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Abstract:

In recent years, machine learning has been successfully used to identify phase transitions and classify phases of matter in a data-driven manner.
Neural network (NN)-based approaches are particularly appealing due to the ability of NNsto learn arbitrary functions. However, the larger an NN,
the more computational resources are needed to train it, and the more difficult it is to understand its decision making. Thus, we still understand little
about the working principle of such machine learning approaches, when they fail or succeed, and how they differ from traditional approaches. In this
talk, | will present analytical expressions for the optimal predictions of three popular NN-based methods for detecting phase transitions that rely on
solving classification and regression tasks using supervised learning at their core. These predictions are optimal in the sense that they minimize the
target loss function. Therefore, in practice, optimal predictive models are well approximated by high-capacity predictive models, such as large NNs
after ideal training. | will show that the analytical expressions we have derived provide a deeper understanding of a variety of previous NN-based
studies and enable a more efficient numerical routine for detecting phase transitions from data.

Zoom Link: https://pitp.zoom.us/j/91642481966?pwd=a krWEFFcFBVRIJEbDRBZWY 3MFFDUT09
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Symmetry-breaking phase transition in Ising model
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Symmetry-breaking phase transition in Ising model

1
- magnetization serves as order parameter M (o) = 72 Z o;
i

, _ ' B 2
- Onsager’s solution kpT./J = (11 v2)
ferromagnetic phase paramagnetic phase magnetization
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Topological crossover in Ising gauge theory

- Hamiltonian H (o) = —JZ Haﬁ-

P P

: plaquette [’ :

Hvﬁeﬂﬁ- g, =1 ]—LEP o; = —1

- spin configuration o = (01, &5 5. 4 ,aLxL), with 0; & {—6—1, —1}
—H(o)/kgT

Z

N
€
- Boltzmann distribution P(O') =
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Topological crossover in Ising gauge theory
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Many-body localization phase transition in Bose-
Hubbard chain

B L
- Hamiltonian H = —.J Z(ZA)IH?A)& + H.c.) + Z %’fzé (n, — 1) + Wh;n,

i=1 5 i=1

= fixed interaction strength U/ J = 2.9

= quasi-periodic potential h; = cos(2wai + ¢), where « is fixed
and ¢ € [0, 27) mimicking on-site disorder with strength W/
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Many-body localization phase transition in Bose-
Hubbard chain

L—1 L
. T U
- Hamittonian H = —J > (bl b, + H.c.) + ) jaﬁi (h, — 1) + Whyn,
i=1 =1

= let system evolve starting from Mott-insulating state |¥(0)) = [11...1)

thermal phase many-body localized phase

unitary time evolution

disorder strength W
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Motivation

- detecting phase transitions autonomously from readily accessible data
= does not require prior theoretical knowledge

= could enable discovery of new phases of matter
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Motivation

- detecting phase transitions autonomously from readily accessible data
= does not require prior theoretical knowledge

= could enable discovery of new phases of matter

use (deep) neural networks which proved to be
successful in traditional image classification tasks
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Detecting phase transitions using neural networks

« supervised learning (SL)

nature

LETTERS

p yble PUBLISHED ONLINE: 13 FEBRUARY 2017 | DOI: 10.1038/NPHYS4035

Machine learning phases of matter

Juan Carrasquilla™ and Roger G. Melko'?

* learning by confusion (LBC)

nature LETTERS
p I]YSICS PUBLISHED ONLINE: 13 FEBRUARY 2017 | DOI: 10.1038/NPHYS4037

Learning phase transitions by confusion

Evert P. L. van Nieuwenburg®, Ye-Hua Liu and Sebastian D. Huber

- prediction-based method (PBM)

PHYSICAL REVIEW E 99, 062107 (2019)

Vector field divergence of predictive model output as indication of phase transitions

Frank Schiifer and Niels Lorch
Deparimeni of Physics, University of Basel, Klingelbergsirasse 82, CH-4056 Basel, Switzerland

M| (Received 3 December 2018; revised manuscript received 16 May 2019; published 5 June 2019)

Page 13/41



Detecting phase transitions using neural networks

2) train neural network to
minimize loss function £

< ~
1 3) compute indicator of phase
<~ 7 transitions [ from predictions I
T =, < > ylw) —p {
; |
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P pa v Pr

Pirsa: 23020061 Page 14/41



Supervised learning

region I1

wix) =1 tl’alﬂll’lg data 2) train neural network to

minimize loss function £

region I

Y o) m 1.00
A . ) 0.6
-3 P2 - e g : :
[ 'PI » 1 < 3) compute indicator of phase ~ 0.75
\ K~ A transitions [ from predictions F04
x = < > j(x) = £ 050 =z
1 025 02
L
0.00 r0.0

- train neural network to minimize binary cross-entropy loss Lg,
- compute mean prediction at each sampled value of tuning parameter

) 1 A

UsL(pk) = v Z ()

Iy

- compute indicator of phase transitions Isp(px) = — _ysa;(p)

Pk
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Learning by confusion

reglon il 2) train neural network to

minimize loss function £

training data

yle) =40

3) compute indicator of phase
transitions [ from predictions  0.91

B

:

0.8

for each bipartition point ;"
- train neural network to minimize binary cross-entropy loss L zc

- compute mean classification accuracy which serves as an indicator of
phase transitions Ipsc(p;")
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Prediction-based method

=< 10 2) train neural network to
tralmng data minimize loss function £
m .

1 < 3) compute indicator of phase I
0 < 7 transitions [ from predictions = =

T =, < > i(x) = o= 6 B
1 Lo ARy

=1 : . g
0.0 2.5 5.0 1D 10.0

P

- train neural network to minimize mean-squared error 0SS Lppy
- compute mean prediction at each sampled value of tuning parameter

YPBM pf,, M Z J

xreAy =
doyprm(P)

dp

aQPBM (p)

=1
dp

- compute indicator of phase transitions Ippn(px) =

Pk Pk

with (Sypn\](pk) = ?}PBM(pk) — Pk
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What’s the problem?

- methods were motivated in a heuristic fashion

- (deep) neural networks are difficult to interpret

= have limited understanding of their working principle

density-of-states
model

unclear when and why they fail...

...or succeed /

) PO + -1 o B | ==
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Greplova et al.,, New J. Phys. 22 045003 (2020)

™
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What’s the problem?

- methods were motivated in a heuristic fashion

- (deep) neural networks are difficult to interpret

= have limited understanding of their working principle

high model capacity

)

low interpretability Snd high computational cost
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Regaining interpretability through reduced capacity

low model capacity

4
high interpretability

many works up to now...

- ...use linear methods, such as (kernel) support vector machines

N
- ...engineer input features or reduce neural network size systematically

= neural network can be well approximated by linear function

- ...use standard ML interpretability tools: analyze dependence of output on
input data via truncated Taylor expansion
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Replacing neural networks by optimal predictive models

2) train neural network to
minimize loss function £

!
A :

e N
1 3) compute indicator of phase
< 7 transitions / from predictions I
. |
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|

s
/ — :[ —t—t
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2*) evaluate analytical expression
of optimal predictions 5" (a2)
which minimize loss function

arg min £ = §°P%() lim §(x) =9°""(x)
il(x) N model capacity — o0
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Optimal predictions

; Py(x)

- supervised learning: jai'(z) = Pi(z) + Pr(x)

, where Py(z) = Z Py(z)

kel/II

__ Pi=)
PI(CL‘) —+ Pn (ZE)

- learning by confusion: g;5(x)

;}:‘:1 P (z) pi
K
k=1 Pk (x)

~0pt

- prediction-based method: pp () =

= calculate optimal indicator /°* given optimal predictions 7°P*
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Optimal predictions

P](CE)
ZE) -+ PH(QB)

~opt

- supervised learning: g () = Pl
I

, where Py(z) = Z Py (z)
kel /11
_ P[(GU)
PI(CB) + PH(ZE)

- learning by confusion: g;5(x)

1{‘21 Py (3:) Pk
K
=1k (x)

~0pt

- prediction-based method: Jpp () =

expressions reveal dependence of output on input data

= phase transitions are detected as changes in underlying probability distributions

Pirsa: 23020061 Page 23/41



Optimal predictions

P](CE)
ZE) -+ PH(QB)

~opt

- supervised learning: g () = Pl
I

, where Py(z) = Z Py (z)
kel /11
_ P[(GU)
PI(CB) + Pn(m)

- learning by confusion: g;5(x)

;{{:1 Py (z) pr
K
r—1 Pk ()

~0pt

- prediction-based method: Jpp () =

= can be evaluated given

a) analytical expression for P (x)
b) exact numerical values for Py (x)

¢) numerical estimate for P (x), e.g., from drawn samples Py (x) ~ My(x)/M
= empirically optimal predictions
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Empirically optimal predictions: Small data set

ideal fit

underfitting overfitting

loss

our approach

igmlt\lellixen ion gap # 0
]

model capacity

~
”~

Vapnik, The Nature of Statistical Learning Theory, Springer (2000)
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Empirically optimal predictions: Large data set

ideal fit

underfitting

loss

generalization gap ~ 0 our approach

model capacity

Vapnik, The Nature of Statistical Learning Theory, Springer (2000)
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Reaching high model capacity with neural networks

training neural networks evaluating optimal predictions

ﬁm

gradient descent

o '
S',L‘;'
o ik
5 .
: [ t
(7))
O
global minimum
= requires = requires

- large neural networks &
- many training epochs
- hyperparameter tuning

~ same time as single training step
of neural network with minimal size

= no guarantee of convergence = convergence guarantee by construction

Li et al., Adv. Neural Inf. Process. Syst. 31 (2018)
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Application to classical equilibrium systems

G—H(G)/kBTk

- for systems governed by Boltzmann distribution P(o) = 7
the energy £ = H(o) is a sufficient statistic "

= switch from raw configurations to energy as input
yields optimal lossless compression of state space

= for any predictive model: energy is single relevant feature

Page 28/41



<
cC u
R
—
>0
O
T
et
@ -
d P
> il
= N
— =2
0
4]
0
o
| -
o
<
o
A
IvAl‘l..llvlv..l.TIVAllvlvlv — xl_
;lallf..llv.llglf‘llv..l.l —
;IAIIvIvAI‘IAltllfAITAIAI Hu

temperature T'

ground state excited state

Example: Ising gauge theory (L=28)
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Example: Ising gauge theory (L=28)

probability distribution supervised learning
: 10° 1.00{ 4
v kpT./J i
—0.1 | B / 107 N _ 0-6**‘ x 1/In(2L?) 6
i 0.75 1 ?"7:0.5-\
> 02 | 107 . £ 04] "ﬂ\* 4
= ; L %0507 0.3 e L
-0.31 | 10 5 10 15 20 25 5
; a 0:25+ L
04 ! 10 ,
' | 1,5 0001l . 1o
0.0 25 5.0 0.0 25 5.0
ksT/J ks T/J

- can derive: §o (pr) o< Pr(Eys)

= supervised learning tracks the relevant physical quantity

Carrasquilla and Melko, Nat. Phys. 13 431-434 (2017)
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Example: Ising gauge theory (L=12)

training neural networks

0.7 =

‘o“.ﬂ.‘ -4- L=12
(]

1.0 1

0.9 -

opt
! LBC

0.8 -

0.71,

= learning by confusion fails in this setting

evaluating optimal predictions

Greplova et al., New J. Phys. 22 045003 (2020)
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Example: Ising gauge theory (L=28)

probability distribution . prediction-based method
1 10 T
| I &l
I fﬁ]gf(./J 4 -
4.1 i 107
i -0.0
~ 021 | 02 =°] | -
Z ] =2 1 27
3 ; 3 =24 o
=031 U 0.5
I 4 1 - i
: - 10 '
—0.4 : :
T T . L L 10‘5 0+—L i i F=1.0
0.0 2.5 5.0 0 2 4
kpT/J kpT/J

- for Boltzmann distribution:  §phy = 9pos

= optimal predictive model is equivalent to density-of-states (DOS) model

N

Greplova et al., New J. Phys. 22 045003 (2020)
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Example: Ising model (L=60)

probability distribution supervised learning

10 ] i
B Lol ;
-05{ 1 i 10" |
) ;o 0.75 |
)
= . 10° ! 2
. . | .
-154 | |} argmax I i 0.25 1 -
P A 10 |
vl T .
ol i1, | . . 10% 0.00 1 - . : - 10
00 25 50 75 100 00 25 50 75 100
A‘];’T/J k|z,!_[7J
learning by confusion prediction-based method
1.00 ' !
1 1
I 84 1
: - -0.5
7 0.98 - ' 6 ! i
83 ! a2 . 00 g
0.96 - : i i e
i [ —0.5
i 21 i
0.94 1 | :
' :| : : . ; |I 8 ! - 7].0
00 25 50 75 100 00 25 50 75 100
A’i];'T/J A‘];YVJ

Schafer and Lérch, Phys. Rev. E 99 062107 (2019)
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Example: Bose-Hubbard chain (L=38)

probability distribution retrieval probability
= B 06_ T T
thermal 10
=
i—14 i+1 2
=t 1
A S % 107
v -2
o £ . %
£ L £ 2 10° o
'% TR y = _g
b= <7
5 MBL o
2
o i—1 &t t+1 =} s
3 w/J
A 4 /
v 8
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Example: Bose-Hubbard chain (L=38)

probability distribution retrieval probability

0.6 1

= . -1 !

;—i— 10

~— Moti-insulating state R £

basis index

X 0.0 I
15 20 i 0 5 10 15 20
W/J
supervised learning learning by confusion prediction-based method
1\ b 5.5 s
l i 1 o~ i ] L1
" o sy
.06 . oo 0 () 5 1007 I Lo
0.4 1 Lo 7.5 ! =
0.8 1 P |
U Lo 501 : 2
L I
0 5 10 15 20 0 5 10 15 20 0 5 1015 20
w/J w/J w/J

= approach is in principle applicable to experimental measurement data

Bohrdt et al., Phys. Rev. Lett. 127 150504 (2021)
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...and many more

Berezinskii-Kosterlitz-Thouless transition in XY model

first-order phase transition in XXZ chain

Mott-insulator to superfluid transition in Bose-Hubbard model

topological phase transition in Kitaev chain
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Controlling model capacity
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Controlling model capacity

Example: Prediction-based method for Ising model (L = 60)

neural network architecture odel
OQNM\ model Hp

i’Vnn(h‘s =2
e Nniles = 8
- -Nrnudu.a =16
r— M]l)(l(—‘s =256
— Nnodes =512
= IJ\'flu.)dc:s = 2048
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Controlling model capacity

Example: Prediction-based method for Ising model (L = 60)

neural network architecture explicit ¢, regularization

1
2.5 5.0 7.5 10.0
kpT/J

= optimal predictions can be recovered in practice in high-capacity limit

= failure of optimal model signals fundamental mismatch between task and goal
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Summary

high model capacity
with
low interpretability and high computational cost

neural networks

S\

WA
wN Vv

¢

non-parametric predictive models

high model capacity
with
high interpretability at low computational cost
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Outlook

- apply similar analyses to other machine learning methods and
classification tasks in condensed matter physics

- improve numerical routine using methods for density estimation
= compatible with autoregressive networks and matrix product states

- compare indicators to other choices of statistical distances

= establish relation to Fisher information
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