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Abstract: We present an efficient machine learning (ML) algorithm for predicting any unknown quantum process over n qubits. For a wide range of
distributions D on arbitrary n-qubit states, we show that this ML agorithm can learn to predict any local property of the output from the unknown
process, with a small average error over input states drawn from D. The ML algorithm is computationally efficient even when the unknown process
isaquantum circuit with exponentially many gates. Our algorithm combines efficient procedures for learning properties of an unknown state and for
learning a low-degree approximation to an unknown observable. The analysis hinges on proving new norm inequalities, including a quantum
analogue of the classical Bohnenblust-Hille inequality, which we derive by giving an improved algorithm for optimizing local Hamiltonians.
Overall, our results highlight the potential for ML models to predict the output of complex quantum dynamics much faster than the time needed to
run the process itself.

Zoom link: https://pitp.zoom.us/j/93857777354?pwd=c044bl ZuQV hL S200M E4vN 25uaGJudz09
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Learning to predict
arbitrary quantum processes

_Credit: DALL-E Presenter: Hsin-Yuan Huang (Robert)

Joint work with Sitan Chen and John Preskill

|QI/V\ Caltech @Hakvare aWs
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Motivation

® \We have seen substantial recent progress on efficiently learning to predict quantum states.

® Are there efficient algorithms for learning to predict quantum circuits / processes?

A high-complexity quantum process
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Image credits: (Top left) https: wawe nergy.gov/science/doe-explainscatalysts (Top right) https://theconversation.com/as-
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ultra-quantum-matter-ugm-research-given-8m-boest-0529 (Bottom right) https://www.nature.com/articles/d41586-019-03213-z

Page 3/71



The Setting

® In this work, we focus on training an ML model to learn and predict
p, 0 = fe(p, 0) = Tr(0OE(p)),

where p is an input quantum state, & is an (unknown) CPTP map, and O is an observable.

® This includes any function computable by a quantum computer (in exponential time).
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The Setting

® In this work, we focus on training an ML model to learn and predict

P, 0 = fe(p, 0) = Tr(0&(p)),

where p is an input quantum state, & is an (unknown) CPTP map, and O is an observable.

® This includes any function computable by a quantum computer (in exponential time).

( Example 1 \ ( Example 2 \ ( Example 3 \

Predicting outcomes of Training Speeding up
physical experiments quantum neural networks complex quantum dynamics
p : initial state given by classical input x p : input state encoding classical input x p : initial state of the physical system
& : the physical process in the experiment & : the quantum neural network to learn & : the quantum dynamics to speed up
O : what the scientist measure O : a single fixed observable “ O : the property we want to predict
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The goal of this work

Given an n-qubit CPTP map & that represents a high-complexity quantum process

Some Repetitions
h

A high-complexity quantum process

N

A Classical
Dataset

‘ Classical machine

Learning ...

Mmoo
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@ Properties of A low-complexity @ Properties of

the input state learned model the output state
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A Classical Problem

e Given an unknown classical Boolean circuit C mapping = bits to n bits.
e The input is now an n-bit string x € {—1,1}".

e The 1st output bit of C for input x is equal to f-(x) = Tr(Z,C(|xXx|)).

A high-complexity classical circuit

x € {-11}"
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Worst-case hardness

e The function f. is equiv. to an exponentially long vector {—1,1}* with no structure.

2
e To learn a model A(x), such that |h(x) - fc(x)l <05,Vx € {-1,1}",
we must query f-(x) for all input x. Query complexity: ®(2").

A high-complexity classical circuit

x € {-11}"
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Average-case hardness

e The function f. is equiv. to an exponentially long vector {—1,1}* with no structure.

)
h(x) — fox) | < 0.5,
we must query f-(x) for at least half of all x. Query complexity: ©(2").

e To learn a model A(x), such that E, _;_; ;).

A high-complexity classical circuit

x € {-11}"

Pirsa: 23020031 Page 9/71



Average-case hardness for
shallow classical circuits

2
e [AGS19] showed that learning A(x), such that Eyoiiay ‘h(x) — fe(x) ’ < 0.5,
is computationally hard (for both classical & quantum computers), even when the
classical Boolean circuit is constant-depth (with majority gates, i.e., TC,).

A shallow classical circuit

xe {-1,1}"
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Overview

® A classical version of the quantum problem

® A restricted version of the quantum problem
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A Quantum Problem

10}
Input. \y / L > L > L \/
ri n i i) n

A high-complexity quantum process

Is this harder?

Q) ) € €
i=1
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A Quantum Problem

10}
Input. \y / L > L > L \/
ri n i i) n

A high-complexity quantum process

Is this harder?

Q) ) € €
i=1
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A Classical Dataset

* Classical Dataset about O

we) = @ e = v Elvl = (wl Olwy)
=i
for=1,...,N.

Each repetition prepares a random product state, and measures the 1st qubit in the Z basis
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The Prediction Task

* Classical Dataset about O

we) = Qv > ve Elyel = (w10l
i=1
for£=1,...,N.

n
Given a new state |y) = ® ;) € (C*H®r,
i=1

how to predict (y|O|y) accurately?
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Worst-case hardness

) n
. Tolearn a model A(|y)), such that | A(ly)) — (W|Oly)|~ < 0.5.¥|y) = ) lvs).
i=1
the problem is at least as hard as the classical problem.

¢ Hence, the query complexity is €2(2").

A high-complexity quantum process

ly) = ® 17
i=1
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Average-case hardness?

2
e To learn a model h(|y)), such that E;,y_o 1,y |h(|y/)) — (w|Oly) | =055
is the problem still exponentially hard?

* Surprisingly, the answer is no. The problem can be done in quasi-polynomial time.

A high-complexity quantum process

ly) = ® ly;)
i=1
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Low-weight approximation

0= Z aPP O(IDW) = Z aPP
Pe({1X)YZ)®" |P|<k

2 1
Lemma (Low-weight approximation): E;,,_c |, |(1/1|O|y/) — (Y] 0™y | S
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Low-weight approximation

0= ) P 0% = Y apP
PE(1X,Y,Z}®" |P|<k

. o oz 1
Lemma (Low-weight approximation): E;,,_c |, |(1,u|0|y/) — (yloWy) | < o

Interpretation: For most product state |y) = ® lw.), (W|Olw) = (w|OWW|y).

i=1

Low-weight approximation does not hold in the classical version of this problem
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Low-weight approximation

0= Z apP Ollow) — Z apP Classical inputs are perfectly distinguishable.
PE(LX.Y.Z}®" |P|<k But quantum state inputs are not.

Classical Input: 1 l

Qumumineut: ) L=

11} 11} 12} 11 11
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Low-weight approximation

0= Z apP Ollow) — Z apP Classical inputs are perfectly distinguishable.
PE(LX.Y.Z}®" |P|<k But quantum state inputs are not.

Classical Input: 1 l

Qumumineut: ) L=

11} 11} 12} 11 11
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Basic Idea for the ML model

Basic idea: Learn the low-weight observable O/ = Z apP for a small k.
|P|<k

3P| N
Lemma (Fourier transform): ap = E [T Z vAw,|Plyy,) |, VP € {L X, Y,Z}®"
=1

* Classical Dataset

ey = @) lved) > v Elyel = (|0l
i=1

for=1,...,N.
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Basic Idea for the ML model

Basic idea: Learn the low-weight observable O/ = z apP for a small k.
|P|<k

Z)®

n
ly) = ® W) = Yoo Elvel = (wl Olyy)
i=1

for=1,...,N.
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An interlude

Optimizing
Quantum Hamiltonians

Credit: DALL-E Presenter: Hsin-Yuan Huang (Robert)

Joint work with Sitan Chen and John Preskill

|Q[/Vi Caltech @Hakake aW3
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The Task

Given an n-qubit, k-local Hamiltonian H = Z apP.
|P|<k

Find a state |y) that maximizes or minimizes (y|H|y).

We want a guarantee on (y|H|y)

based on the description of H = Z apP
|P|<k
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Expansion property

Given an n-qubit, k-local Hamiltonian H = Z apP.
|P|<k

H has an expansion coefficient ¢, and dimension d, if for every size-d, region R,

the number of P with ap # 0, dom(P) C R, R C dom(P) is at most c,.

I I Z I I Z I I
Z I X I I X Y VA

wror OO @O O @O O
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Expansion property

Given an n-qubit, k-local Hamiltonian H = Z apP.
|P|<k

H has an expansion coefficient ¢, and dimension d, if for every size-d, region R,

the number of P with ap # 0, dom(P) C R, R C dom(P) is at most c,.

Example 1 Example 2 Example 3
Geometrically-local Hamiltonian General k-local Hamiltonian Degree-d 2-body Hamiltonian
c,=0(1),d,=1 c€=4k,de=k c,=16d,d, =1
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Theorem

Given an n-qubit, k-local Hamiltonian H = Z apP.
|P|<k

If H has an expansion coefficient ¢, and dimension d,, then for r = 2d,/(d, + 1) € [1,2),

we have an algorithm that either finds a maximizing product state |y),
1/r

1 r
WIHY) 2 Byl SUHIO) + s Pz#‘,l|ap| :

or finds a minimizing product state |y) with a similar guarantee (+ - —, > - <).
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Expansion property

Given an n-qubit, k-local Hamiltonian H = Z apP.
|P|<k

H has an expansion coefficient ¢, and dimension d, if for every size-d, region R,

the number of P with ap # 0, dom(P) C R, R C dom(P) is at most c,.

Example 1 Example 2 Example 3
Geometrically-local Hamiltonian General k-local Hamiltonian Degree-d 2-body Hamiltonian
c,=0(1),d,=1 c€=4k,de=k c,=16d,d, =1
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Theorem

Given an n-qubit, k-local Hamiltonian H = Z apP.
|P|<k

If H has an expansion coefficient ¢, and dimension d,, then for r = 2d,/(d, + 1) € [1,2),

we have an algorithm that either finds a maximizing product state |y),
1/r

1 r
WIHY) 2 Byl SUHIO) + s Pz#‘,l|ap| :

or finds a minimizing product state |y) with a similar guarantee (+ - —, > - <).
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Theorem

Improved over existing results

Given an n-qubit, k-local Hamiltonian H = Z apP.
|P|<k

If H has an expansion coefficient ¢, and dimension d,, then for r = 2d,/(d, + 1) € [1,2),

we have an algorithm that either finds a maximizing product state |y),
1/r

]‘ r
WIHY) 2 Byl SUHIO) + s I§I|ap| :

or finds a minimizing product state |y) with a similar guarantee (+ - —, > - <).
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The Algorithm

Select a slice with the largest value of a,

Given an n-qubit, k-local Hamiltonian H = Z apP.
|P|=k

Find a product state |y) that approximately optimizes (y|H|y).
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The Algorithm

Given an n-qubit, k-local Hamiltonian H = Z apP.
|P|=k

Replica 1 \; / 4 b4 '\

Random product states

Replica 2 _K,_\,_‘/_ ¥ .’-

Replica 3
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The Algorithm

Given an n-qubit, k-local Hamiltonian H = Z apP.

|P|=k

Replical == { | f | 1\ N

Replica 2 \ . § \ .v ’ 4 x ¢ )1 | pOI(H)zl};;kapPOl(P)e(:z"kxz""
Replica 3 "’
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The Algorithm

Given an n-qubit, k-local Hamiltonian H = Z apP.

|P|=k
Replica 1 p ] m )| A \
7 . u‘ .n‘ n‘ _ 2m'c><2nk
Replica 2 X ). Q ) D il Vol ) pol(H) = |]Ekapp01(P) eC
: : : _ , o

Replica 3 E , , , , P=ZXYlII
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The Algorithm

Given an n-qubit, k-local Hamiltonian H = Z apP.
|P|=k

Replica 1 \; / , , , \

| f f | " Zm'(xznk
Replica2 (N A pol(H) = ) appol(P) € C
eplica 4 , \ ; ‘/ .8 ¥ . . . =

Replica 3 Optimize Optimize Optimize Optimize Optimize

Pirsa: 23020031 Page 36/71



The Algorithm

Given an n-qubit, k-local Hamiltonian H = Z apP.
|P|=k

v; R Combine the Bloch vectors

using a weighted sum
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Theorem

Given an n-qubit, k-local Hamiltonian H = Z apP.
|P|<k

If H has an expansion coefficient ¢, and dimension d,, then for r = 2d,/(d, + 1) € [1,2),

we have an algorithm that either finds a maximizing product state |y),
1/r

1 r
WIHY) 2 Byl SUHIO) + s Pz#‘,l|ap| :

or finds a minimizing product state |y) with a similar guarantee (+ - —, > - <).
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Another interlude

Generalized Quantum
Bohnenblust-Hille Inequality

Presenter: Hsin-Yuan Huang (Robert)
Joint work with Sitan Chen and John Preskill

Credit: DALL-E

|QI/Vi Caltech §Hszuaze 3WS
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Theorem

Given an observable O = Z apP with an expansion coefficient ¢, and dimension d,.
|P|<k

1/r
1 2d
b g E 4 = ¢ .
”O"oo = Cellzde2®(k10gk) ( = |aP| ) for r d n 1 = [1,2)

e

Proof ideas:

(1) Use the guarantee from the algorithm for optimizing quantum Hamiltonians.

(2) Adapt by noting that ||O||, = | (y|O|y) |, where |y) is the state found by the algo.
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Theorem

Given an observable O = z apP with an expansion coefficient ¢, and dimension d,.

|P|<k
| 1/r 2d
ol . > ap|” for r=——— €[1,2).
1010 2 i orees ; | ap| T30
Example 1
A sum of geometrically-local terms Z |aP| <0 (”0”00)
c,=0(),d, =1 P
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Theorem

Given an observable O = z apP with an expansion coefficient ¢, and dimension d,.
|P|<k
1/r

1 2d
10lleo 2 —77 Z lap|” for r=——— € [1,2).
c 2 p0iogh \ & d +1

Example 2
A sum of k-local terms ” E)”ki_k] < 2@(k10gk)“ O”oo
c,=4d =k A quantum analogue of

the Bohnenblust-Hille inequality
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A Quantum Problem

) / \ o | Ny | IR
e b 4 / > > £ i B \ :

A high-complexity quantum process

Q) ) € €
i=1
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Basic Idea for the ML model

Basic idea: Learn the low-weight observable O/ = Z apP for a small k.
|P|<k

3P| N
Lemma (Fourier transform): ap = E [T Z vAw,|Plyy,) |, VP € {L X, Y,Z}®"
=1

* Classical Dataset

ey = @) lved) > v Elyel = (|0l
i=1

for=1,...,N.
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Insight from Quantum BH inequality

Insight 1: Learn the low-weight observable 0% = Z apP for a small k.
|P|<k

Insight 2: The Pauli coef. in 0% is approximately sparse as ||E’||?g§}_ < 20klogh)| glow))|

This idea is also used in classical learning theory [Al22]

* Classical Dataset

ey = @) lved) > v Elyel = (|0l
i=1

for=1,...,N.
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Basic Idea for the ML model

Basic idea: Learn the low-weight observable 0" = z apP for a small k.
|P|<k

Z)®

) = ® Wei) 2 Yo EDvel = (| Olyy)
i=1

for=1,...,N.
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The ML algorithm

Insight 1: Learn the low-weight observable 0% = Z apP for a small k.
|P|<k

Insight 2: The Pauli coef. in 0% is approximately sparse as ”E)"?%f < 20(kloghy| gllow))|

* Classical Dataset Forall |P| <k,
n Pl N
set ap <« — ' .
we) = @ lwe) = v Elyel = (w|Olyy) CON ;y’MI v
i=1 If &p is small, set ap < 0.
for=1,...,N. A
The learned observable is 01" = Z apP.

|P|<k

Pirsa: 23020031 Page 47/71



Guarantee for learning O

For any small constant ¢, €, given a training set size N = O(log n), the prediction error is

A 2
Eyy=@z, 1wy | (@10 w) - (W|0|W)‘ <e+el|0MVZ.

* Classical Dataset Forall |P| <k,
n Pl N
set ap <« — ' .
we) = @ lwe) = v Elyel = (w|Olyy) CON ;y’MI v
i=1 If &p is small, set ap < 0.
for=1,...,N. A
The learned observable is 01" = Z apP.

|P|<k
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Guarantee for learning O

2@(1og(1/e)1og(1/e

For any ¢, €/, given a training set size N = log(n) ), the prediction error is

A 2
Eyy=@z, 1wy | (@10 w) - (W|0|W)‘ <e+el|0MVZ.

* Classical Dataset Forall |P| <k,
Pl W
- set ap — — ) v ye| Plyy).
w2y = @ lwes) = v Elye = (welOlwy) 4 El
i=1 If &p is small, set ap < 0.
for=1,...,N.

The learned observable is 01" = Z apP.
|P|<k
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A Quantum Problem

Input: <t i f ! < i
: fi) : /1 - 11;) V X 11 x I;l}\
A high-complexity quantum process
n [ @
® ) € (C)®" Quasi-polynomially
i=1 easy!
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Guarantee for learning O

2@(1og(1/e)1og(1/e

For any ¢, €/, given a training set size N = log(n) ), the prediction error is

A 2
Eyy=@z, 1wy | (@10 w) - (W|0|W)‘ <e+el|0MVZ.

* Classical Dataset Forall |P| <k,
Pl W
- set ap — — ) v ye| Plyy).
w2y = @ lwes) = v Elye = (welOlwy) 4 El
i=1 If &p is small, set ap < 0.
for=1,...,N.

The learned observable is 01" = Z apP.
|P|<k
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Overview

® A classical version of the quantum problem

® A restricted version of the quantum problem
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The Restricted Problem

A high-complexity quantum process

Q) ) € @
i=1
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The Original Problem

A high-complexity quantum process

Entangled Observable
State B= ) pBpP
p P

with ||B]|, <1
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A Classical Dataset for Learning &

Some Repetitions

) A high-complexity quantum process 1r
4 - A
d- =
& -
4 e
&> -
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A Classical Dataset for Learning &

Some Repetitions

- -

A high-complexity quantum process

e

This can be seen as the classical shadow of

quantum process & [RLC21, KTC+21]

irsa: 23020031 Page 56/71



A Classical Dataset for Learning &

* Classical Dataset

) = ® W) P o) = ® |B2,)

=1
for £ =1,...,N.

This can be seen as the classical shadow of

quantum process & [RLC21, KTC+21]

Pirsa: 23020031 Page 57/71



Pirsa: 23020031

How to make prediction?

A high-complexity quantum process

Observable
State B = Zﬁ P
— P
P P
with ||B|, <1

* Classical Dataset

ey = @ lve ) — 1oe) = Q) 142
i=1 i=1
for =1,...,N.
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Construct a dataset with classical shadow

A high-complexity quantum process

Observable
State B = ZﬁPP
P P
with ||B||, <1
* A New Classical Dataset
Properties [HKP20]:
vy = @ lwz) > yp=Tr (B® (3lebeiXbe,l - I)) Ely,] = Tr(BE(w: X))
i=1 i=1 Var[y,] < ||BI2
for/=1,...,N. el < 1Bl hadon
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Construct a dataset with classical shadow

A high-complexity quantum process

Observable
State B = Zﬁ P
— P
P P
with ||B||, <1

For any sum of local observables B, ||B|| 40w < @(llﬁlll) < O(||Bll )

using the generalized quantum BH inequality.

) = QX lwy) = v =Tr | BX) (3l Xl —1 Ely,] = Tr(B& )
= =l Var[y,] <|IIB1Z,.q0w

fore=1,....N.
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Construct a dataset with classical shadow

A high-complexity quantum process

Observable
State B = Zﬁ P
— P
P P
with ||B||, <1

For any sum of local observables B, ||B|| 40w < @(llﬁlll) < OV )

using the generalized quantum BH inequality.

) = Q) lwy) = v =Tr | BX) (3l Xl —1 Ely,] = Tr(BE(ly,Xwyl))

= =l Var = @ 1
for=1,...,N. [yl (D)
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Low-weight approximation

0= ) P 0 = Y apP
Pe{1X,Y,Z}®" |P|<k

1

2
Lemma (Low-weight approximation): E,_g, |Tr(0p) — Tr(O(low)p)‘ <

The lemma holds for any distribution & over any quantum state p

as long as 9 is flat under single-qubit rotations.

Example: p is the ground/thermal state of a generic geometrically-local Hamiltonian.
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The ML algorithm

A high-complexity quantum process

Observable
State B = Zﬁ P
— P
P P
with ||B|, <1

* Classical Dataset

we) = @ lwe) = 1d2) = Q) Ioz,)
i=1 i=1
fore =10 N.
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The ML algorithm

A high-complexity quantum process

State

* Classical Dataset for O = &'(B)

ey = @) lve) = e Elyel = (el Olyg)
i=1

fory =11, . N,

Pirsa: 23020031

Observable
B= ) P
P
with ||B|, <1

Forall |P| Lk,
|P] N

set ap « — 2)’{(']’5|P|W)-
N
=1
If &p is small, set @p « O.

The learned observable is Q1) = Z apP.
|P|<k
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The ML algorithm

A high-complexity quantum process

State

* Classical Dataset for O = &'(B)

ey = @) lve) = e Elyel = (el Olyg)
i=1

fory =11, . N,

Pirsa: 23020031

Observable
B= ) P
P
with ||B|, <1

Predict Tr (O(l"w)p) ~ Tr (B&(p))
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Surprising aspects of the ML algorithm

® We can learn to predict n-qubit exponential-size quantum circuits up to a const.

relative error from only O(log n) samples.

® The algorithm is computationally efficient (polynomial time for a const. relative error;

quasi-polynomial time for a small error).
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Surprising aspects of the ML algorithm

® We can learn to predict n-qubit exponential-size quantum circuits up to a const.

relative error from only O(log n) samples.

® The algorithm is computationally efficient (polynomial time for a const. relative error;

quasi-polynomial time for a small error).
® After learning from product state inputs, the algorithm can predict entangled states.

® The entire algorithm can be run on a classical computer.
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The ML algorithm

A high-complexity quantum process

State

* Classical Dataset for O = &'(B)

ey = @) lve) = e Elyel = (el Olyg)
i=1

fory =11, . N,

Pirsa: 23020031

Observable
B= ) P
P
with ||B|, <1

Predict Tr (O(l"w)p) ~ Tr (B&(p))
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Conclusion

® We give a computationally-efficient ML algorithm that can learn to predict the output
of a quantum process with arbitrary complexity.

® Our results highlight the potential that ML models can predict outcomes of a
complex quantum dynamics much faster than the process itself.

DALL-E impression of “Predicting quantum processes”, “Optimizing quantum Hamiltonians”, “Quantum Bohnenblust-Hille”
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The Task

Given an n-qubit, k-local Hamiltonian H = Z apP.
|P|<k

Find a state |y) that maximizes or minimizes (y|H|y).

We want a guarantee on (y|H|y)

based on the description of H = Z apP
|P|<k
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Construct a dataset with classical shadow

A high-complexity quantum process

Observable
State B = Zﬁ P
— P
P P
with ||B||, <1

For any sum of local observables B, ||B|| 40w < @(llﬁlll) < O(||Bll )

using the generalized quantum BH inequality.

) = Q) lwy) = v =Tr | BX) (3l Xl —1 Ely,] = Tr(BE(ly,Xwyl))

= =l Var = @ 1
for=1,...,N. [yl (D)
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