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- i i 3.5 An application of entanglement: Quantum Teleportation :

Entanglement is known to be a resource for quantum computing, cryptography and communication. In
particular, we are going to see a protocol of quantum communication known as ‘quantum teleportation’.
Quantum teleportation is a protocol by which quantum information (e.g. the exact quantum state of an atom, A
photon, etc) can be transmitted from one location to another, with the help of classical communication and [ 4)( F /”t)
previously shared quantum entanglement between the sending and receiving location. It was first proposed

in 1993 by Bennet, Brassard, Crepeau, Jozsa, Peres and Wootters [?], and first experimentally tested in 1997

[o6), N g [b)

TO ehsuve

Let us analyze the protocol step by step for qubits:

d
N ( Step 0 - A and B share a Bell pair, for example I I@. gMW
§Mﬁ) ,

- 1 o G o) &
D), po. 2 ) 005 = 5 [100) 40 + 1) 4. (35.1) ), yoY et
Tn (ﬂ‘)*Hq"" T A and B prepare this bell pair and then B goes away. After that Alice is given a qubit |¢) 4, that she wants

- e to send to Bob:

9, = a0l0) + e 1). (3.5.2)

Step 1- Alice will make a joint measurement of her two qubits (the one she wants to teleport, A;, and her
own half of the entangled pair, A;) in a Bell basis. For that we first write the tripartite system of the three
qubits:

|w>-4|A23:| = |99)-41 ® ‘®+)A253

1
i 04/ A, AL ST 2B3 283
(00l0) 4, +11)1) @ =100 +11) 105

¥ [0
75 (1000}, 423, +1011) 4, 4o ) + 75 (1100) 4, a3 + [110) ). (35.3)

If we factor out explicitly Alice’s two qubits we get

&0
1) asabs = T (10014, @ 105, +101) 4,4 ® [1)5,)

LL0:0o@BT : 2008+ 0ULOOLULOODOOE® BB+ | . .7,
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1) = 5 (1000425 + 1) 103, (35.1)
; : A and B prepare this bell pair and then B goes away. After that Alice is given a qubit |) 4, that she wants ;ILO oh
TD 2h 7 g : Suve
Shve ¢ e to send to Bob:
4 l©)a, = @0l0) + au[1). (35.2) P
[o(), [4(F2)
A Step 1- Alice will make a joint measurement of her two qubits (the one she wants to teleport, A;, and her

own half of the entangled pair, A2) in a Bell basis. For that we first write the tripartite system of the three
qubits:

[ o) , S

1\. ; ; |'|b)A1,42Bg |‘?’1)A1 ® ‘¢+)A233 1

Sarr | (a0l0)a, + anl1)a,) ® 5 [100)asp, + 1) 4,5]

[ &)

1Y

. a7 e
O, oy e Tee. A “ 7%(\000) it |011)A1A.2,3“) i —;(|100>A1,1,B" = |111),1m,g:‘). (3.5.3)

7

If we factor out explicitly Alice's two qubits we get
Qo - :
)20, = 2 (100) 410, @ 1005, +101)4,0, ® 1))
(238 [~
+ 75 (1004, ® 005, +[11)4,4, ® 15, (3.5.4)

As mentioned in the previous section, the four Bell pairs form an orthonormal basis of the space of two qubits.
We can rewrite Alice’s two qubits in the Bell basis, noticing that

- (1ot 18- - Lhae 5
00) = 7 (19%) +197)), 1) = ﬁ(w ) - 127)), (35.5)
e _1__ 1 = Sl __1__ = pA O = [
j01) = —= (19%) + 197)), 10y = == (19*) - 197)) (35.6)
g 2 Quantum Dynamics 20 Eduardo Martin-Martinez
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; : : A and B prepare this bell pair and then B goes away. After that Alice is given a qubit |) 4, that she wants ;ILO oh
—TD 2 ‘ “ . Suve
Fhve ¢ S to send to Bob:
4 l©)a, = @0/0) + au[1). (35.2) P
[o(), [9(F2)
A Step 1- Alice will make a joint measurement of her two qubits (the one she wants to teleport, A;, and her

own half of the entangled pair, A2) in a Bell basis. For that we first write the tripartite system of the three

[a) (F(l‘_) / ( : qubits:
!\.

[ &)

1Y

|¢)Af,4?53 @), ® [®F) 4,84

Lo Supr | IS (col0) 1 +al1)a,) © 5 [100) 4 + 11) 4,5
. (a7 e
o), toyan tee. A = 7%(\000) o |011)A1A.2,3“) i \/—%0100),;1,123" i |111),1l,,2,g:‘). (3.5.3)

If we factor out explicitly Alice's two qubits we get
2] : :
)20, = 2 (100) 410, @ 1005, +101) 4,0, ® 1))
¥ [~
+ 75 (11004, ® 005, + 11,4, ® 15, (3.5.4)

As mentioned in the previous section, the four Bell pairs form an orthonormal basis of the space of two qubits.
We can rewrite Alice’s two qubits in the Bell basis, noticing that

- (1ot 18- Loty 1o
00y = 7 (19%) +197)), I11) = ﬁ(w ) - 127)), (35.5)
i _1__ + = = _1__ = A D = [
j01) = = (19%) + 197)), 10) = 2= (19*) - 197)) (35.6)
g 2 Quantum Dynamics 20 Eduardo Martin-Martinez
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A and B prepare this bell pair and then B goes away. After that Alice is given a qubit |) 4, that she wants
to send to Bob:
le)a, = apl0) + ai[1). (3.5.2)

Step 1- Alice will make a joint measurement of her two qubits (the one she wants to teleport, A4;, and her
own half of the entangled pair, A2) in a Bell basis. For that we first write the tripartite system of the three
qubits:
|'|b)A1,4.2Bg |‘|"‘)A1 ® ‘¢+)A233
T
(col0) 0 +al1)a,) © 5 [100) 4 + 11) 4,5
o a
= 7 (1000)1,1,5, + 1011 4,128,) + 7 (11000 4,28, + [111) 0,0, (35.3)
If we factor out explicitly Alice's two qubits we get
2] : :
¥ 42200 = 5 (10004, ® [0) 3, +101) 4,0, ©11)3:)
+9-1—(|10)1 1, ® |0) B, + [11) 4,4, ® |1) B ) (3.5.4)
ﬂ Az 3 1412 3

As mentioned in the previous section, the four Bell pairs form an orthonormal basis of the space of two qubits.
We can rewrite Alice’s two qubits in the Bell basis, noticing that

1 A 1 5
00) = 7 (19%) +197)), ) = (19 - 19), (35.5)
1 = 1 = &
j01) = = (19%) + 197)), 10y = 2= (1%*) - 197)) (3.5.6)
Quantum Dynamics 20 Eduardo Martin-Martinez
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: : : AN oo
- ‘ - Ig S
I{- SMW ( ') 4, 42 B ‘I' Y, ® ("‘0|0 By T aall) BS) o W

(04 AV o -
Uy e Te e
Yo Tee -|'I' Yy g 8 (ﬂ-ulﬂ}m -m“)m)
| 2|\I! )‘{fh & (unll By 1 ”1|0>b‘)
s S
+ :;|W Y4, ® (anﬂ)n3 - a-||0}n3) (3.5.7)
If Alice measures her states in the Bell basis, Bob's states get projected with equal probability to one of the

following four states (given in matrix representation):

= " an " ap ) [+ m)
By = : 5 : :
iq s (23] ; E = R [&75) : i g

They are related with the original qubit that Alice wanted to teleport |¢2) 4, by simple local operations.

Step 3- Alice announces the result of her measurement Lo Bob through a classical channel (2 classical bits).
With the obtamed information, Bob can recover, through local unitary operations, the quantum state that
Alice wanted to teleport. In particular

I ncal
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o= (2)-(5)(2) ()

They are related with the original qubit that Alice wanted to teleport |¢) 4, by simple local operations.

Step 3- Alice announces the result of her measurement to Bob through a classical channel (2 classical bits).
With the obtained information, Bob can recover, through local unitary operations, the quantum state that
Alice wanted to teleport. In particular

Local
A measured B has B does I operation
used
89 | ledm= (%) | lha={g 3)(2)=(2)=lea 1
2 (23] 2 01 (23] ] il
o g . s ) ¥y e
o) |loda= (2] [hm= (5 ) (%) =(2)=tn|
@ 01 @ @
|W+> I‘P)U:\ = (a;) |[P!>Bs = ( 1 0) (Q;) = (0?) = |9’>;‘l1 Oy
il o " =t 0 1 =ay N 9 oo 3
o1 e (e[ S = (2| =

At the end of the protocol, Bob ends up with a state which is identical to the state of A; that Alice initially
had. What happened is that the subsystem Bj has acquired the state A;. The Bell state that Alice and Bob
shared is destroyed applying this protocol, as it is the state of A;. Causality is preserved by the fact that Bob
needs the information input about the outcome of Alice, or otherwise he is unable to know which operation to
perform to recover the original qubit. Also, it is very simple to prove that it is impossible to clone quantum
states (for further reference, see the no-cloning theorem [?]), so to teleport one has first to destroy the original.
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Measurements in Quantum Theory

Still an open problem!

Proposal: At least some Measurements can give values (e.g., 42)
that we can write on a notepad

In QM, we model that with idealized measurements

Idealized measurements of non-degenerate observables update states through
a rank-1 projector on the spectrum of the measured observables

But Quantum to Classical transition? Interpretation?

You could “not care”! And still get rich and famous
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No idealized measurements?

Rafael Sorkin (1992):

No idealized measurements in QFT?

Impossible Measurements on Quantum Fields+

RAFAEL D. SORKIN

Department of Physics, Syracuse University, Syracuse NY 13244-1130

Abstract

It is shown that the attempt to extend the notion of ideal mea-
surement to quantum field theory leads to a conflict with locality,
because (for most observables) the state vector reduction associated
with an ideal measurement acts to transmit information faster than
light. Two examples of such information-transfer are given, first in
the quantum mechanics of a pair of coupled subsystems, and then for
the free scalar field in flat spacetime. It is argued that this problem
leaves the Hilbert space formulation of quantum field theory with no
definite measurement theory, removing whatever advantages it may
have seemed to possess vis a vis the sum-over-histories approach,
and reinforcing the view that a sum-over-histories framework is the
most promising one for quantum gravity.

9302018v2 20 Feb 1993
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No idealized measurements?

Rafael Sorkin (1992):

No idealized measurements in QFT?
Argues that idealized measurements are incompatible with causality
Two examples:

Example 1: Two-Qubit system
Consider a state: |0,0;)

1-Perform local Unitary on A
1
E(‘Q\UB) + [1a1s))

3-Expectation of observable on B gains information about the unitary on A

2-Make an idealized Bell measurement projecting on to

Surprised?

Page 17/29



No idealized measurements?

1-Perform local Unitary on a field observable localized around A

ct
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No idealized measurements?

3-Expectation of local observables on B gains information about the unitary on A

cl

Q i
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So what’s the plan?

People kept using such idealized measurements (actively and by assumption)

People in RQI followed two paths:

Particle detectors Localized idealized measurements

More on this later! Is this okay?
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Localized idealized measurements

This seems to be the problem!

A naive read of Sorkin’s paper may suggest so....
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Localized idealized measurements

Impossible measurements revisited

L. Borsten,” I. Jubb,! and G. Kells!
School of Theoretical Physics, Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin 4, Ireland
(Dated: December 16, 2019)

time

space
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Localized idealized measurements?

Foundations of Physics, Vol. 25, No. 1, 1995
More Ado about Nothing

Michael Redhead'

Received February 9, 1994

In this paper questions abowr vacuum fluctuations in local measurements. wid the
correlations hetween such fluctuations. are discussed. It is shown rthar maximal
correlations always exist between suitably chosen local projection operators
asyociared with spacelike separated regions of space-time, however far apart these
regions may be. The connection of this result with the well-known Fregenhagen
bound showing exponential decay of cerrelations with disiance is explained, and
the relevance of the discussion to the question *What do particle derectors derecr?™
is addressed.
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Localized idealized measurements?

Foundations of Physics, Vol. 25, No. 1, 1995

Theorem 1. If Pe R(O). then P is an infinite-dimensional projector.

Proof. This follows directly from the result of Driessler'”’ which
states that the quasi-local algebra associated with an unbounded wedge of
space-time is a type III factor. Now any bounded region is internal to some
wedge, so by isotony R(Q) is a subalgebra of some wedge algebra. So the
projectors in R(Q) are identified with some of the projectors in the wedge
algebra. But in a type Il factor «/l the projectors are infinite-dimensional.
So all the projectors in R( @) are infinite-dimensional.

A PVM over a bounded region of spacetime cannot be finite-rank!
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Measurements in Quantum Theory

What do I want from a measurement theory in QFT?

1-Capable of producing definite values
2-Provides an update rule

3-Consistent with the theory
(e.g., respect causality in a relativistic theory)

4-Reproduces experiments!!!
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'Measuring fields: Particle detectors

How do we measure quantum fields?

Particle detectors: Non-relativistic
quantum systems coupling
‘locally’ to the field

Particles are what particle
detectors detect
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