Title: On quantum corrections to the celestial operator product in gravity

Speakers: Roland Bittleston

Series: Quantum Fields and Strings

Date: January 24, 2023 - 2:00 PM

URL: https://pirsa.org/23010110

Abstract: The question of whether the holomorphic collinear singularities of graviton amplitudes define a consistent chiral algebra has garnered much recent attention. I will discuss a version of this question for infinitesimal perturbations around the self-dual sector of 4d Einstein gravity. The singularities of tree amplitudes in such perturbations do form a consistent chiral algebra. However, at loop level new poles are generated, the simplest of which are described the 1-loop effective graviton vertex. These quantum corrections violate associativity of the operator product. I will argue that this failure can be traced to an anomaly in the twistor uplift of self-dual gravity. Associativity can be restored by coupling to an unusual 4th-order gravitational axion, which cancels the anomaly by a Green-Schwarz mechanism. Alternatively, the anomaly vanishes in certain theories of self-dual gravity coupled to matter, including in self-dual supergravity.

Zoom link: https://pitp.zoom.us/j/91979544537?pwd=Ykw4Q3lRK2ZicVhCMDhlNUxFaHhlUT09

Pirsa: 23010110 Page 1/39

Pirsa: 23010110 Page 2/39

SDYM SDGR Celestial chiral algebra Twistors Restoring associativity Conclusions

Overview

Recently there's been significant progress in the understanding of quantum self-dual Yang-Mills theory, achieved by exploiting twistor methods. [Costello, 21; Costello, Paquette, 22; Costello, Paquette, Sharma, 22; . . .]

This is closely related to developments in the celestial holography program. [Guevara et al., 21; Strominger, 21; Ball et al., 22; . . .]

This talk concerns the application of similar twistor methods in the context of self-dual gravity. Based on arXiv:2211.06417 [RB, 22] and arXiv:2208.12701 [RB, Sharma, Skinner, 22].

*ロト (日) (日) (日) (日) (日) (日)

Bittleston

On quantum corrections to the celestial operator product in gravity

Pirsa: 23010110 Page 3/39

Self-dual Yang-Mills

Let A be a connection on a principal G-bundle P over a 4d Riemannian manifold \mathcal{M} . (For G a complex semi-simple Lie group with Lie algebra \mathfrak{g} .)

The self-dual Yang-Mills (SDYM) equations read

$$F(A) = *F(A).$$

Introducing a Lagrange multiplier field $B \in \Omega^2_-(\mathcal{M}; \mathfrak{g}^{\vee})$ can define SDYM as a perturbative quantum field theory using the action

$$S_{ ext{SDYM}}[B,A] = \int_{\mathcal{M}} \langle B, F(A) \rangle$$
.

Bittleston

On quantum corrections to the celestial operator product in gravity

Pirsa: 23010110 Page 4/39

The SDYM equations are integrable.

Their solutions admit the action of an infinite dimensional hidden symmetry algebra. [Ward, 77; Chau et al., 83; Chakravarty, Mason, Newman, 88]

Closely related to the chiral algebra of positive-helicity asymptotic symmetries arising from soft theorems in YM. [Guevara et al., 21; Strominger, 21] Denote this by $\mathcal{V}_{\mathrm{SDYM}}$.

As a Lie alegbra

$$\mathcal{V}_{\text{SDYM}} = \mathfrak{g}[v^{\dot{1}}, v^{\dot{2}}, z, z^{-1}].$$

As a chiral algebra is generated by $j^{\mathsf{a}}[m,n](z)$ for $\mathsf{a}=1,\ldots,\dim\mathfrak{g}$ and $m,n\in\mathbb{Z}_{\geq 0}$. OPEs are

$$j^{\mathsf{a}}[p,q](z)j^{\mathsf{b}}[r,s](0) \sim \frac{1}{z} f^{\mathsf{ab}}{}_{\mathsf{c}} j^{\mathsf{c}}[p+r,q+s](0)$$
.

日本 4回 大 4 意 大 4 意 大 . 夏 . 约 9 0

Bittleston

On quantum corrections to the celestial operator product in gravity

Pirsa: 23010110 Page 5/39

The OPE describes the singularity in a YM tree amplitude as two external positive helicity gluons become collinear.

Also describes the collinear singularities of 1-loop amplitudes (and hence all amplitudes) in SDYM. [Ball et al., 21]

However, recently further argued by Costello and Paquette that $\mathcal{V}_{\mathrm{SDYM}} \oplus_{\mathrm{ad}} \tilde{\mathcal{V}}_{\mathrm{SDYM}}$ describes the collinear limits of tree form factors in SDYM. [Costello, Paquette, 22]

Here $\tilde{\mathcal{V}}_{\mathrm{SDYM}}$ denotes the adjoint of $\mathcal{V}_{\mathrm{SDYM}}$. It is generated by $\tilde{\jmath}^{\mathrm{a}}[m,n](z)$ for $\mathrm{a}=1,\ldots \dim \mathfrak{g}$ and $m,n\in \mathbb{Z}_{\geq 0}$, and has the following non-trivial OPEs

$$j^{\mathsf{a}}[p,q](z)j^{\mathsf{b}}[r,s](0) \sim \frac{1}{z} f^{\mathsf{ab}}{}_{\mathsf{c}} j^{\mathsf{c}}[p+r,q+s](0)$$
.

Bittleston

On quantum corrections to the celestial operator product in gravity

Pirsa: 23010110 Page 6/39

SDGR

Form factors are amplitudes in the presence of a local operator. A particularly interesting local operator is

$$\mathcal{O} = \frac{1}{2} \kappa^{-1}(B, B) \,,$$

for which corresponding tree and 1-loop form factors are:

Bittleston

SDYM

On quantum corrections to the celestial operator product in gravity

Pirsa: 23010110 Page 7/39

SDYM SDGR Celestial chiral algebra Twistors Restoring associativity Conclusion

The collinear limits of form factors in SDYM are modified at 1-loop. They do not define a consistent chiral algebra. [Costello, Paquette, 22]

To get a consistent quantum deformed chiral algebra the all-plus amplitudes must vanish. This can be achieved, e.g., by coupling to appropriate fermionic matter, or something more exotic. [Costello, 21; Costello, Paquette, 22]

There is then a correspondence:

Bittleston

On quantum corrections to the celestial operator product in gravity

Pirsa: 23010110 Page 8/39

Self-dual Einstein gravity

In this talk we'll see that many of these same ideas apply in the context of self-dual Einstein gravity.

Why consider this?

- ▶ 4d Einstein gravity is interesting but challenging.
- ► Self-dual Einstein gravity is less interesting but less challenging: it's classically integrable, 1-loop exact and finite.
- ► It retains some important features of full Einstein gravity: it's 4-dimensional and has propagating degrees of freedom.
- ▶ It can be deformed to full Einstein gravity, and the simplicity of the self-dual sector can be leveraged to understand this deformation.

Bittleston

On quantum corrections to the celestial operator product in gravity

Pirsa: 23010110 Page 9/39

SDYM

SDGR

Celestial chiral algebra

Twistors

Restoring associativity

Conclusion:

Self-dual Einstein gravity

Let g be a Riemannian metric on the 4d manifold \mathcal{M} . The self-dual vacuum Einstein equations (without cosmological constant) state that

$$C = *C$$
, $\operatorname{Ric} = 0$,

where C denotes the Weyl tensor and ${\rm Ric}$ the Ricci tensor. Introducing vierbeins

$$g = e^{\dot{\alpha}\alpha} \odot e_{\dot{\alpha}\alpha} \,,$$

the self-dual vacuum Einstein equations can be written as

$$\frac{1}{2} \mathrm{d} \left(e^{\dot{\alpha}\alpha} \wedge e_{\dot{\alpha}}^{\beta} \right) = 0.$$

4 D > 4 D > 4 E > 4 E > E 990

Bittleston

On quantum corrections to the celestial operator product in gravity

Pirsa: 23010110 Page 10/39

These equations are slightly easier to understand from the perspective of the action: the self-dual Palatini action is

$$S_{\rm GR}[\Gamma,e] = rac{1}{2} \int_{\mathcal{M}} e^{\dot{lpha}lpha} \wedge e_{\dot{lpha}}^{\ eta} \wedge \left(\mathrm{d}\Gamma_{lphaeta} + \kappa^2 \Gamma_{lpha}^{\ \gamma} \wedge \Gamma_{\gammaeta} \right).$$

It differs from the tetradic Palatini action by a topological Nieh-Yan term.

In the weak coupling limit $\kappa^2 \to 0$ we obtain an action for the self-dual vacuum Einstein equations

$$S_{\mathrm{SDGR}}[\Gamma, e] = \frac{1}{2} \int_{\mathcal{M}} e^{\dot{\alpha}\alpha} \wedge e_{\dot{\alpha}}^{\beta} \wedge d\Gamma_{\alpha\beta}.$$

Working perturbatively around flat space $e^{\dot{\alpha}\alpha}=\mathrm{d}x^{\dot{\alpha}\alpha}+\delta e^{\dot{\alpha}\alpha}$ we can use this to define self-dual Einstein gravity (SDGR) as a perturbative quantum field theory.

Bittleston

On quantum corrections to the celestial operator product in gravity

Pirsa: 23010110 Page 11/39

Celestial chiral algebra

The self-dual vacuum Einstein equations are integrable.

Self-dual Einstein metrics are acted upon by an infinite dimensional hidden symmetry group. [Penrose, 76; Park, 90; Dunajski, Mason, 00] Recently has been identified as the chiral algebra of positive-helicity asymptotic symmetries arising from soft theorems in GR. [Guevara *et al.*, 21; Strominger, 21]

Also describes the collinear singularities of 1-loop amplitudes (and hence all amplitudes) in SDGR. [Ball et al., 21]

As Lie algebra it's the loop algebra of $\operatorname{Ham}(\mathbb{C}^2)$, itself the Lie algebra of Hamiltonian vector fields on \mathbb{C}^2 equipped with its standard symplectic structure.

Bittleston

On quantum corrections to the celestial operator product in gravity

Pirsa: 23010110 Page 12/39

Write $\mathcal{V}_{\mathrm{SDGR}} = L(\mathrm{Ham}(\mathbb{C}^2))$ for this infinite dimensional symmetry algebra. As a chiral algebra generated by w[m,n](z) for $m,n\in\mathbb{Z}_{\geq 0}$. OPEs are

$$w[p,q](z)w[r,s](0) \sim \frac{1}{z}(ps-qr)w[p+r-1,q+s-1](0)$$
.

Some notable features:

- w[0,0] is central.
- w[1,0], w[0,1] correspond to supertranslations.
- w[2,0], w[1,1], w[0,2] correspond to superrotations. They generate an $\mathfrak{sl}_2(\mathbb{C})$ current algebra at level 0.

Connection to amplitudes is clearer if we organise these into 'hard' generating functions.

Bittleston

On quantum corrections to the celestial operator product in gravity

Pirsa: 23010110 Page 13/39

Interpret z as an inhomogeneous coordinate on \mathbb{CP}^1 with $\lambda=(z,1)$. Then let

$$w(\tilde{\lambda}, \lambda) = \sum_{m, n \in \mathbb{Z}_{\geq 0}} \frac{(\tilde{\lambda}^{\dot{1}})^m (\tilde{\lambda}^{\dot{2}})^n}{m! n!} w[m, n](z),$$

in terms of which

$$w(\tilde{\lambda}_1, \lambda_1)w(\tilde{\lambda}_2, \lambda_2) \sim -\frac{[12]}{\langle 12 \rangle}w(\tilde{\lambda}_1 + \tilde{\lambda}_2, \lambda_2).$$

Here
$$\langle 12 \rangle = \sqrt{2}(z_1-z_2)$$
, $[12] = -\sqrt{2}\epsilon_{\dot{\alpha}\dot{\beta}}\tilde{\lambda}_1^{\dot{\alpha}}\tilde{\lambda}_2^{\dot{\beta}}$.

Forming null momenta $p_i^{\dot{\alpha}\alpha}=\tilde{\lambda}_i^{\dot{\alpha}}\lambda_i^{\alpha}$, we recognise the tree graviton splitting amplitude

$$Split_{-}^{tree}(1^+, 2^+) = -\frac{[12]}{\langle 12 \rangle}.$$

イロンイランイミンイミン 夏 りくで

Bittleston

On quantum corrections to the celestial operator product in gravity

Pirsa: 23010110 Page 14/39

There are no local operators in gravitational theories. Next best thing is an infinitesimal deformation:

$$S_{\mathrm{SDGR}} \mapsto S_{\mathrm{SDGR}} + \epsilon \int_{\mathbb{R}^4} \mathcal{O}.$$

BRST variation of \mathcal{O} must be de Rham exact $\delta \mathcal{O} = d\mathcal{O}'$. By ascent corresponds to a local operator of positive ghost number.

A particularly interesting example is the deformation to full GR

$$\mathcal{O} = \frac{1}{2} e^{\dot{\alpha}\alpha} \wedge e_{\dot{\alpha}}^{\beta} \wedge \Gamma_{\alpha\gamma} \wedge \Gamma_{\beta}^{\gamma}.$$

Then can consider amplitudes in the presence of the infinitesimal deformation.

4 D > 4 D > 4 E > 4 E > E 990

Bittleston

On quantum corrections to the celestial operator product in gravity

Pirsa: 23010110 Page 15/39

SDYM SDGR Celestial chiral algebra Twistors Restoring associativity Conclusion

The only non-vanishing tree amplitude in SDGR is the 3-point vertex.

Hence, the collinear singularities of tree amplitudes in the presence of an infinitesimal deformation are universal, i.e., they do not depend on \mathcal{O} .

Crossed dot represents a tree amplitude in the deformation by \mathcal{O}_{\bullet}

Bittleston

On quantum corrections to the celestial operator product in gravity

Pirsa: 23010110 Page 16/39

The holomorphic collinear limits of tree graviton amplitudes in infinitesimal deformations of SDGR are described by $\mathcal{V}_{\mathrm{SDGR}} \oplus_{\mathrm{ad}} \tilde{\mathcal{V}}_{\mathrm{SDGR}}.$

Here $\tilde{\mathcal{V}}_{\mathrm{SDGR}}$ is the adjoint, generated by $\tilde{w}[m,n](z)$ for $m,n\in\mathbb{Z}_{\geq0}$ and with non-vanishing OPEs

$$w[p,q](z)\tilde{w}[r,s](0) \sim \frac{1}{z}(ps-qr)\tilde{w}[p+r-1,q+s-1](0)$$
.

This encodes the tree splitting amplitude

$$Split_{+}(1^{+}, 2^{-}) = -\frac{[12]}{\langle 12 \rangle}.$$

Bittleston

On quantum corrections to the celestial operator product in gravity

Pirsa: 23010110 Page 17/39

SDYM

SDGR

Celestial chiral algebra

Twistor

Restoring associativity

Conclusions

There are no 1-loop splitting amplitudes in gravity, at least in the true collinear limit $p_2 \stackrel{\parallel}{\to} p_1$. [Bern *et al.*, 98]

However the chiral algebra encodes the singularities in holomorphic collinear limits $\lambda_2 \stackrel{\parallel}{\to} \lambda_1$, i.e., at fixed $\tilde{\lambda}_1, \tilde{\lambda}_2$. These get new contributions in generic loop amplitudes. [Brandhuber *et al.*, 07; Dunbar *et al.*, 10]

The 1-loop all-plus amplitudes present in SDGR do not acquire new collinear singularities, however the 1-loop amplitudes in generic infinitesimal deformations do see these new contributions.

Bittleston

On quantum corrections to the celestial operator product in gravity

Pirsa: 23010110 Page 18/39

SDYM

SDGR

Celestial chiral algebra

Twistors

Restoring associativity

Conclusion:

The leading singularity at 1-loop is generated by the following diagram:

Loop integral is described by the effective graviton vertex

$$\mathcal{M}_{3}^{1-\text{loop}}(1^{+}, 2^{+}, 3^{+}) = -\frac{\mathrm{i}}{180(4\pi)^{2}} \frac{[12]^{2}[23]^{2}[31]^{2}}{P_{12}^{2}}.$$

$$(P_{ij}=p_i+p_j,\,P_{ij}^2=\langle ij
angle[ji].)$$

Bittleston

On quantum corrections to the celestial operator product in gravity

Pirsa: 23010110 Page 19/39

Including propagator gives a 1-loop graviton 'holomorphic splitting amplitude'

$$Split_{+}^{1-loop}(1^{+}, 2^{+}) = \frac{i\mathcal{M}_{3}^{1-loop}(1^{+}, 2^{+}, P_{12}^{+})}{P_{12}^{2}} = \frac{1}{180(4\pi)^{2}} \frac{[12]^{4}}{\langle 12 \rangle^{2}}.$$

This vanishes in the true limit $p_2 \stackrel{\parallel}{\rightarrow} p_1$.

Introduces a new term in the operator product

$$w(\tilde{\lambda}_1, \lambda_1)w(\tilde{\lambda}_2, \lambda_2) \sim \operatorname{Split}_{+}^{1-\operatorname{loop}}(1^+, 2^+)\tilde{w}(\tilde{\lambda}_1 + \tilde{\lambda}_2, (\lambda_1 + \lambda_2)/2)$$
$$\sim \frac{1}{180(4\pi)^2} \frac{[12]^4}{\langle 12 \rangle^2} \tilde{w}(\tilde{\lambda}_1 + \tilde{\lambda}_2, (\lambda_1 + \lambda_2)/2).$$

Bittleston

On quantum corrections to the celestial operator product in gravity

Pirsa: 23010110 Page 20/39

SDYM

SDGR

Celestial chiral algebra

Twistors

Restoring associativity

Conclusion:

Decomposing into soft modes gives

$$w[p,q](z)w[r,s](0)$$

$$\sim \frac{2}{5\pi^2} \frac{R_4(p,q,r,s)}{(4!)^2} \frac{1}{z^2} \tilde{w}[p+r-4,q+s-4] \left(\frac{z}{2}\right),$$

where

$$R_{\ell}(p,q,r,s) = \sum_{k=0}^{\ell} (-)^k {\ell \choose k} [p]_{\ell-k} [q]_k [r]_k [s]_{\ell-k} .$$

Remark

 $R_{\ell}(p,q,r,s)$ intertwines $\mathfrak{sl}_2(\mathbb{C})$ representations

$$(\mathbf{p}+\mathbf{q}+\mathbf{1})\otimes (\mathbf{r}+\mathbf{s}+\mathbf{1}) o (\mathbf{p}+\mathbf{q}+\mathbf{r}+\mathbf{s}+\mathbf{1}-\mathbf{2}\ell)$$
 .

In fact intertwines representations of $\mathfrak{sl}_2(\mathbb{C}) \ltimes H_3(\mathbb{C})$.

Bittleston

On quantum corrections to the celestial operator product in gravity

Pirsa: 23010110 Page 21/39

ADVADVASVADV E 990

Certainly not the only 1-loop correction - however in general they are tightly constrained by symmetry. The first deformed w,w OPEs are

$$\begin{split} &w[3,0](z)w[0,3](0) \sim \frac{\beta_{4,4}}{z}w[0,0]\tilde{w}[0,0](0)\,,\\ &w[4,0](z)w[0,3](0) \sim \frac{\beta_{5,4}^{2,1}}{z}w[1,0]\tilde{w}[0,0](0) + \frac{\beta_{5,4}^{1,2}}{z}w[0,0]\tilde{w}[1,0](0)\,,\\ &w[4,0](z)w[0,4](0) \sim \frac{\alpha}{z^2}\tilde{w}[0,0]\left(\frac{z}{2}\right) + \frac{1}{z}\left(\beta_{5,5}^{3,1}w[1,1]\tilde{w}[0,0]\right.\\ &\left. + \beta_{5,5}^{2,2}(:w[1,0]\tilde{w}[0,1]: + :w[0,1]\tilde{w}[1,0]:) + \beta_{5,5}^{1,3}w[0,0]\tilde{w}[1,1]\right)(0)\,. \end{split}$$

Have seen that $\alpha = 2/5\pi^2$.

In general r.h.s. involves double poles accompanied by \tilde{w} and simple poles accompanied by $:w\tilde{w}:, \partial_z\tilde{w}.$

Bittleston

On quantum corrections to the celestial operator product in gravity

Pirsa: 23010110 Page 22/39

SDYM

SDGR

Celestial chiral algebra

Twistors

Restoring associativity

Conclusions

Easy to see that this does not define a consistent chiral algebra. Associativity of the operator product necessitates

$$\oint_{|z_{2}|=2} dz_{2} \left(\oint_{|z_{12}|=1} dz_{12} \mathcal{O}_{1}(z_{1}) \mathcal{O}_{2}(z_{2}) \right) \mathcal{O}_{3}(0)
= \oint_{|z_{1}|=2} dz_{1} \mathcal{O}_{1}(z_{1}) \left(\oint_{|z_{2}|=1} dz_{2} \mathcal{O}_{2}(z_{2}) \mathcal{O}_{3}(0) \right)
- \oint_{|z_{2}|=2} dz_{2} \mathcal{O}_{2}(z_{2}) \left(\oint_{|z_{1}|=1} dz_{1} \mathcal{O}_{1}(z_{1}) \mathcal{O}_{3}(0) \right)$$

for any triplet of operators $\{\mathcal{O}_i(z)\}_{i=1}^3$. Here we're using the following equivalence of contours.

Bittleston

On quantum corrections to the celestial operator product in gravity

Pirsa: 23010110 Page 23/39

SDYM SDGR Celestial chiral algebra Twistors Restoring associativity Conclusion

Choosing

$$\mathcal{O}_1(z) = w[3,0](z) \,, \quad \mathcal{O}_2(z) = zw[0,3](z) \,, \quad \mathcal{O}_3(z) = w[2,2](z) \,.$$

We find that I.h.s. gives

$$\frac{3}{2}\alpha\tilde{w}[0,0](0)\,,$$

whereas r.h.s. vanishes. However, we know that $\alpha = 2/5\pi^2 \neq 0$.

Remark

Tempting to throw away $\tilde{w}[0,0]$, but repeating calculation with

$$\mathcal{O}_1(z) = w[4,0](z), \quad \mathcal{O}_2(z) = zw[0,3](z), \quad \mathcal{O}_1(z) = w[2,2](z)$$

gives a discrepancy $6\alpha \tilde{w}[1,0]$.

Bittleston

On quantum corrections to the celestial operator product in gravity

Pirsa: 23010110 Page 24/39

SDYM SDGR Celestial chiral algebra Twistors Restoring associativity Conclusion

This failure of associativity signals that the collinear singularities of amplitudes in infinitesimal deformations are not universal. The 1-loop all-plus amplitudes are the source of this non-universal behaviour.

Example

In the infinitesimal deformation towards full Einstein gravity the 1-loop 5-point mostly-plus amplitudes acquires a non-universal collinear singularity.

Bittleston

On quantum corrections to the celestial operator product in gravity

Pirsa: 23010110 Page 25/39

Twistors

Penrose's non-linear graviton provides an identification between:

- 4-dimensional manifolds ${\mathcal M}$ with a self-dual vacuum Einstein metric.
- 3-dimensional complex manifolds \mathcal{PT} admitting a holomorphic fibration over \mathbb{CP}^1 and an $\mathcal{O}(2)$ -valued symplectic form on the fibres. (Together with some further qualifiers.)

 \mathcal{PT} is the twistor space of \mathcal{M} . [Penrose, 76]

Points $x \in \mathcal{M}$ correspond to rational curves $\mathcal{L}_x \subset \mathcal{PT}$. In Euclidean signature this provides a non-holomorphic fibration $\mathcal{PT} \to \mathcal{M}$ with fibre over x given by \mathcal{L}_x .

Bittleston

On quantum corrections to the celestial operator product in gravity

Pirsa: 23010110 Page 26/39

OPPORT OF THE PROPERTY OF THE

Example

The twistor space of \mathbb{R}^4 , denoted \mathbb{PT} , is the total space of the vector bundle

$$\mathcal{O}(1) \oplus \mathcal{O}(1) \to \mathbb{CP}^1$$
.

Using coordinates $v^{\dot{\alpha}}$ for $\dot{\alpha}=\dot{1},\dot{2}$ on fibres and z on base the symplectic form is $\mathrm{d}v^{\dot{2}}\wedge\mathrm{d}v^{\dot{1}}.$

In perturbation theory can construct \mathcal{PT} by deforming the flat twistor space \mathbb{PT} . Almost complex structure deformations are encoded in a Beltrami differential

$$\bar{\partial} \mapsto \bar{\nabla} = \bar{\partial} + \mathcal{L}_V$$

for $V \in \Omega^{0,1}(T^{1,0}_{\mathbb{PT}})$. The almost complex structure deformation determined by ∇ is integrable when the Nijenhuis tensor vanishes

$$N = \bar{\nabla}^2 = \bar{\partial}V + \frac{1}{2}[V, V] = 0.$$

Bittleston

On quantum corrections to the celestial operator product in gravity

Pirsa: 23010110 Page 27/39

Page 28/39

Almost complex structure deformations of this type preserve the 2-form ${\rm d}v^2\wedge {\rm d}v^1$ if V is Hamiltonian in the sense

$$V = \{h, \} = \epsilon^{\dot{\beta}\dot{\alpha}} \partial_{v^{\dot{\alpha}}} h \, \partial_{v^{\dot{\beta}}}$$

for $h \in \Omega^{0,1}(\mathbb{PT}, \mathcal{O}(2))$. For a Hamiltonian deformation the Nijenhuis tensor is itself Hamiltonian, $N = \{T, \}$, where

$$T=ar{\partial} h+rac{1}{2}\{h,h\}\in\Omega^{0,2}(\mathbb{PT},\mathcal{O}(2))\,.$$

A natural twistor action is then (holomorphic) Poisson-BF theory [Mason, Wolf, 09]

$$S_{\mathrm{PBF}}[g,h] = rac{1}{2\pi \mathrm{i}} \int_{\mathbb{PT}} g \wedge T$$

for $g \in \Omega^{3,1}(\mathbb{PT}, \mathcal{O}(-2))$. Classically equivalent to our perturbative action for SDGR on spacetime. [Sharma, 21; RB et al., 22]

Bittleston

On quantum corrections to the celestial operator product in gravity

Pirsa: 23010110

The chiral algebra arises in multiple ways in the twistorial theory [Costello, Paquette, 22]. Most relevant for us, it arises as the universal holomorphic surface defect supported on a twistor line \mathcal{L}_x .

Defect couples to Poisson-BF theory via

$$\sum_{m,n\in\mathbb{Z}_{\geq 0}} \frac{1}{m!n!} \int_{\mathcal{L}_x} \frac{\mathrm{d}z}{2\pi \mathrm{i}} \left(w[m,n](z) \partial_{v^{\dot{1}}}^m \partial_{v^{\dot{2}}}^n h + \tilde{w}[m,n](z) \partial_{v^{\dot{1}}}^m \partial_{v^{\dot{2}}}^n g \right)$$

for operators $w[m,n](z), \tilde{w}[m,n](z)$ living on the \mathcal{L}_x .

OPEs between the operators on the defect are determined by BRST invariance. At tree level we recover $V_{\rm SDGR} \oplus_{\rm ad} \tilde{V}_{\rm SDGR}$.

Bittleston

On quantum corrections to the celestial operator product in gravity

Pirsa: 23010110 Page 29/39

SDYM SDGR Celestial chiral algebra Twistors Restoring associativity Con-

Example

Linearised BRST variation of the following diagrams cancel,

necessitating

$$w[p,q](z)w[r,s](0) \sim \frac{1}{z}(ps-qr)w[p+r-1,q+s-1](0)$$
.

Bittleston

On quantum corrections to the celestial operator product in gravity

Pirsa: 23010110 Page 30/39

SDYM SDGR Celestial chiral algebra Twistors Restoring associativity Conclusion

Example

At 1-loop there are other diagrams which can contribute.

The above necessitates a correction

$$w[4,0](z)w[0,4](0) \sim \frac{2}{5\pi^2} \frac{1}{z^2} \tilde{w}[0,0](0) + \mathcal{O}\left(\frac{1}{z}\right).$$

By symmetry arguments this can be leveraged to get precisely the double poles introduced by the 1-loop effective vertex.

4 D > 4 D > 4 E > 4 E > 4 E > 9 9 9

Bittleston

On quantum corrections to the celestial operator product in gravity

Pirsa: 23010110 Page 31/39

SDYM SDGR Celestial chiral algebra Twistors Restoring associativity Conclusion

But we know this does not define a consistent chiral algebra. What is going wrong?

Twistor uplift of SDGR suffers from an anomaly which can be attributed to the failure of the following diagram to be BRST invariant. [RB, Sharma, Skinner, 22]

Can be identified with the 4-point 1-loop all-plus amplitudes on spacetime, where it represents a global anomaly in integrability.

990

Bittleston

On quantum corrections to the celestial operator product in gravity

Pirsa: 23010110 Page 32/39

SDYM SDGR Celestial chiral algebra Twistors Restoring associativity Conclusions

Restoring associativity

To obtain a consistent chiral algebra we must cancel the twistorial anomaly, or equivalently eliminate the non-vanishing 1-loop all-plus amplitudes in SDGR.

There are multiple ways of doing this:

- Couple to scalars, fermions, gauge bosons and gravitinos so that a count of the degrees of freedom weighted by Grassmann parity gives 0. This occurs in self-dual SUGRA and chiral higher-spin gravity. In these cases $\alpha=0$.
- Alternatively couple to an exotic 4^{th} -order scalar on spacetime, cancelling the twistorial anomaly by a Green-Schwarz mechanism. α remains non-vanishing.

Bittleston

On quantum corrections to the celestial operator product in gravity

Pirsa: 23010110 Page 33/39

On twistor space couple to a field $\eta \in \Omega^{2,1}(\mathbb{PT})$ obeying $\partial \eta = 0$. Action is

$$S_{\eta}[\eta;h] = \frac{1}{4\pi \mathrm{i}} \int_{\mathbb{PT}} \left(\partial^{-1} \eta \wedge \bar{\nabla} \eta + \mu \, \epsilon^{\dot{\alpha}\dot{\gamma}} \epsilon^{\dot{\beta}\dot{\delta}} \, \eta \wedge \partial_{v^{\dot{\alpha}}} \partial_{v^{\dot{\alpha}}} h \wedge \partial_{v^{\dot{\gamma}}} \partial_{v^{\dot{\beta}}} \partial h \right).$$

 η descends to a scalar field ρ on spacetime, and the above action becomes

$$S_{\rho}[\rho;g] = \int_{\mathbb{R}^4} \left(\operatorname{vol}_g \frac{1}{2} (\triangle_g \rho)^2 + \frac{\mu}{\sqrt{2}} \rho R^{\mu}_{\ \nu} \wedge R^{\nu}_{\ \mu} \right).$$

Here $R^{\mu}_{\ \nu} \wedge R^{\nu}_{\ \mu}$ is the Pontryagin class, revealing ρ to be a 4th-order gravitational axion.

Bittleston

On quantum corrections to the celestial operator product in gravity

Pirsa: 23010110 Page 34/39

The twistorial anomaly, or equivalently the 1-loop all-plus amplitudes, are cancelled by tree level axion exchange

if the coupling constant μ is tuned so that

$$\mu^2 = rac{1}{5!} \left(rac{\mathrm{i}}{2\pi}
ight)^2.$$

This relies on the following trace identity for the fundamental of $\mathfrak{sl}_2(\mathbb{C})$

$$\operatorname{tr}(X^4) = \frac{1}{2}\operatorname{tr}(X^2)^2.$$

Bittleston

On quantum corrections to the celestial operator product in gravity

Pirsa: 23010110 Page 35/39

In particular, our twistorial arguments suggest that SDGR coupled to this 4th-order gravitational axion admits a quantum chiral algebra governing the holomorphic collinear limits of amplitudes in its infinitesimal deformations.

This is a kind of quantum group which plays a role analogous to the Yangian for the principal chiral model.

If so, the previously identified associativity failure should no longer be present. This is indeed the case precisely if

$$\alpha = \frac{2}{5\pi^2} \,,$$

the same value obtained from the effective vertex, and from the direction calculation on twistor space.

Bittleston

On quantum corrections to the celestial operator product in gravity

Pirsa: 23010110 Page 36/39

SDYM SDGR Celestial chiral algebra Twistors Restoring associativity Conclusions

Conclusions

- ▶ Asked whether the holomorphic collinear singularities of amplitudes in infinitesimal deformations of SDGR define a consistent chiral algebra.
- True at tree level, but at 1-loop collinear behaviour is modified.
- Do not obtain a consistent chiral algebra associativity of the operator product is violated.
- ► Failure can be traced to the presence of 1-loop all-plus amplitudes, which introduce non-universal behaviour.
- ► From the twistor perspective, chiral algebra describes the universal holomorphic surface defect supported on a twistor line. Associativity failure can be attributed to an anomaly.
- ► Cancelling the anomaly cures previously identified failure.

(ロ) (型) (注) (注) (注) り(の)

Bittleston

On quantum corrections to the celestial operator product in gravity

Pirsa: 23010110 Page 37/39

SDYM SDGR Celestial chiral algebra Twistors Restoring associativity Conclusions

Future work

- ▶ Can we better understand these quantum groups? Simplest example probably arises for self-dual $\mathcal{N}=1$ SUGRA.
- ▶ In case of SDYM there is a correspondence:

Is there an analogous statement in gravity?

- Poisson-Chern-Simons theory on twistor space conjecturally describes the $\mathcal{N}=2$ string on spacetime. What is its chiral algebra?
- Recently a remarkable new holographic duality has been obtained using twistor methods. [Costello, Paquette, Sharma, 22] Is there a SDGR counterpart?

Bittleston

On quantum corrections to the celestial operator product in gravity

Pirsa: 23010110 Page 38/39

Pirsa: 23010110 Page 39/39