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Overview

Recently there's been significant progress in the understanding of
quantum self-dual Yang-Mills theory, achieved by exploiting twistor
methods. [Costello, 21; Costello, Paquette, 22; Costello, Paquette,
Sharma; 22: ... |

This is closely related to developments in the celestial holography
program. [Guevara et al., 21; Strominger, 21; Ball et al., 22; .. .]

This talk concerns the application of similar twistor methods in the
context of self-dual gravity. Based on arXiv:2211.06417 [RB, 22]
and arXiv:2208.12701 [RB, Sharma, Skinner, 22].
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Self-dual Yang-Mills

Let A be a connection on a principal G-bundle P over a 4d
Riemannian manifold M. (For G a complex semi-simple Lie group
with Lie algebra g.)

The self-dual Yang-Mills (SDYM) equations read
F(A) =xF(A).

Introducing a Lagrange multiplier field B € Q2 (M;g") can define
SDYM as a perturbative quantum field theory using the action

SivvlB, Al /M (B, F(A)).
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The SDYM equations are integrable.

Their solutions admit the action of an infinite dimensional hidden
symmetry algebra. [Ward, 77; Chau et al., 83; Chakravarty,
Mason, Newman, 88]

Closely related to the chiral algebra of positive-helicity asymptotic
symmetries arising from soft theorems in YM. [Guevara et al., 21;
Strominger, 21| Denote this by Vspywm.

As a Lie alegbra

Vspym = glvt,v?, 2,271

As a chiral algebra is generated by j3[m,n|(z) fora=1,...,dimg
and m,n € Z>g. OPEs are

7°[p, q](2)3°[r, ](0) ~

. .
;fabcf[p +7,q+ s](0)
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The OPE describes the singularity in a YM tree amplitude as two
external positive helicity gluons become collinear.

Also describes the collinear singularities of 1-loop amplitudes (and
hence all amplitudes) in SDYM. [Ball et al., 21]

However, recently further argued by Costello and Paquette that
VspyMm @Pad Vspym describes the collinear limits of tree form
factors in SDYM. [Costello, Paquette, 22|

Here l)SDYM denotes the adjoint of Vgpywm. It is generated by
7[m,n](z) fora=1,...dimg and m,n € Z>¢, and has the
following non-trivial OPEs

P, )Pl s1(0) ~ - f5 Flp 4 1,0+ 510)
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Form factors are amplitudes in the presence of a local operator. A
particularly interesting local operator is
1

0 = 2;«;-I(B,B),

for which corresponding tree and 1-loop form factors are:

_|_ e

ol e
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The collinear limits of form factors in SDYM are modified at

1-loop. They do not define a consistent chiral algebra. [Costello,
Paquette, 22|

To get a consistent quantum deformed chiral algebra the all-plus
amplitudes must vanish. This can be achieved, e.g., by coupling to
appropriate fermionic matter, or something more exotic. [Costello,
21; Costello, Paquette, 22]

There is then a correspondence:

local operators < conformal blocks
form factors <> chiral algebra correlators
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Self-dual Einstein gravity

In this talk we'll see that many of these same ideas apply in the
context of self-dual Einstein gravity.

Why consider this?
» 4d Einstein gravity is interesting but challenging.

» Self-dual Einstein gravity is less interesting but less
challenging: it's classically integrable, 1-loop exact and finite.

» It retains some important features of full Einstein gravity: it's
4-dimensional and has propagating degrees of freedom.

» It can be deformed to full Einstein gravity, and the simplicity
of the self-dual sector can be leveraged to understand this
deformation.
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Self-dual Einstein gravity

Let g be a Riemannian metric on the 4d manifold M. The
self-dual vacuum Einstein equations (without cosmological
constant) state that

=30 Ric=10,

where C' denotes the Weyl tensor and Ric the Ricci tensor.
Introducing vierbeins
g=¢€"*0esa,

the self-dual vacuum Einstein equations can be written as

%d(e‘m A edﬁ) =0
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These equations are slightly easier to understand from the
perspective of the action: the self-dual Palatini action is

Sar[Tye] = 3 /M efi e A (dra,g + KT, A ng) .
It differs from the tetradic Palatini action by a topological
Nieh-Yan term.

In the weak coupling limit k2 — 0 we obtain an action for the
self-dual vacuum Einstein equations

1

Ssparll, €] = 5 /M e N B NAD

Working perturbatively around flat space e®® = dz%® + §e®* we
can use this to define self-dual Einstein gravity (SDGR) as a
perturbative quantum field theory.

Bittleston

On quantum corrections to the celestial operator product in gravity

Pirsa: 23010110 Page 11/39



SDYM SDGR Celestial chiral algebra T'wistors Restoring associativity Conclusions

Celestial chiral algebra

The self-dual vacuum Einstein equations are integrable.

Self-dual Einstein metrics are acted upon by an infinite dimensional
hidden symmetry group. [Penrose, 76; Park, 90; Dunajski, Mason,
00] Recently has been identified as the chiral algebra of
positive-helicity asymptotic symmetries arising from soft theorems
in GR. [Guevara et al., 21; Strominger, 21]

Also describes the collinear singularities of 1-loop amplitudes (and
hence all amplitudes) in SDGR. [Ball et al., 21]

As Lie algebra it's the loop algebra of Ham(C?), itself the Lie
algebra of Hamiltonian vector fields on C? equipped with its
standard symplectic structure.
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Write Vspar = L(Ham(C?)) for this infinite dimensional
symmetry algebra. As a chiral algebra generated by w[m, n](z) for
m,n € Zx>o. OPEs are

wlp,al(2)ulr, s1(0) ~ ~ (ps — gr)ulp + 7~ Lg+ 5~ 1)(0).

Some notable features:
» w[0,0] is central.
» w[l,0], w0, 1] correspond to supertranslations.
» w[2,0], w[l,1], w|0,2] correspond to superrotations. They
generate an sla(C) current algebra at level 0.

Connection to amplitudes is clearer if we organise these into ‘hard’
generating functions.
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Interpret z as an inhomogeneous coordinate on CP! with
A= (z,1). Then let

- j\i m 5\2 n
wG = 3 P ) (e),
m,ﬂEZ"fazo e

in terms of which

. : o
w(A1, A1) w(A2, Az) ~ —‘<[1—2]>’w(/\1 + A2, A2) .

Here (12) = v/2(21 — 22), [12] = —ﬂedﬁj\‘f;"\g.

Forming null momenta p&® = A%)\%, we recognise the tree graviton
splitting amplitude
[12]

l-ttree' +’2+ T e
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There are no local operators in gravitational theories. Next best
thing is an infinitesimal deformation:

SsDGR M SSDGR + € 0.
JR4

BRST variation of @ must be de Rham exact 6O = dO’. By
ascent corresponds to a local operator of positive ghost number.

A particularly interesting example is the deformation to full GR

1 oo
0= §eaﬂx\edﬁz\rmx\r”5.

Then can consider amplitudes in the presence of the infinitesimal
deformation.
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The only non-vanishing tree amplitude in SDGR is the 3-point
vertex.

Hence, the collinear singularities of tree amplitudes in the presence
of an infinitesimal deformation are universal, i.e., they do not
depend on O.

P1

)
4 D1t P

P2

Crossed dot represents a tree amplitude in the deformation by O.
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The holomorphic collinear limits of tree graviton amplitudes in
infinitesimal deformations of SDGR are described by

VsDGR Pad VSDGR-

Here Vspgr is the adjoint, generated by w[m, n](z) for
m,n € Z>o and with non-vanishing OPEs

1 .
~ ;(ps—qr)w[pﬂ‘— 1,q+s—1](0).

w(p, ¢|(2)w[r, s](0)
This encodes the tree splitting amplitude

Split. (127 ) = -%.
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There are no 1-loop splitting amplitudes in gravity, at least in the

true collinear limit ps L p1. [Bern et al., 98]

However the chiral algebra encodes the singularities in holomorphic

collinear limits A\ L A1, 1.e., at fixed :\1, Xo. These get new
contributions in generic loop amplitudes. [Brandhuber et al., 07;
Dunbar et al., 10]

The 1-loop all-plus amplitudes present in SDGR do not acquire
new collinear singularities, however the 1-loop amplitudes in
generic infinitesimal deformations do see these new contributions.
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The leading singularity at 1-loop is generated by the following
diagram:

P1

=D — 1> @
<

A
P2

Loop integral is described by the effective graviton vertex

i [12223]2]31]2

l=loap it sk wfs
72030 = = .
Ms 2 180(4)?2 Pa,

(P = pi +pj, P = (ij)[ji].)
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Including propagator gives a 1-loop graviton ‘holomorphic splitting
amplitude’

MR o PR 1 1)

- 1-1 T ooty
Splitgs bl n 28— P  180(n)* (122

This vanishes in the true limit ps J} P1-

Introduces a new term in the operator product

w(A1, A)w(Ag, Ag) ~ Splitt°P(1+, 25w (A + Ag, (A1 + A2)/2)

4 ~ -
. 180(147r)2 ([g]}z@(/\l + A2, (A1 + X2)/2).
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Decomposing into soft modes gives

wlp, g](2)wlr, s](0)
2 R4 (p: q,r, S) |
572 (42 22

1"&[p+r—4,q+s—4](§),

e /
Rulp..78) = 3 (¥ () Bleslahlrlelor.

k=0 k

Re(p, q, 1, s) intertwines sly(C) representations
P+q+1)R@r+s+1) > (p+q+r+s+1-—20).

In fact intertwines representations of sly(C) x H3(C).
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Certainly not the only 1-loop correction - however in general they

are tightly constrained by symmetry. The first deformed w, w
OPEs are

Baa

e

w|3, 0](2)w|0, 3](0) ~ —=wl0, 0Jw(0, 0](0)

2.1
w4, 0)(=)uw[0, 3](0) ~ ﬁ—wu 01(0, 0](0) + ‘B—w[o Ol(L, 0](0)

{4, 0(:)l0,410) ~ Sa(0,0]( 3 ) + (ﬁ55w[1 1J(0,0

+ 8221, 0100, 1]: + [0, (1, 0]:) + A-2w(0, O, 11)( )
Have seen that o = 2 /572,

In general r.h.s. involves double poles accompanied by w and
simple poles accompanied by :ww:, 0,w.
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Easy to see that this does not define a consistent chiral algebra.
Associativity of the operator product necessitates

jﬁﬂzz dz (jéllm:l dz1o @1(21)@2(22)) 03(0)
— j{qz dz1 O1(21) (fzzl dzy (’)2(;;2)(93(0))

_ fm:z dzg O(23) ( j{z”:l dz ol(zl)og(m)

for any triplet of operators {O;(2)}3_,. Here we're using the
following equivalence of contours.
21 ' 29
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Choosing
O1(2) = w[3,0](2), Oa(2) = 2w[0,3](2), Os(z) = w[2,2](2).

We find that |.h.s. gives

S
50&%‘[0, 0]( ) )

whereas r.h.s. vanishes. However, we know that o« = 2/57rr2 £ 0

Remark

Tempting to throw away @|0, 0], but repeating calculation with
O1(2) =w[4,0](2), O2(2) = 2w[0,3](2), O1(z) = w(2,2|(2)

gives a discrepancy 6aw|(1, 0.
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This failure of associativity signals that the collinear singularities of
amplitudes in infinitesimal deformations are not universal. The

1-loop all-plus amplitudes are the source of this non-universal
behaviour.

Example

In the infinitesimal deformation towards full Einstein gravity the

1-loop 5-point mostly-plus amplitudes acquires a non-universal
collinear singularity.

_|_
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Twistors

Penrose’s non-linear graviton provides an identification between:

- 4-dimensional manifolds M with a self-dual vacuum Einstein
metric.

- 3-dimensional complex manifolds P77 admitting a holomorphic
fibration over CP! and an (O(2)-valued symplectic form on the

fibres. (Together with some further qualifiers.)
PT is the twistor space of M. [Penrose, 76|

Points € M correspond to rational curves L, C PT. In
Euclidean signature this provides a non-holomorphic fibration
PT — M with fibre over x given by L, .
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Example

The twistor space of R*, denoted PT, is the total space of the

vector bundle
O(1) ® O(1) - CPL.

Using coordinates v® for & = 1,2 on fibres and z on base the
symplectic form is dv? A dv!.

In perturbation theory can construct PT by deforming the flat
twistor space PT. Almost complex structure deformations are
encoded in a Beltrami differential

5»—>7=5—|—£y

for V € QOJ(T]Pl,J’TD). The almost complex structure deformation

determined by V is integrable when the Nijenhuis tensor vanishes

b ]
N=V2:8V’+§[V,V] =0.
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Almost complex structure deformations of this type preserve the
2-form dv? A dv! if V is Hamiltonian in the sense

V ={h, } = #%9,shd

for h € Q%1(PT, O(2)). For a Hamiltonian deformation the
Nijenhuis tensor is itself Hamiltonian, N = {T, }, where

T = 6h + %{h, h} € Q%2 (PT, 0(2)).

A natural twistor action is then (holomorphic) Poisson-BF theory
[Mason, Wolf, 09|

1
SpBF|9, h] = 5 PTg/\T

for g € Q31 (PT, O(-2)). Classically equivalent to our perturbative
action for SDGR on spacetime. [Sharma, 21; RB et al., 22]
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The chiral algebra arises in multiple ways in the twistorial theory
[Costello, Paquette, 22]|. Most relevant for us, it arises as the

universal holomorphic surface defect supported on a twistor line
L

Defect couples to Poisson-BF theory via

Z 1 /ﬂ dz (w[m,n](g)ag'{'a:éh—I—ﬁ:[m,n](z)@fi" ;*‘Qg)

m!n! . 2mi

m,nEFz’izo
for operators w[m,nl|(z),w[m, n](z) living on the L,.
OPEs between the operators on the defect are determined by

BRST invariance. At tree level we recover Vspar Pad VSDGR.-
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Example

Linearised BRST variation of the following diagrams cancel,

h

£ Ly

necessitating

wlp,ql(2)ulr, s1(0) ~ - (ps — gr)ulp + 7~ Lg+ 5~ 1)(0).
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Example

At 1-loop there are other diagrams which can contribute.

h\ ) /h

Loy

The above necessitates a correction

2.1 1
4 A et = L
wld, 0:)wl0,410) ~ ;2 al0,0/0) + 0]
By symmetry arguments this can be leveraged to get precisely the
double poles introduced by the 1-loop effective vertex.
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But we know this does not define a consistent chiral algebra. What
is going wrong?

Twistor uplift of SDGR suffers from an anomaly which can be
attributed to the failure of the following diagram to be BRST
invariant. [RB, Sharma, Skinner, 22]

Can be identified with the 4-point 1-loop all-plus amplitudes on
spacetime, where it represents a global anomaly in integrability.
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Restoring associativity

To obtain a consistent chiral algebra we must cancel the twistorial

anomaly, or equivalently eliminate the non-vanishing 1-loop all-plus
amplitudes in SDGR.

There are multiple ways of doing this:

- Couple to scalars, fermions, gauge bosons and gravitinos so
that a count of the degrees of freedom weighted by
Grassmann parity gives 0. This occurs in self-dual SUGRA
and chiral higher-spin gravity. In these cases o = 0.

- Alternatively couple to an exotic 4t"-order scalar on
spacetime, cancelling the twistorial anomaly by a
Green-Schwarz mechanism. a remains non-vanishing.
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On twistor space couple to a field n € Q%! (PT) obeying 91 = 0.
Action is

1l

"~ 4ri

Sn [773 h’]

[PT (8_177/\?71—%# il ) T]/\avgava h/\E)U.T&)m_;,é)h.) ;

1 descends to a scalar field p on spacetime, and the above action
becomes

: e 1 2 % mn v
Sp[p,g]—fw (Vong(Agp) +ﬂpR y AR u)-

Here RY, A R, is the Pontryagin class, revealing p to be a
4th_order gravitational axion.
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The twistorial anomaly, or equivalently the 1-loop all-plus
amplitudes, are cancelled by tree level axion exchange

if the coupling constant p is tuned so that

2 1(1)°
B =%\a2n/

This relies on the following trace identity for the fundamental of

5[2((:)

tr(X*) = %tr(XQ)Q.
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In particular, our twistorial arguments suggest that SDGR coupled
to this 4t"-order gravitational axion admits a quantum chiral
algebra governing the holomorphic collinear limits of amplitudes in
its infinitesimal deformations.

This is a kind of quantum group which plays a role analogous to
the Yangian for the principal chiral model.

If so, the previously identified associativity failure should no longer
be present. This is indeed the case precisely if

2

the same value obtained from the effective vertex, and from the
direction calculation on twistor space.
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Conclusions

Asked whether the holomorphic collinear singularities of
amplitudes in infinitesimal deformations of SDGR define a
consistent chiral algebra.

True at tree level, but at 1-loop collinear behaviour is
modified.

Do not obtain a consistent chiral algebra - associativity of the
operator product is violated.

Failure can be traced to the presence of 1-loop all-plus
amplitudes, which introduce non-universal behaviour.

From the twistor perspective, chiral algebra describes the
universal holomorphic surface defect supported on a twistor
line. Associativity failure can be attributed to an anomaly.

Cancelling the anomaly cures previously identified failure.
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Future work

Can we better understand these quantum groups? Simplest
example probably arises for self-dual N' =1 SUGRA.

In case of SDYM there is a correspondence:

local operators <« conformal blocks
form factors < chiral algebra correlators

Is there an analogous statement in gravity?

Poisson-Chern-Simons theory on twistor space conjecturally
describes the N' = 2 string on spacetime. What is its chiral
algebra?

Recently a remarkable new holographic duality has been
obtained using twistor methods. |Costello, Paquette, Sharma,
22| Is there a SDGR counterpart?
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Thank you for listening.
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