Title: On the vertices of Lambda polytopes

Speakers: Cihan Okay

Series: Perimeter Institute Quantum Discussions

Date: January 18, 2023 - 11:00 AM

URL: https://pirsa.org/23010105

Abstract: Classical simulation algorithms provide a rigorous ground for investigating quantum resources responsible for quantum speedup. In my talk, I will consider one such algorithm provided by Lambda polytopes. These polytopes are defined to be the polar dual of the stabilizer polytopes and can be used to provide a hidden variable model for finite-dimensional quantum theory. This hidden variable model can be turned into a classical algorithm that can simulate any quantum computation. The efficiency of this algorithm depends on the combinatorial structure of the polytope. In general, which subset of the vertices gives rise to efficient simulation is an open problem. I will describe some of the known classes of vertices and available methods for studying this polytope.

Zoom link: https://pitp.zoom.us/j/95216680309?pwd=aGlIN2NtZVRtczdHcXl5RzgzQTlOdz09

Pirsa: 23010105 Page 1/32

On the vertices of Λ -polytopes

Cihan Okay

Bilkent University

Perimeter Institute - January 2023

Pirsa: 23010105

Outline

- ► Motivation and background
- Λ-polytopes
- Closed noncontextual vertices
- ► Maps between Λ-polytopes
- Decomposing the 2-qubit Λ-polytope²

Pirsa: 23010105 Page 3/32

¹joint with Michael Zurel and Robert Raussendorf

²joint with Ho Yiu Chung and Selman Ipek

Quantum computation with magic states

QCM scheme³

stabilizer subtheory + "magic state" = universality

Stabilizer subtheory

(Stabilizer states, Clifford unitaries, Pauli measurements)

Gottesman-Knill theorem: Stabilizer subtheory is efficiently classically simulatable.

An example of a magic state is

$$|T
angle = T|+
angle = rac{|0
angle + e^{\pi i/4}|1
angle}{\sqrt{2}}$$

³Bravyi and Kitaev 2005.

Odd local dimension

Quantum computation with magic states can have quantum speedup only if the Wigner function of the magic state is negative⁴.

Quantum contextuality is a necessary resource for universal quantum computation⁵.

A multiqudit quantum state is contextual with respect to Pauli measurements if and only if its Wigner function is negative⁶.

Pirsa: 23010105

⁴Veitch et al. 2012.

⁵Howard et al. 2014.

⁶Delfosse et al. 2017.

Wigner functions for d odd

Wigner function of ρ is a quasi-probability distribution $W_{\rho}: E_n \to \mathbb{R}$ over the phase space $E_n = (\mathbb{Z}_d)^{2n}$. Properties:

(i) Clifford covariance: For any Clifford unitary U we have

$$W_{U
ho\,U^\dagger}(a)=W_
ho(S_U(a)+a')$$

where S_U is a symplectic transformation.

(ii) Positivity preservation under measurement: For any Pauli projector Π we have

$$W_{\rho}(a) \geq 0 \quad \Rightarrow \quad W_{\Pi \rho \Pi}(a) \geq 0$$

If $W_{\rho} \geq 0$ then QCM can be efficiently classically simulated.

Difficulties for qubits

Any operator basis for the space of n-qubit Hermitian operators fails to be Clifford covariant⁷.

Positivity is not preserved under Pauli measurements⁸.

Both of the properties above have cohomological underpinnings⁹.

The number of classical bits of memory required to simulate contextuality scales quadratically with the number of qubits¹⁰. Phase space has to be larger than $E_n = (\mathbb{Z}_2)^{2n}$.

Pirsa: 23010105 Page 7/32

⁷Zhu 2016.

⁸Raussendorf et al. 2017.

⁹Raussendorf et al. 2021.

¹⁰Karanjai, Wallman, and Bartlett 2018.

Pauli group

Pauli operators:

$$T_a = i^{a_Z \cdot a_X} Z(a_Z) X(a_X)$$

where $a=(a_Z,a_X)\in E_n=\mathbb{Z}_2^n\times\mathbb{Z}_2^n$ and

$$Z(a_Z) = \bigotimes_{i=1}^n Z_i^{(a_Z)_i}$$
 and $X(a_X) = \bigotimes_{i=1}^n X_i^{(a_X)_i}$.

Pauli group is defined by $P_n = \{\pm T_a, \pm iT_a | a \in E_n\} \subset U((\mathbb{C}^2)^{\otimes n}).$

Clifford group Cl_n is the normalizer (modulo central elements) of P_n :

$$0 o \mathbb{Z}_2^{2n} o \mathsf{Cl}_n o \mathsf{Sp}(\mathbb{Z}_2^{2n}) o 0$$

Structure of the Pauli group

The commutator of P_n is determined by a symplectic form

$$T_a T_b T_a T_b = (-1)^{[a,b]} I$$
 where $[a,b] = a_Z \cdot b_X + a_X \cdot b_Z$

 E_n together with $[\cdot,\cdot]$ is a symplectic vector space with basis $\{z_1,\cdots,z_n,x_1,\cdots,x_n\}$.

A subspace $I \subset E_n$ is called isotropic if [a, b] = 0 for all $a, b \in I$.

Product of Pauli operators:

$$T_a T_b = (-1)^{\beta(a,b)} T_{a+b} \ \ \forall a,b \ \text{with} \ [a,b] = 0$$

(The function β can be regarded as a 2-cocycle.)

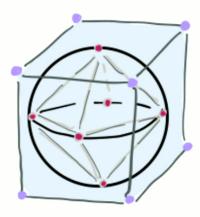
Pirsa: 23010105

Λ-polytopes

Definition:

$$\Lambda_n = \{X \in \mathsf{Herm}((\mathbb{C}^2)^{\otimes n}) | \; \mathsf{Tr}(X) = 1, \; \mathsf{Tr}(X\Pi_\sigma) \geq 0 \; \forall |\sigma\rangle \in \mathcal{S}_n\}.$$

The set of vertices is denoted by $\{A_{\alpha} | \alpha \in \mathcal{V}_n\}$.



Pirsa: 23010105 Page 10/32

Theorem $(^{11})$

Every n-qubit quantum state ρ can be represented by a probability function $p_{\rho}: \mathcal{V}_n \longrightarrow \mathbb{R}_{\geq 0}$ where

$$\rho = \sum_{\alpha \in \mathcal{V}_n} p_{\rho}(\alpha) A_{\alpha}.$$

For any Pauli operator $T_a = \Pi_a^0 - \Pi_a^1$ and vertex A_α the operator $\Pi_a^s A_\alpha \Pi_a^s$, if nonzero, is contained in Λ_n after normalization hence specifies a probability distribution $q_{\alpha,a}: \mathcal{V}_n \times \mathbb{Z}_2 \longrightarrow \mathbb{R}_{\geq 0}$ where

$$\Pi_{\mathsf{a}}^{\mathsf{s}} A_{\alpha} \Pi_{\mathsf{a}}^{\mathsf{s}} = \sum_{\beta \in \mathcal{V}_{\mathsf{n}}} q_{\alpha,\mathsf{a}}(\beta,\mathsf{s}) A_{\beta}$$

The Born rule takes the form

$$\mathsf{Tr}(\mathsf{\Pi}_{\mathsf{a}}^{\mathsf{s}}
ho) = \sum_{lpha \in \mathcal{V}_n} p_{
ho}(lpha) Q_{\mathsf{a}}(\mathsf{s}|lpha)$$

where $Q_a(s|\alpha) = \sum_{\beta \in \mathcal{V}_n} q_{\alpha,a}(\beta,s)$.

Pirsa: 23010105

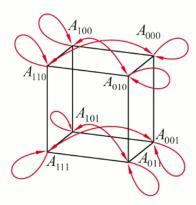
¹¹Zurel, Okay, and Raussendorf 2020.

Classical simulation algorithm: Given a quantum state ρ and a sequence T_{a_1}, \dots, T_{a_N} of Pauli operators representing a computation in the QCM scheme:

- 1. Sample from the probability distribution p_{ρ} to obtain a phase space point $\alpha_0 \in \mathcal{V}_n$.
- 2. For each Pauli measurements T_{a_t} , $a_t \in E_n$, from $t = 1, 2, \dots, N$, sample from q_{α, a_t} to obtain the new phase space point $\beta \in \mathcal{V}_n$ and measurement outcome s_t .

Output s_t as the outcome for the measurement of T_{a_t} .

Update $\alpha_{t-1} \to \alpha_t = \beta$, and $t \to t+1$.



Pirsa: 23010105 Page 12/32

Closed and non-contextual (cnc) sets

A subset $\Omega \subset E_n$ is called

- 1. closed if $a, b \in \Omega$ with [a, b] = 0 implies that $a + b \in \Omega$.
- 2. non-contextual if it admits a value assignment:

There exists a function $\gamma:\Omega\to\mathbb{Z}_2$ such that

$$\gamma(a) + \gamma(b) = \beta(a, b) + \gamma(a + b) \quad \forall a, b \in \Omega \text{ with } [a, b] = 0.$$

 Ω is called a cnc set if it is both closed and non-contextual.

There is an associated operator

$$A_{\Omega}^{\gamma} = rac{1}{2^n} \sum_{\mathsf{a} \in \Omega} (-1)^{\gamma(\mathsf{a})} \, \mathcal{T}_{\mathsf{a}}$$

Cnc-type vertices

The operators A_{Ω}^{γ} corresponding to maximal cnc sets (Ω, γ) are vertices of Λ_n :

 $\mathcal{V}_{n}^{\mathsf{cnc}} = \{A_{\Omega}^{\gamma} | \ \Omega \ \mathsf{is a maximal cnc set and} \ \gamma \ \mathsf{value assignment} \}$

The update rule¹² is given by

$$\Pi_a^s A_\Omega^\gamma \Pi_a^s = \left\{ egin{array}{ll} \delta_{s,\gamma(a)} (rac{1}{2} A_\Omega^\gamma + rac{1}{2} A_\Omega^{\gamma+[a,-]}) & a \in \Omega \ rac{1}{2} A_\Omega^{\gamma imes s} & a
otin \Omega. \end{array}
ight.$$

 $\Lambda_n^{cnc} \subset \Lambda_n$: the convex hull of \mathcal{V}_n^{cnc} .

Pirsa: 23010105 Page 14/32

¹²Raussendorf et al. 2020.

The region of efficient classical simulation

If ρ can be represented by a probability distribution $p_{\rho}: \mathcal{V}_n^{cnc} \to \mathbb{R}_{\geq 0}$ then the classical simulation algorithm is efficient¹³.

This region can be extended to a larger subpolytope:

- 1. There exists a map $\Phi : \Lambda_m \to \Lambda_n$ for m < n sending vertices to vertices.
- 2. Reduced simulation algorithm.
- 3. New class of vertices of Λ_2 with update rules.

Pirsa: 23010105 Page 15/32

¹³Raussendorf et al. 2020.

The Φ-map

Theorem (14)

Given an n-qubit Clifford unitary U and an (n-m)-qubit stabilizer state $|\sigma\rangle$ the linear map

 $\Phi: \mathit{Herm}((\mathbb{C}^2)^{\otimes m}) \to \mathit{Herm}((\mathbb{C}^2)^{\otimes n})$ defined by

$$\Phi(X) = U(X \otimes \Pi_{\sigma})U^{\dagger}$$

satisfies the following properties

- 1. Φ is injective.
- 2. If $X \in \Lambda_m$ is a vertex then $\Phi(X) \in \Lambda_n$ is a vertex.
- 3. A vertex $X \in \Lambda_m$ is of cnc type if and only if $\Phi(X) \in \Lambda_n$ is of cnc type.

Pirsa: 23010105 Page 16/32

¹⁴Okay, Zurel, and Raussendorf 2021.

Beyond cnc-type vertices

1-qubit: All the vertices of Λ_1 is of cnc-type

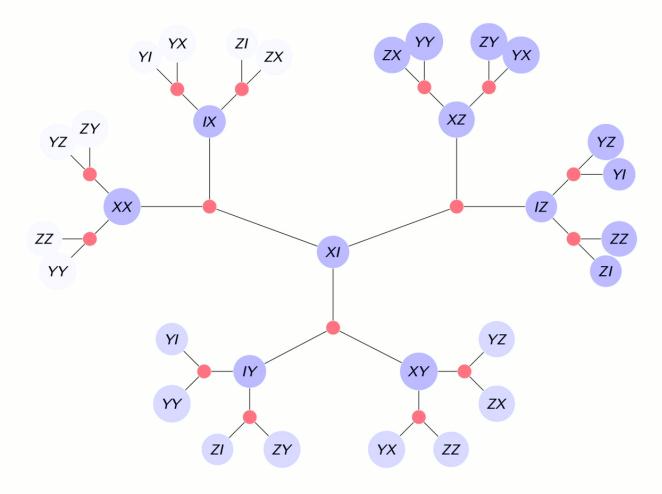
$$A_{\alpha} = \frac{1}{2}(I \pm X \pm Y \pm Z)$$

2-qubits: The number of vertices of Λ_2 is 22320.

There are 8 orbits under the action of the Clifford group Cl_2 . Note that $|\text{Cl}_2|=11520$ Among these orbits 2 of them are of cnc-type:

Pirsa: 23010105 Page 17/32

Isotropic subspaces of E_2



Pirsa: 23010105 Page 18/32

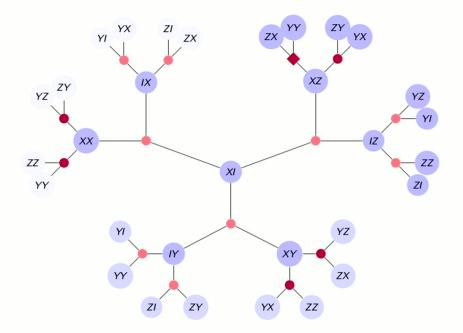
 Ω is defined using a collection $\mathcal C$ constructed as follows

- (i) C contains I,
- (ii) for each $J \in \mathcal{C}$ and $0 \neq a \in J$ exactly one of the two maximal isotropic subspaces distinct from J containing a belongs to \mathcal{C} .

Then we define

$$\Omega = E_2 - \hat{\Omega}$$

where
$$\hat{\Omega} = \left(igcup_{J \in \mathcal{C}} J
ight) - \{0\}.$$



The vertex with coordinates

is given by

$$A_{I,\Omega}^{\gamma}=A_{I}^{\gamma}+rac{1}{4}\left(A_{\Omega}^{\gamma'}-A_{\Omega}^{\gamma''}
ight)$$

where

$$I = \langle x_1 + z_2, z_1 + x_2 \rangle$$
 and $\Omega = \{0, x_1, x_1 + z_1, z_1, x_2, x_2 + z_2, z_2\}$

The update rules

1.
$$a \in I \& a \notin \Omega$$

(1.a)
$$\gamma(a) \neq s \Rightarrow \prod_{a=1}^{s} A_{I,\Omega}^{\gamma} \prod_{a=1}^{s} 0$$
.

(1.b)
$$\gamma(a) = s \Rightarrow$$

(2.a)
$$\tilde{\gamma}'(a) \neq s \Rightarrow$$

(2.b)
$$\tilde{\gamma}'(a) = s \Rightarrow$$

(3.a)
$$\tilde{\gamma}'(a) \neq s \Rightarrow$$

(3.b)
$$\tilde{\gamma}'(a) = s \Rightarrow$$

$$\frac{\Pi_{a}^{s}A_{I,\Omega}^{\gamma}\Pi_{a}^{s}}{\operatorname{Tr}(A_{I,\Omega}^{\gamma}\Pi_{a}^{s})} = \frac{2A_{\left\langle a\right\rangle \perp}^{\tilde{\alpha}_{0}} + A_{\left\langle a\right\rangle \perp}^{\tilde{\alpha}_{1}} + A_{\left\langle a\right\rangle \perp}^{\tilde{\alpha}_{2}}}{4}$$

$$\frac{\Pi_{a}^{s}A_{I,\Omega}^{\gamma}\Pi_{a}^{s}}{\operatorname{Tr}(A_{I,\Omega}^{\gamma}\Pi_{a}^{s})}=A_{\left\langle a\right\rangle }^{\tilde{\alpha}^{\prime}}\bot$$

$$\frac{\Pi_{a}^{s}A_{I,\Omega}^{\gamma}\Pi_{a}^{s}}{\operatorname{Tr}(A_{I,\Omega}^{\gamma}\Pi_{a}^{s})} = \frac{2A_{\langle a \rangle}^{\tilde{\alpha}} \perp + A_{\langle a \rangle}^{\tilde{\alpha}'}}{3}$$

$$\frac{\Pi_{a}^{s}A_{I,\Omega}^{\gamma}\Pi_{a}^{s}}{\operatorname{Tr}(A_{I,\Omega}^{\gamma}\Pi_{a}^{s})} = \frac{A_{\langle a \rangle^{\perp}}^{\tilde{\alpha}_{0}} + A_{\langle a \rangle^{\perp}}^{\tilde{\alpha}_{1}}}{2}$$

$$\frac{\Pi_{a}^{s}A_{I,\Omega}^{\gamma}\Pi_{a}^{s}}{\operatorname{Tr}(A_{I,\Omega}^{\gamma}\Pi_{a}^{s})} = \frac{A_{\langle a \rangle^{\perp}}^{\tilde{\alpha}_{0}} + A_{\langle a \rangle^{\perp}}^{\tilde{\alpha}_{1}}}{2}$$

Extended region of efficient classical simulation

The extended set of vertices consisting of cnc-type and the image of the new class of 2-qubit vertices

$$\mathcal{W}_n = \mathcal{V}_n^{\mathsf{cnc}} \sqcup \{ \Phi(A_{I,\Omega}^{\gamma}) | (\Omega, I, \gamma) \}$$

where $\Phi: \Lambda_2 \to \Lambda_n$.

If the initial state can be expressed as a probabilistic mixture of the vertices in W_n then the classical simulation is efficient.

Pirsa: 23010105 Page 22/32

s \ I	XI,IX	XI,IY	XI,IZ	YI,IX	YI,IY	YI,IZ	ZI,IX	ZI,IY	ZI,IZ	XY,YX	XZ,ZX	YZ,ZY	XY,ZX	XZ,YX	XX,YY
11	1/2	0	0	0	0	0	0	0	0	0	0	1/2	0	0	1
-11	0	0	1/2	1/2	0	1/2	1/2	0	1/2	1/2	0	0	0	1/2	0
1-1	0	1/2	1/2	0	0	0	1/2	1/2	1/2	1/2	0	0	1/2	0	0
-1-1	1/2	1/2	0	1/2	1	1/2	0	1/2	0	0	1	1/2	1/2	1/2	0

s \ I	XI,IX	XI,IY	XI,IZ	YI,IX	YI,IY	YI,IZ	ZI,IX	ZI,IY	ZI,IZ	XY,YX	XZ,ZX	YZ,ZY	XY,ZX	XZ,YX	XX,YY
1 1	1/4	1/4	0	0	1/4	0	0	1/4	1/4	1/4	0	1/4	0	0	1/2
-1 1	0	0	1/4	1/4	0	1/4	1/4	0	0	1/4	0	1/4	0	1/2	1/2
1-1	1/2	1/2	3/4	1/4	0	1/4	3/4	1/2	1/2	1/4	0	1/4	1/2	0	0
-1-1	1/4	1/4	0	1/2	3/4	1/2	0	1/4	1/4	1/4	1	1/4	1/2	1/2	0

Pirsa: 23010105

Decomposing Λ_2

The local part: Projecting down to local contexts, i.e., those of the form $\langle XI, IX \rangle$ etc, gives an embedding

$$\pi: \Lambda_2 \to \mathsf{NS}_{232}$$

into the nonsignaling polytope of the (2,3,2) Bell scenario, i.e., 2 parties, 3 measurements and 2 outcomes.

Alice performs XI, YI or ZI and Bob performs IX, IY or IZ.

Pirsa: 23010105 Page 24/32

The nonlocal part: The remaining contexts, i.e., those of the form $\langle XX, YY \rangle$ etc, can be assembled into a Mermin square linear system with odd parity.

Let MP₁ denote the nonsignaling distributions on the Mermin scenario whose support respects the underlying linear system.

For instance, distributions that come from quantum theory belong to MP₁.

Pirsa: 23010105 Page 25/32

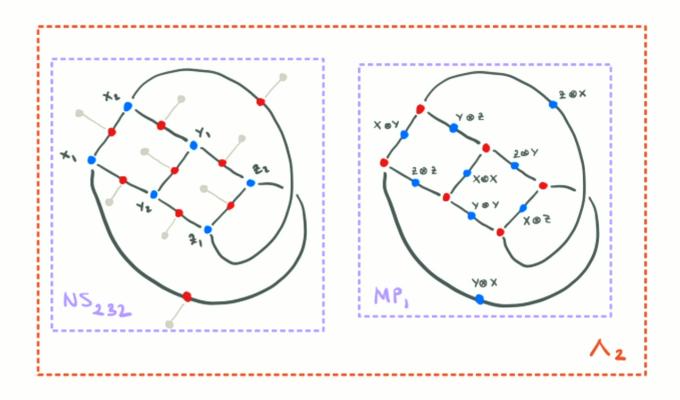
s \ I	XI,IX	XI,IY	XI,IZ	YI,IX	YI,IY	YI,IZ	ZI,IX	ZI,IY	ZI,IZ	XY,YX	XZ,ZX	YZ,ZY	XY,ZX	XZ,YX	XX,YY
11	1/2	0	0	0	0	0	0	0	0	0	0	1/2	0	0	1
-11	0	0	1/2	1/2	0	1/2	1/2	0	1/2	1/2	0	0	0	1/2	0
1-1	0	1/2	1/2	0	0	0	1/2	1/2	1/2	1/2	0	0	1/2	0	0
-1-1	1/2	1/2	0	1/2	1	1/2	0	1/2	0	0	1	1/2	1/2	1/2	0

s \ I	XI,IX	XI,IY	XI,IZ	YI,IX	YI,IY	YI,IZ	ZI,IX	ZI,IY	ZI,IZ	XY,YX	XZ,ZX	YZ,ZY	XY,ZX	XZ,YX	XX,YY
1 1	1/4	1/4	0	0	1/4	0	0	1/4	1/4	1/4	0	1/4	0	0	1/2
-1 1	0	0	1/4	1/4	0	1/4	1/4	0	0	1/4	0	1/4	0	1/2	1/2
1-1	1/2	1/2	3/4	1/4	0	1/4	3/4	1/2	1/2	1/4	0	1/4	1/2	0	0
-1-1	1/4	1/4	0	1/2	3/4	1/2	0	1/4	1/4	1/4	1	1/4	1/2	1/2	0

Pirsa: 23010105

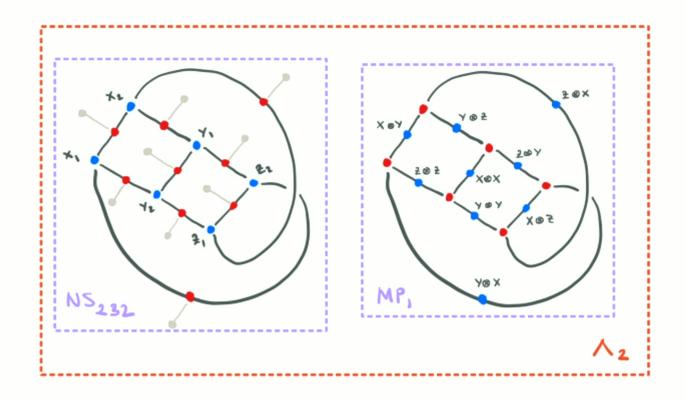
Marginalizing to nonlocal operators and then extending to nonlocal contexts defines a map

 $\mathsf{ext}:\mathsf{NS}_{232}\to\mathsf{MP}_1^\mathbb{R}$



Marginalizing to nonlocal operators and then extending to nonlocal contexts defines a map

 $\mathsf{ext}:\mathsf{NS}_{232}\to\mathsf{MP}_1^\mathbb{R}$



The local vs nonlocal decomposition:

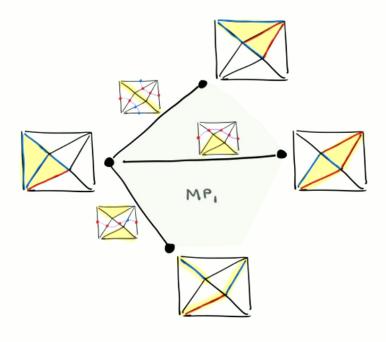
$$\begin{array}{ccc} \Lambda_2 & \stackrel{\pi}{\longrightarrow} & \mathsf{NS}_{232} \\ \downarrow & & \downarrow_{\mathsf{ext}} \\ \mathsf{MP}_1 & \stackrel{\longleftarrow}{\longrightarrow} & \mathsf{MP}_1^\mathbb{R} \end{array}$$

 Λ_2 is precisely the preimage of MP₁ under the ext map.

This gives a decomposition of Λ_2 into two polytopes NS_{232} and MP_1 whose vertices are well-understood.

Vertices of MP₁ are given by maximal nonlocal cnc sets¹⁵.

¹⁵Okay, Chung, and Ipek 2022.



Pirsa: 23010105 Page 30/32

Connections and open problems

- ightharpoonup Classification of vertices of Λ_n .
- ▶ Update rules under Pauli measurements.
- ▶ The role of symmetries, i.e., the Clifford action.
- ► Arbitrary local dimensions¹⁶.
- ▶ Relation to other polytopes, e.g., nonsignaling.

Pirsa: 23010105 Page 31/32

¹⁶Zurel et al. 2021.

Thank you for your attention!

Pirsa: 23010105 Page 32/32