2 f_{\pi}} \pi^0 F \wedge F$$

in the pion Lagrangian.

ABJ anomaly?

- Conceptually, there is something slightly counterintuitive though.
- Usually, we celebrate when we discover the existence of a global symmetry.
- ABJ anomaly states that there is **not** a global symmetry that one would have naively expected.
- So how come we can derive all these quantitative results from the absence of a global symmetry?
- Of course, since the fine structure constant is small, we can treat the electromagnetic gauge field as background. The $\pi^0 F \wedge F$ term follows from the Wess-Zumino term, which captures all the 't Hooft anomalies, in the chiral Lagrangian [Witten 1983].
- But wouldn't it be nice if we can reinterpret these classic results from the existence of a generalized global symmetry (rather than the absence thereof)?

Pirsa: 23030078 Page 6/40

Is $U(1)_A$ a symmetry in massless QED?

- Different responses:
- 1. "No. Period."
- 2. "Yes, it is a symmetry in flat spacetime."
- 3. "Yes, but it is not gauge-invariant."
- 4. "Yes, it is an anomalous symmetry."
- 5. "Yes, it is a background symmetry."
- 6. ...
- Something is conserved (e.g., helicity), but there isn't an ordinary symmetry.
- Is there a straight answer to this question?

Pirsa: 23030078 Page 7/40

Non-invertible global symmetries

- We will show that the continuous, invertible $U(1)_A$ chiral symmetry is broken by the ABJ anomaly to a discrete, non-invertible global symmetry labeled by the rational numbers.
- In the pion Lagrangian, the coupling $\pi^0 F \wedge F$ can be derived by matching the non-invertible global symmetry in the UV QCD.
- Therefore, the neutral pion decay $\pi^0 \to \gamma \gamma$ can be understood in terms of the non-invertible global symmetry.

Pirsa: 23030078 Page 8/40

Noether current

Consider a conserved Noether current

$$\partial^{\mu}j_{\mu}=-\partial_{t}j_{t}+\partial_{i}j_{i}=0$$

 $\mu = t, x, y, z$ i = x, y, z

• The charge is defined as

$$Q = \int d^3x \, j_t$$

• Thanks to the conservation equation, it is conserved

$$\partial_t Q = \int d^3x \, \partial_t j_t = \int d^3x \, \partial_i j_i = 0$$

• The U(1) unitary symmetry operator (the exponentiated charge) is

$$U_{\vartheta} = \exp(i\vartheta Q) = \exp(i\vartheta \int d^3x \, j_t)$$
 , $\partial_t U_{\vartheta} = 0$

Pirsa: 23030078

Symmetry and topology

- For relativistic systems in Euclidean signature, the time direction is on the same footing as any other spatial direction.
- We can therefore integrate the current on a general closed 3-manifold $M^{(3)}$ in 4-dimensional Euclidean spacetime:

$$U_{\vartheta} = \exp(i\vartheta \int d^3x \, j_t)$$

$$\downarrow$$

$$U_{\vartheta}(M^{(3)}) = \exp(i\vartheta \oint_{M^{(3)}} j_{\mu} dn^{\mu})$$

• The conservation equation $\partial_t U_\vartheta = 0$ is now **upgraded** to the fact that $U_\vartheta(M^{(3)})$ depends on $M^{(3)}$ only topologically because $\partial_\mu j^\mu = 0$ (divergence theorem).

Conserved → Topological

9

Pirsa: 23030078 Page 10/40

QED

• The axial current $j_{\mu}^{A}=\frac{1}{2}\overline{\Psi}\gamma_{5}\gamma_{\mu}\Psi$ obeys the anomalous conservation equation

$$d \star j^A = \frac{1}{8\pi^2} F \wedge F$$

Here the field strength is normalized such that $\oint F \in 2\pi \mathbb{Z}$.

• Naively, we can define the symmetry operator

$$U_{\alpha}(M) = \exp(i\alpha \oint_{M} \star j^{A})$$

- However, it is not conserved.
- Adler defined a symmetry operator that is formally conserved, but is **not** gauge invariant:

"
$$\widehat{U}_{\alpha}(M) = \exp[i\alpha \oint_{M} (\star j^{A} - \frac{1}{8\pi^{2}}AdA)]$$
"

Fact: The Chern-Simons action $\exp[i\oint_M (\frac{N}{4\pi}AdA)]$ is gauge invariant iff N is an integer.

Rational angles

 Let us be less ambitious, and assume the chiral rotation angle is a fraction:

$$\alpha = \frac{2\pi}{N}$$

"
$$\widehat{U}_{\frac{2\pi}{N}}(M) = \exp\left[\oint_{M} \left(\frac{2\pi i}{N} \star j^{A} - \frac{i}{4\pi N}AdA\right)\right]$$
"

• The operator $\widehat{U}_{\frac{2\pi}{N}}(M)$ is still not gauge invariant because of the fractional Chern-Simons term.

Fractional quantum Hall state

"
$$-\frac{i}{4\pi N} \oint_M AdA$$
"

- In condensed matter physics, this action is commonly used to describe the $\nu=1/N$ fractional quantum Hall effect (FQHE) in 2+1d.
- It is however not gauge invariant. Fortunately, there is a well-known fix.
- The more precise, gauge invariant Lagrangian for the FQHE is

$$\oint_{M} (\frac{iN}{4\pi} ada + \frac{i}{2\pi} adA)$$

where a is a dynamical U(1) gauge field living on the 2+1d manifold M.

• The two actions are related by illegally integrating out a to obtain

"
$$a = -\frac{A}{N}$$
"

Pirsa: 23030078 Page 13/40

Rational angles

 Let us be less ambitious, and assume the chiral rotation angle is a fraction:

$$\alpha = \frac{2\pi}{N}$$

"
$$\widehat{U}_{\frac{2\pi}{N}}(M) = \exp\left[\oint_{M} \left(\frac{2\pi i}{N} \star j^{A} - \frac{i}{4\pi N}AdA\right)\right]$$
"

• The operator $\widehat{U}_{\frac{2\pi}{N}}(M)$ is still not gauge invariant because of the fractional Chern-Simons term.

Fractional quantum Hall state

"
$$-\frac{i}{4\pi N} \oint_M AdA$$
"

- In condensed matter physics, this action is commonly used to describe the $\nu=1/N$ fractional quantum Hall effect (FQHE) in 2+1d.
- It is however not gauge invariant. Fortunately, there is a well-known fix.
- The more precise, gauge invariant Lagrangian for the FQHE is

$$\oint_{M} (\frac{iN}{4\pi} ada + \frac{i}{2\pi} adA)$$

where α is a dynamical U(1) gauge field living on the 2+1d manifold M.

• The two actions are related by illegally integrating out a to obtain

"
$$a = -\frac{A}{N}$$
"

QED

• The axial current $j_{\mu}^A=\frac{1}{2}\overline{\Psi}\gamma_5\gamma_{\mu}\Psi$ obeys the anomalous conservation equation

$$d \star j^A = \frac{1}{8\pi^2} F \wedge F$$

Here the field strength is normalized such that $\oint F \in 2\pi \mathbb{Z}$.

• Naively, we can define the symmetry operator

$$U_{\alpha}(M) = \exp(i\alpha \oint_{M} \star j^{A})$$

- However, it is **not** conserved.
- Adler defined a symmetry operator that is formally conserved, but is **not** gauge invariant:

"
$$\widehat{U}_{\alpha}(M) = \exp[i\alpha \oint_{M} (\star j^{A} - \frac{1}{8\pi^{2}}AdA)]$$
"

Fact: The Chern-Simons action $\exp[i\oint_M (\frac{N}{4\pi}AdA)]$ is gauge invariant iff N is an integer.

Fractional quantum Hall state

"
$$-\frac{i}{4\pi N} \oint_M AdA$$
"

- In condensed matter physics, this action is commonly used to describe the $\nu=1/N$ fractional quantum Hall effect (FQHE) in 2+1d.
- It is however not gauge invariant. Fortunately, there is a well-known fix.
- The more precise, gauge invariant Lagrangian for the FQHE is

$$\oint_{M} (\frac{iN}{4\pi} ada + \frac{i}{2\pi} adA)$$

where a is a dynamical U(1) gauge field living on the 2+1d manifold M.

• The two actions are related by illegally integrating out a to obtain

"
$$a = -\frac{A}{N}$$
"

Back to QED

[Choi-Lam-SHS 2205.05086 (PRL), Cordova-Ohmori 2022]

 Motivated by the discussion of FQHE in 2+1d, we define a new operator in 3+1d QED:

$$\widehat{U}_{\frac{2\pi}{N}}(M) = \exp[\oint_{M} (\frac{2\pi i}{N} \star j^{A} - \frac{i}{4\pi N} A dA)] \quad \text{``a: auxiliary field on M}$$

$$\mathcal{D}_{1/N}(M) \equiv \int [Da]_{M} \exp\left[\oint_{M} (\frac{2\pi i}{N} \star j^{A} + \frac{iN}{4\pi} a da + \frac{i}{2\pi} a dA) + \cdots\right]$$

The new operator is gauge-invariant and conserved (topological).

The FQH state "cures" the ABJ anomaly.

Pirsa: 23030078 Page 18/40

Non-invertible chiral symmetry in QED

[Choi-Lam-SHS 2205.05086 (PRL)]

The price we pay is that it NOT unitary:

$$\mathcal{D}_{1/N} \times \mathcal{D}_{1/N}^{\dagger} = \mathcal{C}$$

$$\equiv \int [Da]_{M} \int [D\bar{a}]_{M} \exp\left[\oint_{M} \left(\frac{iN}{4\pi}ada - \frac{iN}{4\pi}\bar{a}d\bar{a} + \frac{i}{2\pi}(a - \bar{a})dA\right)\right]$$

$$\neq 1$$

• $\mathcal C$ is the condensation defect [Kong 2013, Kong-Wen 2014, Else-Nayak 2017, Gaiotto-JohnsonFreyd 2019, Choi-Cordova-Hsin-Lam-SHS 2022, Freed-Moore-Teleman 2022...] from higher gauging [Roumpedakis-Seifnashri-SHS 2022] of the $\mathbb Z_N$ subgroup of the U(1) magnetic one-form symmetry.

14

Non-invertible chiral symmetry

Operator	Gauge- invariant?	Conserved (topological)?	Invertible?
$U_{\alpha}(M) = \exp(i\alpha \oint_{M} \star j^{A})$	✓	X	N/A
" $\hat{U}_{\alpha}(M) = \exp[i\alpha \oint_{M} (\star j^{A} - \frac{1}{4\pi^{2}}AdA)]$ "	X		✓
$\mathcal{D}_{\frac{1}{N}}(M) = \int [Da]_{M}$ $\exp\left[\oint_{M} \left(\frac{2\pi i}{N} * j^{A} + \frac{iN}{4\pi} ada + \frac{i}{2\pi} adA\right)\right]$	✓	✓	X

Non-invertible chiral symmetry

• It is easy to generalize this construction to an arbitrary rational chiral rotation $\alpha = 2\pi p/N$ with gcd(p, N) = 1.

$$\mathcal{D}_{\frac{p}{N}}(M) \equiv \exp\left[\oint_{M} \left(\frac{2\pi i p}{N} \star j^{A} + \mathcal{A}^{N,p}[dA/N]\right)\right]$$

where $\mathcal{A}^{N,p}$ is the 2+1d minimal \mathbb{Z}_N TQFT [Hsin-Lam-Seiberg 2018].

• Therefore, the continuous, invertible $U(1)_A$ chiral symmetry is broken by the ABJ anomaly to a discrete, non-invertible global symmetry labeled by the rational numbers $\frac{p}{N} \in \mathbb{Q}/\mathbb{Z}$.

Pirsa: 23030078 Page 21/40

T x, r r

- In recent years, there have been rapid developments of non-invertible global symmetry [Bhardwaj-Tachikawa 2017, Chang-Lin-SHS-Yin-Wang 2018,..., Choi-Cordova-Hsin-Lam-SHS 2021, Kaidi-Ohmori-Zheng 2021,...].
- It is discovered in a variety of quantum systems, including Ising model (Kramers-Wannier duality defect), axions, QED, QCD, etc.
- Lattice realization: anyonic chains [Feiguin et al. 2006, Gils et al. 2013,...,].
- In 1+1d, these symmetries are described by the mathematical theory of fusion category. In higher dimensions, the mathematical language for non-invertible symmetries is still under development [Freed-Moore-Teleman 2022].

Pirsa: 23030078 Page 22/40

Why are they "symmetries"?

Why should we think of the non-invertible conserved operators as generalized global symmetries?

- They lead to conservation laws and selection rules [..., Choi-Lam-SHS 2022, Lin-Okada-Seifnashri-Tachikawa 2022,...].
- Some non-invertible symmetries can be gauged [Brunner-Carqueville-Plencner 2014].
- They can have generalized anomalies, which lead to generalized 't Hooft anomaly matching conditions. New constraints on renormalization group flows [Chang-Lin-SHS-Wang-Yin 2018, Komargodski et al. 2020].
- This inclusion consolidates conjectures in quantum gravity [Rudelius-SHS 2020, Heidenreich et al. 2021]:

no **generalized** global symmetry ⇔ completeness of gauge spectrum

Pirsa: 23030078

Selection rule in QED

- The operator $\mathcal{D}_{p/N}$ acts invertibly on the fermions as a chiral rotation with $\alpha = 2\pi p/N$.
- It acts non-invertibly on the 't Hooft lines $H(\gamma)$ by the Witten effect:

$$H(\gamma) \mapsto H(\gamma) \exp(\frac{ip}{N} \int F)$$

- The selection rule on the fermions on flat space amplitudes from $\mathcal{D}_{p/N}$ are the same as the naïve $U(1)_A$ symmetry.
- Note that there is no U(1) instanton in flat space because $\pi_3\big(U(1)\big)=0$.

Pirsa: 23030078 Page 24/40

1+1d Ising CFT vs. 3+1d QED

1+1d Ising CFT	3+1d QED	
non-invertible Kramers-Wannier defect	non-invertible chiral symmetry	
$\mathbb{Z}_2^{(0)}$ 0-form symmetry	$\mathbb{Z}_N^{(1)}$ magnetic 1-form symmetry	
order operator σ	't Hooft line <i>H</i>	
disorder operator μ	dyonic line	

Pirsa: 23030078 Page 25/40

Electron mass

- Let us explore various consequences of the non-invertible symmetry in QED.
- Naturalness ['t Hooft 1980]: Impose a global symmetry group G. The Lagrangian should include all G-invariant terms with coefficients of order one with no fine-tuning.
- QED Lagrangian: $\mathcal{L} = \frac{1}{4e^2} F_{\mu\nu} F^{\mu\nu} + i \overline{\Psi} (\partial_{\mu} i A_{\mu}) \gamma^{\mu} \Psi$
- The electron mass term $m\overline{\Psi}\Psi$ violates the non-invertible global symmetry.
- Therefore, electron is naturally massless in QED because of the non-invertible global symmetry.
- In contrast, scalar QED has no enhanced global symmetry at the massless point Coleman-Weinberg mechanism.

Pirsa: 23030078 Page 26/40

't Hooft Naturalness

III2. NATURALNESS IN QUANTUM ELECTRODYNAMICS

Quantum Electrodynamics as a renormalizable model of electrons (and muons if desired) and photons is an example of a "natural" field theory. The parameters α , m_e (and m_μ) may be small independently. In particular m_e (and m_μ) are very small at large μ . The relevant symmetry here is chiral symmetry, for the electron and the muon separately. We need not be concerned about the Adler-Bell-Jackiw anomaly here because the photon field being Abelian cannot acquire non-trivial topological winding numbers $^4)$.

't Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking (1980)

Pirsa: 23030078 Page 27/40

Symmetry Lost and Found

[Choi-Lam-SHS 2205.05086 (PRL), Cordova-Ohmori 2022]

Pirsa: 23030078

Non-invertible symmetry in QCD $U(1)_{EM}$ [Choi-Lam-SHS 2205.05086 (PRL)]

• Below the electroweak scale, the massless QCD Lagrangian for the up and down quarks has a chiral global symmetry (corresponding to π^0)

$$U(1)_{A3}: \binom{u}{d} \to \exp(i\alpha\gamma_5\sigma_3) \binom{u}{d}$$

- It suffers from the ABJ anomaly with the electromagnetic $U(1)_{EM}$ gauge symmetry.
- By the exact same construction, we conclude that there is an infinite non-invertible global symmetry $\mathcal{D}_{p/N}$ in the UV QCD from $U(1)_{A3}$.
- How does the IR pion Lagrangian capture this non-invertible global symmetry?

Pion

The pion Lagrangian

$$\mathcal{L}_{IR} = \frac{1}{2} \left(\partial_{\mu} \pi^{0} \right)^{2} + ig \, \pi^{0} F \wedge F + \cdots$$

- The pion field is compact, $\pi^0 \sim \pi^0 + 2\pi f_{\pi}$, where $f_{\pi} \sim 92.4 MeV$.
- The non-invertible global symmetry $\mathcal{D}_{p/N}$ shifts the pion field,

$$\pi^0 \to \pi^0 - 2\pi \frac{p}{N} f_{\pi}$$
.

• The equations of motion in the presence of the non-invertible global symmetry $\mathcal{D}_{p/N}$ fix the coefficient g for $\pi^0 F \wedge F$, which gives the dominant contribution to the neutral pion decay $\pi^0 \to \gamma \gamma$.

Pion

$$\mathcal{L}_{IR} = \frac{1}{2} \left(\partial_{\mu} \pi^{0} \right)^{2} + ig \, \pi^{0} F \wedge F$$

$$\mathcal{D}_{1/N}(M) = \int [Da]_{M} \exp \left[\oint_{x=0} \left(\frac{2\pi i}{N} \star j^{A3} + \frac{iN}{4\pi} ada + \frac{i}{2\pi} adA \right) \right]$$

- Inserting $\mathcal{D}_{1/N}$ at x=0 as a defect, the equations of motion are
 - π^0 EOM: $\pi^0|_{x=0^+} \pi^0|_{x=0^-} = -\frac{2\pi}{N} f_{\pi}$
 - a EOM: Nda + F = 0
 - A EOM: $2ig(\pi^0|_{x=0^+} \pi^0|_{x=0^-})F = \frac{i}{2\pi}da$
- Combining the above, it fixes $g = \frac{1}{8\pi^2 f_{\pi}}$.

Pion decay

- Conventionally, the pion decay $\pi^0 \to \gamma\gamma$ is explained by the ABJ anomaly. Of course, since the fine structure constant is small, we can treat the electromagnetic gauge field as background, then the $\pi^0 F \wedge F$ follows from the 't Hooft anomaly matching.
- We have provided an alternative explanation for the pion decay as a direct consequence from matching the non-invertible global symmetry in the UV QCD.
- The non-invertible global symmetry gives an invariant characterization of the ABJ anomaly in terms of the *existence* of a generalized global symmetry, rather than the *absence* thereof.

Pirsa: 23030078 Page 32/40

Generalizations?

- Our construction does not generalize straightforwardly to the following cases. It's *not* to say that they are impossible.
- 1. Axial rotation with an irrational angle.
 - No irrational quantum Hall state.
 - See [Karasik 2022, Garcia Etxebarria-Iqbal 2022] for an alternative construction.
- 2. ABJ anomalies involving SU(N) gauge groups.
 - No magnetic 1-form symmetry. No fractional SU(N) charge.
 - Generalization for PSU(N) gauge groups [Cordova-Ohmori 2022].
- 3. 1+1d QED.
 - No magnetic symmetry.

Pirsa: 23030078 Page 33/40

Non-invertible CP symmetry

[Choi-Lam-SHS 2208.04331 (PRL)]

- It is commonly stated that CP or T is violated whenever the θ -angle is neither 0 or π .
- U(1) gauge theory is timereversal invariant for every rational θ angle

$$\theta = \frac{\pi p}{N}$$

- Non-invertible CP and timereversal symmetry.
- Strong CP problem?

29

Pirsa: 23030078

Non-invertible symmetries of axions

[Choi-Lam-SHS 2212.04499]

$$\frac{f^2}{2}d\theta \wedge \star d\theta + \frac{1}{2e^2}F \wedge \star F - \frac{iK}{8\pi^2}\theta F \wedge F$$

- $\theta(x) \sim \theta(x) + 2\pi$ is the dynamical axion field, a periodic scalar field.
- When the axion-photon coupling |K| > 1, there is a higher group symmetry [Hidaka-Nitta-Yokokura 2020x2, Brennan-Cordova 2020].
- Even at |K| = 1, there are non-invertible symmetries.
- The shift symmetry $\theta(x) \to \theta(x) + 2\pi p/N$ is a non-invertible 0-form symmetry $\mathcal{D}_{p/N}^{(0)}$.
- Furthermore, there is a non-invertible 1-form symmetry [Choi-Lam-SHS 2022, Yokokura 2022]. It gives a global symmetry interpretation of the classic results of [Callan-Harvey 1985, Naculich 1988,...].

Anomalous Gauss law

 In axion-Maxwell theory, Gauss law is anomalous

$$-\frac{i}{e^2}d \star F = \frac{1}{4\pi^2}d\theta \wedge F$$

- Hence there is no conserved and quantized electric charge that can be measured by the ordinary Gauss law.
- Indeed, monopoles can pair create and annihilate around an axion string to create an electric particle.

Pirsa: 23030078 Page 36/40

Non-invertible Gauss law

[Choi-Lam-SHS 2212.04499]

$$\widehat{U}_{2\pi\frac{p}{N}}^{(1)}(\Sigma^{(2)}) = \exp\left(\frac{2\pi i p}{N} Q_{Page}\right) = \exp\left[\frac{2\pi i p}{N} \oint_{\Sigma^{(2)}} \left(-\frac{i}{e^2} \star F - \frac{1}{4\pi^2} \theta dA\right)\right]$$

- The naïve Gauss law operator $\widehat{U}^{(1)}_{\alpha}(\Sigma^{(2)})$ is not gauge invariant because of the second term. The exponent is the "Page charge", which is not gauge invariant.
- Use a 1+1d \mathbb{Z}_N gauge theory to "cure" it.

$$\mathcal{D}_{\overline{N}}^{(1)}(\Sigma^{(2)}) = \int [D\phi Dc]_{\Sigma^{(2)}} \exp \left[\oint_{\Sigma^{(2)}} \left(\frac{2\pi p}{Ne^2} \star F + \frac{iN}{2\pi} \phi dc + \frac{ip}{2\pi} \theta dc + \frac{i}{2\pi} \phi dA \right) \right]$$

where ϕ is a compact scalar and c is a 1-form gauge field, both living on the Gauss surface $\Sigma^{(2)}$.

We choose a Euler counterterm to normalize the sphere expectation value of $\mathcal{D}_{\frac{p}{N}}^{(1)}$ without any insertion to be 1.

Non-invertible Gauss law

[Choi-Lam-SHS 2212.04499]

$$\mathcal{D}_{\underline{p}}^{(1)}(\Sigma^{(2)}) = \int [D\phi Dc]_{\Sigma^{(2)}} \exp \left[\oint_{\Sigma^{(2)}} \left(\frac{2\pi p}{Ne^2} \star F + \frac{iN}{2\pi} \phi dc + \frac{ip}{2\pi} \theta dc + \frac{i}{2\pi} \phi dA \right) \right]$$

• $\mathcal{D}_{\frac{p}{N}}^{(1)}$ is gauge-invariant, topological (and in particular conserved), but non-invertible. It is a non-invertible 1-form global symmetry.

Non-invertible Gauss law

Pirsa: 23030078

Constraints on symmetry breaking scales

[Choi-Lam-SHS 2212.04499]

- The generalized global symmetries are typically emergent in an RG flow to the axion-Maxwell theory.
- The non-invertible symmetries lead to universal constraints on the symmetry breaking scales in any UV completion of the axion model, generalizing[Brennan-Cordova 2020]:

$$m_{electric} \lesssim \min(m_{monopole}, \sqrt{T})$$

Consistent with anomaly inflow [Callan-Harvey 1985]

• *T*: axion string tension

Pirsa: 23030078 Page 39/40

Conclusion

• In massless QED and QCD, the continuous, invertible $U(1)_A$ symmetry is broken by the ABJ anomaly into a discrete, non-invertible symmetry $\mathcal{D}_{p/N}$ labeled by rational numbers.

$$\mathcal{D}_{\frac{1}{N}}(M) \equiv \int [Da]_M \exp\left[\oint_M \left(\frac{2\pi i}{2N} \star j^A + \frac{iN}{4\pi}ada + \frac{i}{2\pi}adA\right)\right]$$

- The non-invertible symmetry is a composition of the naïve axial rotation with a fractional quantum Hall state.
- To put it in the maximally offensive way, the neutral pion decays $\pi^0 \to \gamma \gamma$ because of the non-invertible global symmetry [Choi-Lam-SHS 2205.05086].
- Non-invertible Gauss law in axion-Maxwell theory [Choi-Lam-SHS 2212.04499].

Pirsa: 23030078 Page 40/40