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Condensed matter physics and (machine) learning
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Philip W. Anderson

Nobel Prize 1977
(Semiconductors, superconductivity, magnetism)

Harvard, Bell Labs, Cambridge, Princeton

The ability to reduce everything to simple fundamental laws does not imply the ability to start
from those laws and reconstruct the universe

The constructionist hypothesis breaks down when confronted with the twin difficulties of
scale and complexity.
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Condensed matter physics and (machine) learning

John Hopfield

Buckley Prize, 1968

"For their joint work combining theory and experiment
which has advanced the understanding of the interaction of
light with solids"

G. Torlai, PhD Thesis
https://luwspace.uwaterloo.ca/handle/10012/14196

“Over time, his research meandered from hard physics to neuroscience, where he applied his knowhow from
the former to construct an artificial neural network capable of modeling certain functions of the human brain.

Decades later, these fundamental concepts have helped to unleash the tide of “deep learning” technologies
that allow machines to observe, remember, and learn on their own.”

“The Hopfield neural net was not only an intriguing demonstration of possibility and a proof by

demonstration of the information-handling capabilities of neural nets, but also was an enormous stimulant in
reviving the perceptron and other machine-learning programs.”
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al (lV > quant-ph > arXiv:1601.02036

Quantum Physics
[Submitted on 8 Jan 2016]
Quantum Boltzmann Machine

Mohammad H. Amin, Evgeny Andriyash, Jason Rolfe, Bohdan Kulchytskyy, Roger Melko

Inspired by the success of Boltzmann Machines based on classical Boltzmann distribution, we propose a new machine learning
approach based on gquantum Boltzmann distribution of a transverse-field Ising Hamiltonian. Due to the non-commutative nature
of quantum mechanics, the training process of the Quantum Boltzmann Machine (QBM) can become nontrivial. We circumvent
the problem by introducing bounds on the quantum probabilities. This allows us to train the QBM efficiently by sampling. We
show examples of QBM training with and without the bound, using exact diagonalization, and compare the results with classical
Boltzmann training. We also discuss the possibility of using quantum annealing processors like D-Wave for QBM training and
application.
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al <1V > cond-mat > arXiv:1606.02718

Condensed Matter > Statistical Mechanics

[Submitted on 8 Jun 2016]
Learning Thermodynamics with Boltzmann Machines

Giacomo Torlai, Roger G. Melko

A Boltzmann machine is a stochastic neural network that has been extensively used in the layers of deep architectures for
modern machine learning applications. In this paper, we develop a Boltzmann machine that is capable of modelling
thermodynamic observables for physical systems in thermal equilibrium. Through unsupervised learning, we train the
Boltzmann machine on data sets constructed with spin configurations importance-sampled from the partition function of
an Ising Hamiltonian at different temperatures using Monte Carlo (MC) methods. The trained Boltzmann machine is then
used to generate spin states, for which we compare thermodynamic observables to those computed by direct MC sampling.
We demonstrate that the Boltzmann machine can faithfully reproduce the observables of the physical system. Further, we
observe that the number of neurons required to obtain accurate results increases as the system is brought close to

criticality.

Comments:
Subjects:

8 pages, S figures

Statistical Mechanics (cond-mat.stat-mech); Disordered Systems and Neural Networks (cond-mat.dis-nn); Machine Learning

(cs.LG)
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arl (1\/ > cond-mat > arXiv:1704.05848

Help | Advanced

Condensed Matter > Statistical Mechanics

[Submitted on 19 Apr 2017]

Kernel methods for interpretable machine learning of order parameters

Pedro Ponte, Roger G. Melko

Machine learning is capable of discriminating phases of matter, and finding associated phase transitions, directly from large data sets of raw state

configurations. In the context of condensed matter physics, most progress in the field of supervised learning has come from employing neural networks as
classifiers. Although very powerful, such algorithms suffer from a lack of interpretability, which is usually desired in scientific applications in order to associate
learned features with physical phenomena. In this paper, we explore support vector machines (SVMs) which are a class of supervised kernel methods that
provide interpretable decision functions. We find that SVMs can learn the mathematical form of physical discriminators, such as order parameters and
Hamiltonian constraints, for a set of two-dimensional spin models: the ferromagnetic Ising model, a conserved-order-parameter Ising model, and the Ising
gauge theory. The ability of SVMs to provide interpretable classification highlights their potential for automating feature detection in both synthetic and

experimental data sets for condensed matter and other many-body systems.

N

d(z) = Z aiyiK (2, z) + b,

=]

— Optimal hyperplane for linearly separable patterns
— Extend to patterns that are not linearly separable by transformations of original
data to map into new space — the Kernel function

Pirsa: 23030037

1.0

0.8 1

0.6 1

0.4 1

0.2 1

0.0 1

X ®Xxa

(m?) (L = 20)
SVMjw2 (L = 20)
(m?) (L = 40)
SVMpn2 (L = 40)

w__ K(o,0') = (¢-a' +co)*

2.27
Temperature

Page 9/34



ar <1V > cond-mat > arXiv:2102.01103

Condensed Matter > Strongly Correlated Electrons
(Submitted on 1 Feb 2021 (v1), last revised 12 Sep 2021 (this version, v2)]

Machine-Learned Phase Diagrams of Generalized Kitaev Honeycomb Magnets
Nihal Rao, Ke Liu, Marc Machaczek, Lode Pollet

We use a recently developed interpretable and unsupervised machine-learning method, the tensorial kernel support vector machine (TK-SVM), to investigate
the low-temperature classical phase diagram of a generalized Heisenberg-Kitaev-I" (/-K -I") model on a honeycomb lattice. Aside from reproducing phases
reported by previous quantum and classical studies, our machine finds a hitherto missed nested zigzag-stripy order and establishes the robustness of a
recently identified modulated 3 X Z; phase, which emerges through the competition between the Kitaev and I spin liquids, against Heisenberg interactions.
The results imply that, in the restricted parameter space spanned by the three primary exchange interactions -- J, K, and I, the representative Kitaev
material @-RuCl, lies close to the boundaries of several phases, including a simple ferromagnet, the unconventional §; X Z; and nested zigzag-stripy
magnets. A zigzag order is stabilized by a finite IV and/or J4 term, whereas the four magnetic orders may compete in particular if [ is anti-ferromagnetic.
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FIG. 14. Representative blocks of the C,, matrices of the
ZZ /D3, phase learned by a rank-2 TK-S5VM with the eight-
spin D3, magnetic cell, away from (a) and at (b) the O(3)
point. Blocks are labeled by the spin indices (i,j). Nonva-
nishing entries in a block correspond to correlations between
quadratic components Sf'Sf and Sfi‘S;q,'. Negative elements
in the (0,0) block reflect the spin normalization |‘;| = 1. Non-
trivial entries in (a) are the diagonal ones in each 9 x 9 sub-
block.
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ar (lV > cond-mat > arXiv:1606.00318

Condensed Matter > Statistical Mechanics

[Submitted on 1 Jun 2016 (v1), last revised 6 Jun 2016 (this version, v2)]
Discovering Phase Transitions with Unsupervised Learning
Lei Wang

Unsupervised learning is a discipline of machine learning which aims at discovering patterns in big data sets or
classifying the data into several categories without being trained explicitly. We show that unsupervised learning
techniques can be readily used to identify phases and phases transitions of many body systems. Starting with raw spin
configurations of a prototypical Ising model, we use principal component analysis to extract relevant low dimensional
representations the original data and use clustering analysis to identify distinct phases in the feature space. This
approach successfully finds out physical concepts such as order parameter and structure factor to be indicators of the
phase transition. We discuss future prospects of discovering more complex phases and phase transitions using
unsupervised learning techniques.

Comments: corrected typos, fixed links in references 50,
Subjects: Statistical Mechanics (cond-mat.stat-mech). Machine Learning (stat.ML) 25| (a) 2.8
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Figure 2: Projection of the samples onto the plane of the
leading two principal components. The color bar on the right
indicates the temperature T/J of the samples. The panels
(a-c) are for N = 20?407 and 807 sites respectively.
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Distinguishing phases and detecting local and
non-local order using t-SNE and Monte Carlo
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Matthew Duschenes

An essay submitted
for partial fulfilment of
Perimeter Scholars International
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ar (lV > cond-mat > arXiv:1810.02372 Hals PARne

Condensed Matter > Statistical Mechanics
[Submitted on 4 Oct 2018 (v1), last revised 30 Jan 2019 (this version, v2)]
Super-resolving the Ising model with convolutional neural networks

Stavros Efthymiou, Matthew ). S. Beach, Roger G. Melko

Machine learning is becoming widely used in condensed matter physics. Inspired by the concept of image super-resolution, we propose a
method to increase the size of lattice spin configurations using deep convolutional neural networks. Through supervised learning on
Monte Carlo (MC) generated spin configurations, we train networks that invert real-space renormalization decimations. We demonstrate
that super-resolution can reproduce thermodynamic observables that agree with MC calculations for the one and two-dimensional Ising
model at various temperatures, We find that it is possible to predict thermodynamic quantities for lattice sizes larger than those used in
training by extrapolating the parameters of the network. We use this method to extrapolate the exponents of the 2D Ising critical point
towards the thermodynamic limit, which results in good agreement with theory.

(@) 16516 _ (b) 32x32 _ (¢) 128x128 (d) 512x512

FIG. 2. Critical configurations obtained using the weight ex-
trapolation idea presented in Section 11 C, We show the origi-
nal Monte Carlo configuration in (a) and the results after (b)
one, (c¢) three and (d) five consecutive super-resolutions.
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ar (]_V > cond-mat > arXiv:1710.09842

Condensed Matter > Statistical Mechanics

[Submitted on 26 Oct 2017]

Machine learning vortices at the Kosterlitz-Thouless transition

Matthew ). S. Beach, Anna Golubeva, Roger G. Melko

Efficient and automated classification of phases from minimally processed data is one goal of machine learning in condensed matter and
statistical physics. Supervised algorithms trained on raw samples of microstates can successfully detect conventional phase transitions via
learning a bulk feature such as an order parameter. In this paper, we investigate whether neural networks can learn to classify phases based on
topological defects. We address this question on the two-dimensional classical XY model which exhibits a Kosterlitz-Thouless transition. We
find significant feature engineering of the raw spin states is required to convincingly claim that features of the vortex configurations are
responsible for learning the transition temperature. We further show a single-layer network does not correctly classify the phases of the XY
model, while a convolutional network easily performs classification by learning the global magnetization. Finally, we design a deep network
capable of learning vortices without feature engineering. We demonstrate the detection of vortices does not necessarily result in the best
classification accuracy, especially for lattices of less than approximately 1000 spins. For larger systems, it remains a difficult task to learn

vortices.
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darl <]_V > quant-ph > arXiv:1908.07532

Help | Advanced

Quantum Physics

[Submitted on 20 Aug 2019 (v1), last revised 26 Aug 2019 (this version, v2)]
The learnability scaling of quantum states: restricted Boltzmann machines
Dan Sehayek, Anna Golubeva, Michael S. Albergo, Bohdan Kulchytskyy, Giacomo Torlai, Roger G. Melko

Generative modeling with machine learning has provided a new perspective on the data-driven task of reconstructing
quantum states from a set of qubit measurements. As increasingly large experimental quantum devices are built in
laboratories, the question of how these machine learning techniques scale with the number of qubits is becoming crucial.
We empirically study the scaling of restricted Boltzmann machines (RBMs) applied to reconstruct ground-state
wavefunctions of the one-dimensional transverse-field Ising model from projective measurement data. We define a
learning criterion via a threshold on the relative error in the energy estimator of the machine. With this criterion, we
observe that the number of RBM weight parameters required for accurate representation of the ground state in the worst
case - near criticality - scales quadratically with the number of qubits. By pruning small parameters of the trained model,
we find that the number of weights can be significantly reduced while still retaining an accurate reconstruction. This
provides evidence that over-parametrization of the RBM is required to facilitate the learning process.

Comments: 8 pages, S figures
Subjects: Quantum Physics (quant-ph)
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ar <1V > hep-lat > arXiv:1904.12072

Help | Advanced

High Energy Physics - Lattice

[Submitted on 26 Apr 2019 (v1), last revised 9 Sep 20189 (this version, v3)]
Flow-based generative models for Markov chain Monte Carlo in lattice field theory
M. S. Albergo, G. Kanwar, P. E. Shanahan

A Markov chain update scheme using a machine-learned flow-based generative model is proposed for Monte Carlo sampling in lattice field
theories. The generative model may be optimized (trained) to produce samples from a distribution approximating the desired Boltzmann
distribution determined by the lattice action of the theory being studied. Training the model systematically improves autocorrelation times in
the Markov chain, even in regions of parameter space where standard Markov chain Monte Carlo algorithms exhibit critical slowing down in
producing decorrelated updates. Moreover, the model may be trained without existing samples from the desired distribution. The algorithm is
compared with HMC and local Metropolis sampling for ¢p* theory in two dimensions.

Comments:
Subjects:

13 pages, 7 figures; corrected normalization conventions in egns. 20 and 23

High Energy Physics - Lattice (hep-lat); Disordered Systems and Neural Networks (cond-mat.dis-nn); Statistical Mechanics (cond-mat.stat-mech); Machine
Learning (cs.LG)
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ar <1V > quant-ph > arXiv:2105.08086

Quantum Physics

[Submirtted on 17 May 2021]

Neural Error Mitigation of Near-Term Quantum Simulations

Elizabeth R. Bennewitz, Florian Hopfmueller, Bohdan Kulchytskyy, Juan Carrasquilla, Pooya Ronagh

One of the promising applications of early quantum computers is the simulation of quantum systems. Variational methods for near-term quantum computers,
such as the variational quantum eigensolver (VQE), are a promising approach to finding ground states of quantum systems relevant in physics, chemistry, and
materials science. These approaches, however, are constrained by the effects of noise as well as the limited quantum resources of near-term quantum
hardware, motivating the need for quantum error mitigation techniques to reduce the effects of noise. Here we introduce neural error mitigation, a novel
method that uses neural networks to improve estimates of ground states and ground-state observables obtained using VQE on near-term quantum computers.
To demonstrate our method's versatility, we apply neural error mitigation to finding the ground states of H, and LiH molecular Hamiltonians, as well as the
lattice Schwinger model. Qur results show that neural error mitigation improves the numerical and experimental VQE computation to yield low-energy errors,
low infidelities, and accurate estimations of more-complex observables like order parameters and entanglement entropy, without requiring additional quantum
resources. Additionally, neural error mitigation is agnostic to both the quantum hardware and the particular noise channel, making it a versatile tool for
quantum simulation. Applying quantum many-body machine learning techniques to error mitigation, our method is a promising strategy for extending the
reach of near-term quantum computers to solve complex quantum simulation problems.
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Help | Advanced

Quantum Physics

[Submitted on 20 Aug 2019 (v1), last revised 26 Aug 2019 (this version, v2)]
The learnability scaling of quantum states: restricted Boltzmann machines
Dan Sehayek, Anna Golubeva, Michael S. Albergo, Bohdan Kulchytskyy, Giacomo Torlai, Roger G. Melko

Generative modeling with machine learning has provided a new perspective on the data-driven task of reconstructing
quantum states from a set of qubit measurements. As increasingly large experimental quantum devices are built in
laboratories, the question of how these machine learning techniques scale with the number of qubits is becoming crucial.
We empirically study the scaling of restricted Boltzmann machines (RBMs) applied to reconstruct ground-state
wavefunctions of the one-dimensional transverse-field Ising model from projective measurement data. We define a
learning criterion via a threshold on the relative error in the energy estimator of the machine. With this criterion, we
observe that the number of RBM weight parameters required for accurate representation of the ground state in the worst
case - near criticality - scales quadratically with the number of qubits. By pruning small parameters of the trained model,
we find that the number of weights can be significantly reduced while still retaining an accurate reconstruction. This
provides evidence that over-parametrization of the RBM is required to facilitate the learning process.

Comments: 8 pages, S figures . ;
Subjects: Quantum Physics (quant-ph) 2
el I
>
100000
20 4 & a=058
oo 8 a=o0s6 f
10 1 ® a=o7 e
sooo ] # a=0s8 féf pd o
L - - - . p-; *ff :
® Al=1 5
041 8 MI=0T 40000 < @
® MNiI=os (=]
30 * ANI=mo02 o 20000 -
o
o o T T T T T
2 1 L 20 10 60 a0 100
N
10 4
@
R .
T T

Pirsa: 23030037 Page 20/34



=Py (]_V > quant-ph > arXiv:2203.04988 Heo [Advancad

Quantum Physics

[Submitted on 9 Mar 2022 (v1), last revised 9 May 2022 (this version, v2)]
Data-Enhanced Variational Monte Carlo Simulations for Rydberg Atom
Arrays

Stefanie Czischek, M. Schuyler Moss, Matthew Radzihovsky, Ejaaz Merali, Roger G. Melko

Rydberg atom arrays are programmable quantum simulators capable of preparing interacting qubit systems in a variety of
quantum states. Due to long experimental preparation times, obtaining projective measurement data can be relatively slow
for large arrays, which poses a challenge for state reconstruction methods such as tomography. Today, novel groundstate
wavefunction ansatze like recurrent neural networks (RNNs) can be efficiently trained not only from projective
measurement data, but also through Hamiltonian-guided variational Monte Carlo (VMCQ). In this paper, we demonstrate
how pretraining modern RNNs on even small amounts of data significantly reduces the convergence time for a subsequent
variational optimization of the wavefunction. This suggests that essentially any amount of measurements obtained from a
state prepared in an experimental quantum simulator could provide significant value for neural-network-based VMC

strategies.
Comments: 7 pages, 3 figures
Subjects: Quantum Physics (quant-ph); Disordered Systems and Neural Networks (cond-mat.dis-nn); Computational Physics (physics.comp-
ph)
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Help | Advanced

Condensed Matter > Disordered Systems and Neural Networks

[Submitted on 7 Feb 2020 (v1), last revised 20 Jun 2020 (this version, v4)]

Recurrent Neural Network Wave Functions
Mohamed Hibat-Allah, Martin Ganahl, Lauren E. Hayward, Roger G. Melko, Juan Carrasquilla

A core technology that has emerged from the artificial intelligence revolution is the recurrent neural network (RNN). Its
unique sequence-based architecture provides a tractable likelihood estimate with stable training paradigms, a combination
that has precipitated many spectacular advances in natural language processing and neural machine translation. This
architecture also makes a good candidate for a variational wave function, where the RNN parameters are tuned to learn the
approximate ground state of a quantum Hamiltonian. In this paper, we demonstrate the ability of RNNs to represent
several many-body wave functions, optimizing the variational parameters using a stochastic approach. Among other
attractive features of these variational wave functions, their autoregressive nature allows for the efficient calculation of
physical estimators by providing independent samples. We demonstrate the effectiveness of RNN wave functions by
calculating ground state energies, correlation functions, and entanglement entropies for several quantum spin models of
interest to condensed matter physicists in one and two spatial dimensions.

Comments: The GitHub link to the open-source code is fixed

Subjects: Disordered Systems and Neural Networks (cond-mat.dis-nn); Strongly Correlated Electrons (cond-mat.str-el); Computational
Physics (physics.comp-ph); Quantum Physics (quant-ph)
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https://cdn.openai.com/papers/gpt-4.pdf

GPT-4 visual input example, Solving Ecole Polytechnique’s Physics Exam:

User Answer question I.1.a. Think step-by-step.

1. Princips de ls détection de rayonnement avec un bolomdtre

Comme Wustrd sur ba figare 1 un bolonsbire est constited d'un absorbear gui reguit le rayoo-
oot que Uon désare ditecter. Sa tempdrature T, supposte uniforme, est mesario & Uaide d'un
thermonsiere incurpand, constited d'un matériag comductour domt bs risistance R{T) varie svee la

o
tempédrature T ; cotte variation sz caractirisie par b cooffickont 0 « R L ensemble possdde
i

GPT-4

la capacité tssrmigee Cyy

U barroan, conductous thermbque, homogine, de loaguour L, de section § ot de eomdiscti-
vité thermigue A ot sans échanges thermigues latérany, reddie b= boloméire & un thermostar de
température T} fxe

ry imcident 14
l //atmﬂ.\uuc
courant de -
oy
_7_ Ca Lti] i

IR T
Figure | - Schéma d'un bolométre

L 1. Dags cette premidve paitic, on dudic be conport=ment du bodomitre en fdgline Salion-
naire, A la température de fonctioanenem T = T,

Ll.a) Exprismer la température T(x) en tout point du barresu comductewr repéré par son
ahocisee r; on prendea T(0) = Toa T(L) = T}

To answer question I.1.a, we need to express the temperature T'(z) in every point
of the conductive bar, which is characterized by the abscissa x. We are given that
T(0) =T0and T(L) = Tb.

For a stationary regime. the heat equation for the one-dimensional heat
conduction in the bar is:
&Tfdz? =0

Integrating once, we get:
dT/dz = C,

Integrating a second time:
T(z) =Ciz + C;

To determine the constants C'; and C;, we use the boundary conditions:
T(0) = T0, which gives C; = T0
T(L) = Tb, which gives Cy, = (Tb - T0)/L

Finally, the expression for 7°(z) is:

T(z) =(Tb-T0)* (z/L) +TO

This represents a lincar temperature profile along the conductive bar, with a slope
of (Th - TO0)/L.

Table 15. Example prompt demonstrating GPT-4’s visual input capability. The prompt consists of a
question which requires understanding a physics problem with a diagram written in French and solving
it using chain-of-thought prompting.
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Exam GPT4 GPT-4 (no vision) GPT-3.5
Uniform Bar Exam (MBE+MEE+MPT) 298 / 400 (~90h) 298 / 400 (~90th) 2137400 (~10th)
LSAT 163 (~88th) 161 (~83rd) 149 (~40th)
SAT Evidence-Based Reading & Writing 710/ 800 (~93¢d) 710/ 800 (~93nd) 670/ 800 (~87th)
SAT Math 700 / 800 (~891h) 690/ 800 (~89th) 590/ 800 (~70th)
Graduate Record Examination (GRE) Quantitat 163 /170 (~80th) 157/ 170 (=62nd) 147/ 170 (=25th)
Graduate Record Examination (GRE) Verbal 169/ 170 (~99th) 165 1 170 (~96th) 154/ 170 (~63rd)
Graduate Record Examination (GRE) Writing 4/6 (~S4th) 416 (~S4th) 476 (~S4th)
USABO Semifinal Exam 2020 877150 (99th - 100th)  &7/150 (99th - 100th) 43/ 150 (31st - 33rd)
USNCO Local Section Exam 2022 36760 38760 24760
Medical Knowledge Self-Assessment Program 5% %% 3%
Codeforces Rating 392 (below Sth) 392 (below Sth) 260 (below $th)
AP An History S (86th - 100th) S (86th - 100th) 5 (86th - 100th)
AP Biology $ (85th - 100th) $ (85th - 100th) 4 (62nd - 85th)
AP Calculus BC 4 (43rd - 591h) 4(43rd - 59th) 1 (Oth - Tih)
AP Chemistry 4 (71s1 - 88th) 4 (71st - 88th) 2 (22nd - 46th)
AP English Language and Compositicn 2 (14th - 44th) 2 (14th - 44th) 2 (14th - 44th)
AP English Literature and Composition 2 (8th - 220d) 2 (8th - 22nd) 2 (8th - 220d)
AP Environmental Science 5 (915t - 100th) 5 (91t - 100th) 5 (9151 - 100th)
AP Macroeconomics 5 (84th - 100th) 5 (84th - 100th) 2(33rd - 48th)
AP Microeconomics 5 (K2nd - 100th) 4 (60th - 820d) 4 (60th - 82nd)
AP Physics 2 4 (66th - 84th) 4 (66th - $4th) 3 (30th - 66th)
AP Psychology $ (R3rd - 100th) S (83¢d - 100th) S (83nd - 100th)
AP Statistics 5 (85th - 100th) 5 (85th - 100th) 3 (40th - 63nd)
AP US Government 5 (88th - 100th) S (88th - 100th) 4 (TTth - 88th)
AP US History § (89th - 100th) 4 (74th - $9th) 4 (74th - $9th)
AP World History 4(65th - $7th) 4(65th - §7th) 4 (65th - §7th)
AMC 10 30/150(6th- 12th) 367150 (10th- 19th) 36/ 150 (10th - 19th)
AMC 12 60/ 150 (45th - 66th) 48 /150 (19th - 40th) 30/ 150 (4th - Sth)

Introductory Sommelier (theory knowledge) N% 2% 80 %
Cenified Sommelier (theory knowledge) 86 % 86 % 8%
Advanced Sommelier (theory knowledge) n% % 6 %
Leetcode (casy) /4 31741 12/41
Leetcode (medium) 21780 21780 8/80
Leetcode (hard) 3148 3748 0/4s

Table 1. GPT perf on acad fessional exams. In cach case, we simulate the

mdlumndmmfo{lhmlum %mputﬂ?f—i:ﬂnﬂmymmmgwum
1

specific rubrics

as the percentile of test-takers achieving GPT-4's score.
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a )

anguage models are demonstrating scalability

Brown, Tom, et al. “Language models are few-shot learners.” Advances in neural information
processing systems 33 (2020): 1877-1901.

Model Name Nparams Mayors  Omodel Pheads Ohead Baich Size  Leaming Rate
GPT-3 Small 125M 12 768 12 64 0.5M 6.0 x 104
GPT-3 Medium 3soM 24 1024 16 64 0.5M 3.0x101
GPT-3 Large 760M 24 1536 16 96 0.5M 25 x 104
GPT-3 XL 1.3B 24 2048 24 128 M 2.0x 104
GPT-32.7B 2.7 32 2560 32 80 M 1.6 x 1074
GPT-36,7B 678 32 4096 32 128 ™M 1.2 x 104
GPT-3 13B 13.0B 40 5140 40 128 M 1.0 x 104
GPT-3 175B or "GPT-3"  175.0B 96 12288 96 128 M 0.6 x10™*

Table 2.1: Sizes, architectures, and leamning hyper-parameters (batch size in tokens and learning rate) of the models
which we trained. All models were trained for a total of 300 billion tokens.

GPT-3 was trained with data from CommonCrawl, WebText, Wikipedia, and a corpus of books.

- Generative pre-trained transformer... overheard at aspen: “GPT4 cost $100M to train”

- GPT are parameterized probabilistic models, whose most basic function is to
predict the next word in a sequence given the words that precede it

N /
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(s

equences: generative autoregressive models

Conditional probabilities of the next word (or qubit). In a sequence they obey the
autoregressive property, i.e. chain rule

pla1, - ,zn) = [[ plajlz<;) = p(@1)p(z2|e)p(zs|z, z2) - -
j:

p(T2l1)  P(2alz122)  plEaler22%5) p(xz|z1) plas|zizz)  plaa|zizaas)

ks ###

mouse mouse mouse
clock clock clock
ran ran ran 1 1 ‘
hickery hickory hickory
dock dock dock
the the the
dickory dickory dickory
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/256 qublts 1000 shots

16x16 lattice, near the disordered-checkerboard transition
state is adiabatically prepared by slowly varying detuning
1000 projective measurements per detuning parameter
Used to train a state-of-the-art 2D RNN wavefunction
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/Experimental Rydberg Arrays

Ebadi et. al. arXiv:2012.12281
Nature 595, 227 (2021)

et HARVARD
o

UNIVERSITY

3. Readout

87Rb . 1.‘Load . 2. Rearrange
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Emergence resurgence

d I'(]_V > ¢s > arXiv:2206.07682

Help | Advanced §

Computer Science > Computation and Language

[Submitted on 15 Jun 2022 (v1), last revised 26 Oct 2022 (this version, v2)]

Emergent Abilities of Large Language Models

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama, Maarten Bosma,
Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy Liang, Jeff Dean, William Fedus

Scaling up language models has been shown to predictably improve performance and sample efficiency on a wide range of
downstream tasks. This paper instead discusses an unpredictable phenomenon that we refer to as emergent abilities of
large language models. We consider an ability to be emergent if it is not present in smaller models but is present in larger
models. Thus, emergent abilities cannot be predicted simply by extrapolating the performance of smaller models. The

existence of such emergence implies that additional scaling could further expand the range of capabilities of language
models.

Comments: Transactions on Machine Learning Research (TMLR), 2022
Subjects: Computation and Language (cs.CL)
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4 Quantum “simulation” (or emulation)

tunneling  interaction
1
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i

{i7),o

Can the emergence of unexplained macroscopic phenomena be understood by
building quantum computers?

Data obtained on challenging models could be used to drastically improve
\ variational calculations... /
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B examples Added skeleton for rydberggpt package
B resources Updated architecture diagram

B rydberggpt Updated skeleton for rydberggpt package
O .gitignore Updated readme

[ README.md Update README.md

‘= README.md

RydbergGPT

A large language model (LLM) for Rydberg atom array physics.

Architecture

Vanilla transformer architecture taken from Attention is All You Need.

Tramsformer Encoder
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“~  David Fitzek

davidfitzek - Outside Collsborator

W LLM dov team

SPIQuIL/lim-dov-team - 3 membeors

Many of you may be aware of an
open letter circulating from the
Future of Life Institute, asking
for a pause on giant Al
experiments released yesterday.

Page 32/34



Pirsa: 23030037 Page 33/34



Thanks!
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