Title: Introduction to Colloquium

Speakers: Aldo Riello

Collection: Symmetries Graduate School 2023

Date: February 01, 2023 - 9:00 AM

URL: https://pirsa.org/23020021

Pirsa: 23020021 Page 1/37

Tiling, periodicity, and decidability

Rachel Greenfeld
Institute for Advanced Study

Symmetries Graduate School Perimeter Institute, February 2023

Rachel Greenfeld

Tiling, periodicity, and decidability

Perimeter Institute, February 2023

Pirsa: 23020021 Page 2/37

Tiling by translations

Let G = (G, +) be an abelian group (for instance, \mathbb{R}^d , \mathbb{Z}^d).

A bounded set $F \subset G$ of positive measure tiles the space by translations if there exists a set $A \subset G$ such that the family

$$\{\Omega + a\}_{a \in A}$$

constitutes a partition of ${\cal G}$ (up to measure zero). In other words,

$$\mathbb{1}_A * \mathbb{1}_F(x) = \sum_{f \in F} \mathbb{1}_A(x - f) =_{\text{a.e.}} 1.$$

We say that F is a tile of G and A is a tiling of G by F, and write:

$$A \oplus F = G$$
.

Rachel Greenfeld

Tiling, periodicity, and decidability

Perimeter Institute, February 2023

Translational tilings

Tiling $A \oplus F = \mathbb{R}^2$ of the plane by translations of a butterfly F. [Escher 1941]

Rachel Greenfeld

Tiling, periodicity, and decidability

Perimeter Institute, February 2023

Pirsa: 23020021 Page 4/37

Translational tilings

Tiling $A \oplus F = \mathbb{R}^2$ of the plane by translations of a rectangle F.

Rachel Greenfeld

Tiling, periodicity, and decidability

Perimeter Institute, February 2023

Pirsa: 23020021 Page 5/37

Periodic tiling

Suppose that A is a tiling of G by F, i.e.,

$$A \oplus F =_{\text{a.e.}} G$$
.

We say that the tiling A is **periodic** if there is a **lattice** $\Lambda \subset G$ (i.e., a discrete subgroup whose quotient G/Λ is compact) such that

$$A+\lambda=A \ \text{ for every } \ \lambda\in\Lambda.$$

In other words A is invariant under translations by Λ .

Rachel Greenfeld

Tiling, periodicity, and decidability

Perimeter Institute, February 2023

Periodic tiling

Periodic tiling $\mathbb{Z}^d \oplus F = \mathbb{R}^2$ of the plane by translations of a unit square F.

Rachel Greenfeld

Tiling, periodicity, and decidability

Perimeter Institute, February 2023

Pirsa: 23020021 Page 7/37

Non-periodic tiling

Non periodic tiling $A \oplus F = \mathbb{R}^2$ of the plane by translations of a square F.

Lis.

Rachel Greenfeld

Tiling, periodicity, and decidability

Perimeter Institute, February 2023

Pirsa: 23020021 Page 8/37

Tiling by translations of multiple tiles

A periodic tiling $(A_1 \oplus F_1) \uplus (A_2 \oplus F_2) = \mathbb{R}^2$ of the plane by a cat F_1 and a dog F_2 . [Nicolas, 1999]

Rachel Greenfeld

Tiling, periodicity, and decidability

Perimeter Institute, February 2023

Pirsa: 23020021 Page 9/37

Tiling by translations of multiple tiles

A periodic tiling $(A_1 \oplus F_1) \uplus (A_2 \oplus F_2) = \mathbb{R}^2$ of the plane by a seahorse F_1 and a rotated seahorse F_2 . [Escher 1938]

Rachel Greenfeld

Tiling, periodicity, and decidability

Perimeter Institute, February 2023

Pirsa: 23020021 Page 10/37

Tiling by translations of multiple tiles

A periodic tiling $(A_1 \oplus F_1) \uplus (A_2 \oplus F_2) \uplus (A_3 \oplus F_3) \uplus (A_4 \oplus F_4) = \mathbb{R}^2$ of the plane by four rotations F_1, F_2, F_3, F_4 of a lizard. [Escher 1937]

Rachel Greenfeld

Tiling, periodicity, and decidability

Perimeter Institute, February 2023

Pirsa: 23020021 Page 11/37

Vague questions

Let ${\cal F}$ be a bounded subset of ${\cal G}$ with positive measure.

• Can we decide whether F is a tile of G?

No

Rachel Greenfeld

Tiling, periodicity, and decidability

Perimeter Institute, February 2023

Pirsa: 23020021 Page 12/37

Questions

Let's make it more precise...

- (1) Is there an algorithm which computes in a finitely many steps upon any given subset of \mathbb{Z}^d whether it tiles \mathbb{Z}^d by translations?
- (2) Suppose that a finite $F \subset \mathbb{Z}^d$ tiles \mathbb{Z}^d by translations. Does it admit a periodic tiling?
- (3) Suppose that a bounded set $\Omega \subset \mathbb{R}^d$ tiles \mathbb{R}^d by translations. Does it admit a periodic tiling?

Rachel Greenfeld

Tiling, periodicity, and decidability

Perimeter Institute, February 2023

Pirsa: 23020021 Page 13/37

Pirsa: 23020021 Page 14/37

Conjecture

Let Ω be a bounded measurable set in \mathbb{R}^d .

Periodic tiling conjecture

(Grünbaum-Shephard, 1987; Lagarias-Wang Y., 1996):

If Ω tiles \mathbb{R}^d by translations, then there is a **periodic** tiling of \mathbb{R}^d by Ω .

Informally: "Any tiling can be repaired to be periodic."

If the conjecture **holds**, it implies a positive answer to **all** our questions!

Are there any aperiodic tilings?

Rachel Greenfeld

Tiling, periodicity, and decidability

Perimeter Institute, February 2023

Pirsa: 23020021 Page 15/37

An aperiodic tiling of the plane by translations, rotations and reflections of one tile - the Socolar–Taylor tile. [Socolar–Taylor 2011]

Rachel Greenfeld

Tiling, periodicity, and decidability

Perimeter Institute, February 2023

Pirsa: 23020021 Page 16/37

An aperiodic tiling of the plane by translations, rotations and reflections of one tile - the Socolar–Taylor tile. [Socolar–Taylor 2011]

Rachel Greenfeld

Tiling, periodicity, and decidability

Perimeter Institute, February 2023

Pirsa: 23020021 Page 17/37

Penrose P2 tiling (aka kite and dart tiling)

An aperiodic tiling of the plane by translations of 20 tiles.

Rachel Greenfeld

Tiling, periodicity, and decidability

Perimeter Institute, February 2023

Pirsa: 23020021 Page 18/37

Penrose P3 tiling (aka Rhombus tiling)

An aperiodic tiling of the plane by translations of 10 tiles.

3

Rachel Greenfeld

Tiling, periodicity, and decidability

Perimeter Institute, February 2023

Pirsa: 23020021 Page 19/37

Undecidability with multiple tiles

Theorem (Berger, 1966):

Any problem of testing whether a Turing machine eventually halts ("halting problem") can be translated into a translational tiling problem with multiple tiles in \mathbb{Z}^2 .

Jan Jan

Rachel Greenfeld

Tiling, periodicity, and decidability

Perimeter Institute, February 2023

Pirsa: 23020021 Page 20/37

Pirsa: 23020021 Page 21/37

Undecidability with multiple tiles

Theorem (Berger, 1966):

Any problem of testing whether a Turing machine eventually halts ("halting problem") can be translated into a translational tiling problem with multiple tiles in \mathbb{Z}^2 .

The undecidability of the halting problem then implies the **undecidability** of tilings with multiple tiles in \mathbb{Z}^2 .

In addition, Berger constructed an aperiodic tiling with 20,426 tiles.

Rachel Greenfeld

Tiling, periodicity, and decidability

Perimeter Institute, February 2023

Pirsa: 23020021 Page 22/37

Constructions for $G=\mathbb{Z}^2$ (partial list)

J	Author (Year)	Type
20426	Berger (1966)	aperiodic, undecidable
104	Robinson (1967)	aperiodic
104	Ollinger (2008)	aperiodic, undecidable
103	Berger (1964)	aperiodic
86	Knuth (1968)	aperiodic
56	Robinson (1971)	aperiodic
52	Robinson (1980)	aperiodic
40	Lauchli (1966)	aperiodic
32	Robinson (1975)	aperiodic
24	Robinson (1977)	aperiodic
16	Ammann (1978)	aperiodic
14	Kari (1996)	aperiodic
13	Culik (1996)	aperiodic
11	Ollinger (2009)	undecidable
11	Jeandel–Rao (2020)	aperiodic
8	Ammann et al. (1992)	aperiodic
8	Goodman Strauss (1996)	aperiodic
	• (1000)	
Rachel Greenfeld	Tiling, periodicity, and decidability Perimeter Institute, F	

Perimeter Institute, February 2023

Pirsa: 23020021 Page 23/37

Undecidability with two tiles

Theorem (G.-Tao, 2021):

There exists an undecidable tiling problem involving two tiles.

More precisely: There is no algorithm that decides upon any input of finite abelian group G_0 and finite sets $F_1, F_2 \subset \mathbb{Z}^2 \times G_0$, whether $\mathrm{Tile}(F_1, F_2; \mathbb{Z}^2 \times G_0)$ is empty or not.

3

Rachel Greenfeld

Tiling, periodicity, and decidability

Perimeter Institute, February 2023

Pirsa: 23020021 Page 24/37

Pirsa: 23020021 Page 25/37

Natural quasicrystals

Physical solids whose atoms' arrangement is aperiodic. Quasicrystals do exist in nature! (1982, Dan Shechtman)

Image credit: University of Pennsylvania; H. Mark Helfer/NIST.

Rachel Greenfeld

Tiling, periodicity, and decidability

Perimeter Institute, February 2023

Pirsa: 23020021 Page 26/37

Conjecture

Let Ω be a bounded measurable set in \mathbb{R}^d .

Periodic tiling conjecture

(Grünbaum-Shephard, 1987; Lagarias-Wang Y., 1996):

If Ω tiles \mathbb{R}^d by translations, then there is a **periodic** tiling of \mathbb{R}^d by Ω .

Are there any aperiodic translational tilings by a single tile?

V

Rachel Greenfeld

Tiling, periodicity, and decidability

Perimeter Institute, February 2023

Pirsa: 23020021 Page 27/37

Pirsa: 23020021 Page 28/37

Pirsa: 23020021 Page 29/37

Pirsa: 23020021 Page 30/37

Pirsa: 23020021 Page 31/37

Pirsa: 23020021 Page 32/37

Dilation lemma (Tijdeman 1995; Szegedy 1998; Horak–Kim 2016; Bhattacharya 2019; Kari–Szabados 2020; G.–Tao 2020)

Let F be a finite subset of \mathbb{Z}^d of cardinality |F|. Suppose that $A \oplus F = \mathbb{Z}^d$. Then

$$A \oplus rF = \mathbb{Z}^d$$

for every $r \in \mathbb{Z}$ which is co-prime to |F|.

Proof: $1_F * 1_A = 1$

$$\Rightarrow (\mathbb{1}_F)^{*p} * \mathbb{1}_A = |F|^{p-1} \mod p$$

For any **prime** p which does not divide |F|: $(\mathbb{1}_F)^{*p} = \mathbb{1}_{pF} \mod p$ and: $|F|^{p-1} = 1 \mod p$

$$\Rightarrow \mathbb{1}_{pF} * \mathbb{1}_A = 1 \mod p$$

$$\Rightarrow \mathbb{1}_{pF} * \mathbb{1}_A \geq 1$$

$$\Rightarrow |F| = \mathbb{1}_F * \mathbb{1}_{pF} * \mathbb{1}_A \ge |F| \Rightarrow \mathbb{1}_{pF} * \mathbb{1}_A = 1.$$

Rachel Greenfeld

Tiling, periodicity, and decidability

Perimeter Institute, February 2023

Conjecture

Let F be a bounded measurable set in an abelian group G.

Periodic tiling conjecture

(Grünbaum-Shephard, 1987; Lagarias-Wang Y., 1996):

If F tiles G by translations, then there is a periodic tiling of G by Ω .

Are there any aperiodic translational tilings by a single tile?

Rachel Greenfeld

Tiling, periodicity, and decidability

Perimeter Institute, February 2023

Pirsa: 23020021 Page 34/37

Pirsa: 23020021 Page 35/37

A counterexample to PTC

Theorem (G.-Tao, 2022):

For sufficiently large d, the discrete periodic tiling conjecture fails in \mathbb{Z}^d and the continuous periodic tiling conjecture fails in \mathbb{R}^d .

In fact:

There exists a finite abelian group G_0 and a finite set F in $\mathbb{Z}^2 \times G_0$ such that F tiles $\mathbb{Z}^2 \times G_0$, but does **not** admit any periodic tiling.

Rachel Greenfeld

Tiling, periodicity, and decidability

Perimeter Institute, February 2023

Pirsa: 23020021 Page 36/37

Pirsa: 23020021 Page 37/37