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Abstract:

Canonical Quantum Gravity can be considered as a gauge theory of trandations. Just like in other gauge theories this implies that physical
observables need to be gauge-invariant. Hence, quantities like the metric cannot be observables. This poses new challenges, as this requires to
rephrase in the quantum theory how to characterize physics. Moreover, such observables are usually composite. To determine them, the
Frohlich-Morchio-Strocchi mechanism from QFT can be borrowed, to have an augmented perturbative approach.
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What is this talk about?

 Why an invariant formulation?
* Path integral formulation and symmetries
« Canonical quantum gravity

* Space-time structure
« What’'s a universe in quantum gravity?
» Particles & black holes
* Frohlich-Morchio-Strocchi mechanism
« Emergence of flat-space QFT
 Connecting to other approaches

irsa: 23020038 Page 3/67



Path integral and global symmetries

Measure is invariant

- no anomalies
2= [, DPE
N

Action is invariant

S[¢]=S[G¢]
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Path integral and global symmetries

Z :J@D ¢a eish’b]

Integration range

- contains all orbits G ¢ ©
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Path integral and global symmetries

o' (x))=] D¢ e ¢’ (x)
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Path integral and global symmetries

(¢(x))=] D¢ e ¢’ (x)

* There is no preferred point on the group orbit
* There is no absolute orientation/frame in the internal space
* Does not change when averaging over position
* There is no absolute charge

U
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Path integral and global symmetries

(P (x)=[ D¢ e ¢°(x)=0

* There is no preferred point on the group orbit
* There is no absolute orientation/frame in the internal space
* Does not change when averaging over position
* There is no absolute charge
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Path integral and global symmetries

(F(x) o (y))=] D¢ """ (x) ¢ (y)=0

I

» Relative charge measurement averaged over all
possible starting point
* Vanishes because no preferred absolute starting point
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Path integral and global symmetries

(0, 9”(x) 9" ()
=] D¢ "5, ¢"(x) # ()

I
« Group-invariant quantity
« Measures relative orientation
» Created from an invariant tensor o,
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Path integral and global symmetries

(8,9’ (x) 9" ()
=], D¢"e"" 5, ¢"(x) ¢ (y) 0

g
« Group-invariant quantity

« Measures relative orientation
» Created from an invariant tensor o,
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Path integral and local symmetries

Measure is invariant

- N0 anomalies
S V)
z=], D@
o N\

Action is invariant

S[¢]=S[G¢]
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Path integral and local symmetries

(8,0 (x) 6 ()
= [, D¢"e" " 8,.¢"(x) ¢ (y)=0

* No longer invariant under gauge transformations
* Vanishes just as any other non-invariant quantity
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Path integral and local symmetries

Transporter

/|
(¢ ()T (x, )¢ (y))
=|  D¢' DU g¥(x) U™ (x,y) ¢ (y)

*Transporter compensates gauge transformations
* Implemented by gauge fields
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Path integral and local symmetries

(9" (x) U™ (x,y) ¢ (y)) |
=[ D¢ DU ¢’ (x)U™(x,y) ¢ (y)#0

*Transporter compensates gauge transformations
* Implemented by gauge fields
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Path integral and local symmetries

Reduced integration range

(¢"(x) ¢ (y))

[ D#DUW (U, 9)e™ ¢ ()¢ ()20

« Reduction of integration region by gauge fixing
» Arbitrary choice of coordinates
* Weight factor to keep gauge-invariant quantities the same
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Quantum gravity: Setting the scene

* QFT setting - no strings or other non-QFT settings

* Diffeomorphism is like a non-standard gauge
symmetry

« Arbitrary local choices of coordinates do not affect
observables - pure passive formulation

« Physical observables must be manifestly invariant
* Spin seems to be an observable?

« Spin degeneracies and selection rules due to spin
conservation

* Global or effective structure

» Particle physics gauge symmetries and global
symmetries should remain the same o
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Gravity as a gauge theory

N

Manifold with diff — 5 >
'3 f e

mmetry (T | S N

Pirsa: 23020038 Page 18/67



Gravity as a gauge theory

Metric g at
every event =

v | e ™ ;‘"‘j
symmetry | ~ _x
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Gravity as a gauge theory,

Gauge symmetry | _\\_
is event-dependent N

,l : ™~ \
[ Global
symmetry
- is event-
independent
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Gravity as a gauge theory4

Internal symmetries act in internal spaces/
b

Global: One internal space /

Local: One space at every event

Gauge symmetry
IS event-dependent

. U
'/ Global
- symmetry
) - |s event-

independent
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Dynamical formulation

_ a iS[¢,e]+iSyle]
z=],Dg,.D¢"e

irsa: 23020038 Page 22/67



Dynamical formulation

Standard gravity

— a iS|¢,el+iSy,le]
z=],Dg,.D¢"e
« Integration variable currently arbitrary choice

« Here: Metric - not relevant at leading order
» Other choices (e.qg. vierbein) possible
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Dynamical formulation

Standard gravity Standard gravity
coupling |

Other fields

\\

\\ -.‘_l‘ll‘.‘\ l‘ll‘:‘..‘
< 4

_ A aiS[pel+iSyle]
z=],Dg,.D¢e

 Integration variable currently arbitrary choice

« Here: Metric - not relevant at leading order
» Other choices (e.qg. vierbein) possible

» Otherwise standard
« E.g. Asymptotic safety for ultraviolet stability
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Dynamical formulation

0#(0)=]_Dg,,D ¢"0e" "l




Dynamical formulation

S[p,e +ISEH[ ]

0¢<o> ngngbo

- Needs to be mvarlant
|« Locally under Diffeomorphism
* Locally under Lorentz transformation
| » Locally under gauge transformation
* Globally under custodial,... transformation

'to be non-zero
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Space-time structure

« Average metric vanishes: (g,.(x))=0
* Characterization by invariants e.q.
([ d*x\det g R(x))
<fddxv’detg>
* No preferred events

« Space-time on average homogenous and
Isotropic

» Average space-time is flat or (anti-)de Sitter
for canonical gravity

* Invariants identify the particular type

= const \
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Simpelst object: Scalar

Argument is the event, not the coordinate

/
Fé

/ __— Result depends on events

(0(x)0())=D(x.})

* Consider a scalar particle

« E.g. described by a scalar field O(x)
 Completely invariant
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Simpelst object: Scalar

Argument is the event, not the coordinate

/ Result depends on events
(0(x)0(y))=D(x,y) o

* Consider a scalar particle
« E.g. described by a scalar field O(x)
 Completely invariant
* Events not a useful argument
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Simpelst object: Scalar

(0(x)0(p))=Dl(r(x,y))

« Distance is a quantum object: Expectation value
* Needs a diff-invariant formulation
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Simpelst object: Scalar

(0(x)O(y))=D(r(x,y))

i Ad

» Distance is a quantum object: Expectation value

r(x,y):<minzfj: dAig

« Needs a diff-invariant formulation
« Diff-invariant distance: Geodesic distance
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Simpelst object: Scalar

Reduces the full dependence: Definition
Dependence on events will only vanish if all events on the
average are equal - probably true

(0(x)O(y))=D(r(x,y))

“YdAdA O

» Distance is a quantum object: Expectation value

r(x,y):<minzvfj: dAig

« Needs a diff-invariant formulation
« Diff-invariant distance: Geodesic distance
* Needs to be determined separately
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Simpelst object: Scalar

Reduces the full dependence: Definition
Dependence on events will only vanish if all events on the
average are equal - probably true

(0(x)O(y))=D(r(x,y))

“YdAdA O

» Distance is a quantum object: Expectation value

r(x,y):<minzvfj: dAig

« Needs a diff-invariant formulation
« Diff-invariant distance: Geodesic distance
* Needs to be determined separately
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Simpelst object: Scalar

(0(x)O(y))=DI(r(x,y))  Separate calculation

“YdAdA O

» Distance is a quantum object: Expectation value

r(x,y):<minzvfj: dAig

« Needs a diff-invariant formulation
« Diff-invariant distance: Geodesic distance
* Needs to be determined separately
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What about cosmology?

* Big bang a preferred event - not possible!
* Description of a universe?

(O(x)P(x)...Q(y)..R(y,)}

Originate at same event: Big bang
Distances between x and y, future time-like

Distances between y. space-like

Evolution of a matter/curvature concentration
Properties measureable
. E.g. size as maximum space-like distance of y.

- Preceived life-time in an eigenframe at one y.
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What about cosmology?

* Big bang a preferred event - not possible!
* Description of a universe?

(O(x)P(x)...Q(y)..R(y,)}

Originate at same event: Big bang
Distances between x and y, future time-like

Distances between y. space-like

Evolution of a matter/curvature concentration
Properties measureable
. E.g. size as maximum space-like distance of y.

- Preceived life-time in an eigenframe at one y.

A universe is a scattering process
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Frohlich-Morchio-Strocchi mechanism

« Horrible complicated calculation
« FMS mechanism allows simplification

* Requires: Dominance of a configuration

* Usually: Classical solutions
* Depends on parameters
« FMS prescription:

« Chose a gauge compatible with the desired
classical behavior

» Split after gauge-fixing fields such that they
become classical fields plus quantum corrections

« Calculate order-by-order in quantum corrections
 Works very well in particle physics

irsa: 23020038 Page 37/67



FMS in a nutshell

 Consider the standard model

* Physical spectrum: Observable particles
* Peaks in (experimental) cross-sections

« Higgs, W, Z,... fields depend on the gauge
« Cannot be observable

* Gauge-invariant states are composite
- Higgs-Higgs, W-W, Higgs-Higgs-W etc.

O 0Oa

\

00
N
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Frohlich-Morchio-Strocchi Mechanism

1) Formulate gauge-invariant operator
0" singlet: ((h™ h)(x)(h™ h)(y))
2) Expand Higgs field around fluctuations h=v+n

{(h™ h)(x)(h™ h)(y )> viin” (x)n(y))
+vin® e T n)+(n T )

3) Standard perturbation theory eas

Bound | 4~ mass
state @ h)(x)(h” (M))

mass  +(n” (xIn(y)n" ()n(y)+0(g,n) °

4) Compare poles on both sides
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Frohlich-Morchio-Strocchi Mechanism

1) Formulate gauge-invariant operator
0" singlet: (h™ h)(x)(h™ h)(y))
2) Expand Higgs field around fluctuations h=v+n

= Rl )= viin” (x)n(y))

+tvin e T )+ ) Standard
_ Perturbation
3) Standard perturbation theory Theory

Egigq-@ h)(x)(h* h)(yD=vi * (x)n(y) ;

mass  +(n" (x)n(y))(n" (x)n(y))+0(g,\)

4) Compare poles on both sides
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Flavor

* Flavor has two components

» Global SU(3) generation
» Local SU(2) weak gauge (up/down distinction)
 Same argument: Weak gauge not observable

. Replaced by bound state - FMS applicable

(x)" \hh l] |

h V+T)

~

"h —h,|

Mh i

\1 ,\ﬂ

v Ve ()T (y ) +0(n)

ot g

* Gauge-invariant state, but custodial doublet
* Yukawa terms break custodial symmetry
» Different masses for doublet members

Pirsa: 23020038 Page 41/67



Pirsa: 23020038

Flavor on the lattice

* Only mock-up standard model|

Compressed mass scales
samn, 5
One generation

Degenerate leptons and
neutrinos

Dirac fermions: left/right-
handed non-degenerate

Quenched
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Flavor on the lattice

* Only mock-up standard model|

Spectrum: Lattice and predictions
« Compressed mass scales

=
 One generation 8 140| Gauge-dependent
E g , Spin 0 Singlet
* Degenerate leptons and 1o0E] Higgs ¢
neutrinos i
« Dirac fermions: left/right- [
handed non-degenerate B
d .
. Quenched i 1z % Spin 1 Triplet
S5 60
« Same qualitative outcome - | Fermion (L) ¢ $  |Spin J Doublet
« FMS construction 400 Fhaa
* Mass defect 201 oFermion (®) $  Lattice
« Flavor and custodial I S || FmS prediction

symmetry patterns
* Supports FMS prediction
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Protons

« True for all weakly charged particles
* This includes left-handed quarks!

* Proton is a mix of left-handed and right-handed quarks
* qqq cannot be weakly gauge invariant

« Replacement: gqgh
 FMS: At low energies just the proton
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Further consequences

* In SM physics: Quantitative changes

« Anomalous couplings/form factors
« (Small) differences in various kinematic regimes

* More: See 1701.00182, 1811.03395, 2002.01688,
2008.07813, 2009.06671, 2204.02756, 2212.08470
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Further consequences

* In SM physics: Quantitative changes

« Anomalous couplings/form factors
« (Small) differences in various kinematic regimes

* More: See 1701.00182, 1811.03395, 2002.01688,
2008.07813, 2009.06671, 2204.02756, 2212.08470

* In BSM physics: Sometimes qualitative changes
« Even different spectrum
« Affects viability of BSM Scenarios

« More: See 1709.07477, 1804.04453, 1912.086680,
2002.08221, 2211.05812, 2211.16937
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Applying FMS to gravity

* OQur universe is well-approximated by a
classical metric
* Due to the parameter values - special!
 Small quantum fluctuations at large scales
* Empirical result
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Applying FMS to gravity

* Qur universe is well-approximated by a
classical metric
* Due to the parameter values - special!
 Small quantum fluctuations at large scales
* Empirical result
 FMS split after (convenient) gauge fixing
=0 Vi

 Classical part ¢g° is a metric, chosen to give
exact (observed) curvature

 Quantum part is needed (assumed) small
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Details (and challenges)

* Classical metric needs to be useful

* Should not have special events
* Only flat and (anti-)de Sitter possible
* Should satisfy gauge choice
* Split after gauge-fixing!
* No linear condition possible
 Simple choice: Haywood gauge g“'d,g,,=0
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Details (and challenges)

* Classical metric needs to be useful

* Should not have special events
* Only flat and (anti-)de Sitter possible
* Should satisfy gauge choice
* Split after gauge-fixing!

* No linear condition possible

 Simple choice: Haywood gauge ¢g“'d,g,,=0

* Inverse fluctuation satisfies Dyson equation
Y ==(g ) Yopllg P+ ¥

* Infinite series at tree-level
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Distance

o 0 dz" dz"
"(X,J’):<mmzfx d)Lg‘m,HH>
dz" dz"

, y
dAdA (min, | AAY v 7 dA
dz" dz"

: , y B B
= ﬂ(x,y)+<mmzfx dky‘”dl dﬂ,>_r +or

dz'dz .,

:<minzfjdlgf,v )

Classical geodesic
distance

» Application to distance between two events

* Yields to leading order classical distance
*Yields at leading-order classical space-time
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Propagators

O

(0(x)O(y))=D_(r)+>_(or)'8" D,

/

Leading term is DC:<O(x)O(y)>gc

flat space propagator

 Double expansion
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Propagators

(0(x)O(y))=D,(r)+, (6r)'¢!D.(r)+(0(x)O(y)),

D,=(0(x)0(y)),

 Double expansion
* Quantum fluctuations in the argument and action
« Consistent with EDT results .z

O
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Propagators

D,=(0(x)0(y)),

 Double expansion
* Quantum fluctuations in the argument and action
* Consistent with EDT results -2

* Reduces to QFT at vanishing gravity

« Higgs and W/Z mass in quantum gravity calculated
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Non-trivial geon

* Pure gravity excitation: Curvature-
curvature correlator

Differential operator

e

(R(XIR(y)=D"(5,,(x) y,ol y)d(x, y))+0(¥)

Graviton propagator
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Non-trivial geon

* Pure gravity excitation: Curvature-
curvature correlator

Differential operator

s
-

(ROXR(Y)=D"(5,,(x),,(¥))(d(x.y)+0( )

Graviton propagator

* In Minkowski space-time: No
propagating mode at lowest order
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Predictions for CDT

 CDT vertex structure can be mapped to
events

* Allows reconstruction of metric in a fixed
gauge on every configuration

» Set of coupled partial differential equations
e

_ g,!l,o(e) dz,u dzp
b dtdr
g""(e)

| \ i 0: (gvp(e)_gvp(i))
. b A
N Timelike: b |

Space-like hypersurface (“now”): a Haywood %)ondition

d(e,i)=b
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Predictions for CDT

 CDT vertex structure can be mapped to
events

* Allows reconstruction of metric in a fixed
gauge on every configuration

e deSitter structure observed in CDT

« Metric fluctuations per configuration should
be small compared to de Sitter metric
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Predictions for CDT

 CDT vertex structure can be mapped to
events

* Allows reconstruction of metric in a fixed
gauge on every configuration

e deSitter structure observed in CDT

« Metric fluctuations per configuration should
be small compared to de Sitter metric o

 Geon propagator should behave as
contracted metric propagator

* As a function of the geodesic distance
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Speculative phenomenology

» Macroscopic gravitational objects need to be build
In the same way

» Just like neutron stars from QCD
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I 1~ - MMACA Bl =" ]
[Picture: NASA, Maas et al’22]

Views of black holes

Classical picture of a black hole

P |
Hubble Measures Deflection of Starlight 2 ——— \(
. < — -

by a Foreground Black Hole ~ s oy \\

Averaging over this!

f/ -- Ty N N Iﬁ;
//- 4 g -
| / — f_\\_\ e
f// H'“‘\\
Need to put a

P | . . creation operator
But this is a special worldline, at an event -

determining the full metric! but it would still
be a constant

Not possible in a quantum

expectation value. (B(x))=d
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[Picture: NASA, Maas et al'22]

Views of black holes

Averaging over this!
Classical picture of a black hole :

. |
Hubble Measures Deflection of Starlight e e e—— \(
- I —

by a Foreground Black Hole -

\.
/ *. =
Need to put a
black hole Need to
creation operator

But this is a special worldline, at an event -

correlate with
e.g. curvature

determining the full metric! but it would still

be a constant
Not possible in a quantum 1
expectation value. (B(x)R(y))=d(r(x,y))

Pirsa: 23020038 Page 62/67



VMaas et al £22]

Views of black holes | |
Averaging over this!

In FMS: Splitted further | \

’ Ve \__\::\ o \\ /

(Small) fluctuations —" .—\ X
of the metric ’ f’ e

g

Expansion metric,
without preferred events
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Views of black holes | |
Averaging over this!

In FMS: Splitted further - \
(Small) fluctuations — e =
of the metric , N \\_

Expansion metric,
without preferred events

Calculate expansion:

(B(x)R(y))=d(r'(x,y))+quantum

Classical field result
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Speculative phenomenology

 Macroscopic gravitational objects need to be build
In the same way

» Just like neutron stars from QCD
» Black hole: Two options

« Single operator B(x) without decomposition

« Monolithic, essentially elementary particle
« May have overlap with R(x)

» Product of separate diff-invariant operators
« Hawking radiation as tunneling

« Differing operators for pure (e.g. Schwarzschild) or

stellar collapse black hole 0

 Pure: Geon star, similar to neutron star
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Summary

* Full invariance necessary for physical
observables in path integrals

* FMS mechanism allows estimates of
gquantum effects in a systematic
expansion

* Glves a new perspective on strong and

quantum gravity .

L

W @axelmaas@sciencemastodon.com

@axelmaas
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