Title: On the vertices of Lambda polytopes
Speakers: Cihan Okay

Series. Perimeter Institute Quantum Discussions
Date: January 18, 2023 - 11:00 AM

URL.: https://pirsa.org/23010105

Abstract: Classical simulation algorithms provide a rigorous ground for investigating quantum resources responsible for quantum speedup. In my
talk, | will consider one such algorithm provided by Lambda polytopes. These polytopes are defined to be the polar dual of the stabilizer polytopes
and can be used to provide a hidden variable model for finite-dimensional quantum theory. This hidden variable model can be turned into a

classical algorithm that can simulate any quantum computation. The efficiency of this algorithm depends on the combinatorial structure of the
polytope. In general, which subset of the vertices gives rise to efficient simulation is an open problem. | will describe some of the known classes of
vertices and available methods for studying this polytope.

Zoom link: https://pitp.zoom.us/j/95216680309?pwd=aGlIN2NtZV RtczdHcXI15RzgzQT10dz09
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» Motivation and background
» A-polytopes

» Closed noncontextual vertices
» Maps between A-polytopes

» Decomposing the 2-qubit A-polytope?

ljoint with Michael Zurel and Robert Raussendorf
2joint with Ho Yiu Chung and Selman lpek
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QCM scheme?
stabilizer subtheory + “magic state” = universality

Stabilizer subtheory
(Stabilizer states, Clifford unitaries, Pauli measurements)

Gottesman—Knill theorem: Stabilizer subtheory is efficiently classically simulatable.

An example of a magic state is _
0) + em/4|1>

V2

Ty = T+) = |

3Bravyi and Kitaev 2005.
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Quantum computation with magic states can have quantum speedup only if the Wigner function of the

magic state is negative®*.

Quantum contextuality is a necessary resource for universal quantum computation®.

A multiqudit quantum state is contextual with respect to Pauli measurements if and only if its Wigner

function is negative®.

*Veitch et al. 2012.
SHoward et al. 2014.
®Delfosse et al. 2017.
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Wigner function of p is a quasi-probability distribution W, : E, — R over the phase space E, = (Z4)*".

Properties:

(i) Clifford covariance: For any Clifford unitary U we have
Wyt (a) = Wp(Su(a) + &)

where Sy is a symplectic transformation.

(ii) Positivity preservation under measurement: For any Pauli projector I we have

Wp(a) U= Wnpn(a) >0

If W, > 0 then QCM can be efficiently classically simulated.
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Any operator basis for the space of n-qubit Hermitian operators fails to be Clifford covariant’.
Positivity is not preserved under Pauli measurements®.
Both of the properties above have cohomological underpinnings’.

The number of classical bits of memory required to simulate contextuality scales quadratically with the

number of qubits'®. Phase space has to be larger than E, = (Z2)*".

"Zhu 2016.

8Raussendorf et al. 2017.

9Raussendorf et al. 2021.

10Karanjai, Wallman, and Bartlett 2018.
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Pauli operators:

T, = i°?°*Z(az)X(ax)

where a = (az,ax) € E, = 73 X Z3 and

Z(a ®Z(32)’ and X(ax) ®X(‘?X)’.

=1

Pauli group is defined by P, = {+T,,+iT,| a € E,} C U((C?)®").

Clifford group Cl, is the normalizer (modulo central elements) of P,:

O, Cl=SpZ =0
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The commutator of P, is determined by a symplectic form
T, T, T, T, = (—1)[”’][ where [a, b] = az - bx + ax - bz

E, together with [-,-] is a symplectic vector space with basis {z1,--- ,z,, x1, - , X, }-

A subspace | C E, is called isotropic if [a, b] = 0 for all a,b € /.

Product of Pauli operators:
T.To = (-1)P®P T,., Va,b with [a, b] = 0

(The function 8 can be regarded as a 2-cocycle.)
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Definition:

A» = {X € Herm((C*)®")| Tr(X) =1, Tr(XN,) > 0V|o) € S,}.

The set of vertices is denoted by {A.| & € V,}.
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Theorem (1)

Every n-qubit quantum state p can be represented by a probability function p, : V, — R>q where

P = Z Po(r) Aa.

acV,

For any Pauli operator T, = N% — M and vertex A, the operator MEALTS, if nonzero, is contained in

N, after normalization hence specifies a probability distribution qu.s : Va X Z> — R where

MATE = > gasl(B,s5)As
BEV,

The Born rule takes the form

TH(M50) = 3 pp(@)Qs(sla)

acV,

where Qa(s|a) = > 5y, Ga,a(B;5).

17 urel, Okay, and Raussendorf 2020.

Pirsa: 23010105 Page 11/32



Classical simulation algorithm: Given a quantum state p and a sequence T,,,---, T,, of Pauli

operators representing a computation in the QCM scheme:
1. Sample from the probability distribution p, to obtain a phase space point ap € V,.

2. For each Pauli measurements T,,, a: € E,, from t =1,2,--- | N, sample from g, .., to obtain the
new phase space point 3 € V, and measurement outcome s;.
Output s; as the outcome for the measurement of T, .

Update ar—1 > ar =3, and t — t + 1.
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A subset €2 C E, is called
1. closed if a, b € Q with [a, b] = 0 implies that a + b € €.

2. non-contextual if it admits a value assignment:

There exists a function v : 2 — Z; such that
v(a) + v(b) = B(a, b) +v(a+ b) Va,b e Q with [a,b] = 0.
Q2 is called a cnc set if it is both closed and non-contextual.

There is an associated operator

1 2
A= > (19T,
acQl
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The operators A}, corresponding to maximal cnc sets (2, ) are vertices of A,

Vi = {A3] Q is a maximal cnc set and ~y value assignment}

The update rule'? is given by

65,7(3)(%’432 + %AS’Y;—[Q,_]) aefl

MA N, = .
Xs
5AD a ¢ Q.

A C N, the convex hull of V™.

12Raussendorf et al. 2020.
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If p can be represented by a probability distribution p, : V5" — R>¢ then the classical simulation

algorithm is efficient™3.

This region can be extended to a larger subpolytope:
1. There exists a map  : A,, — A, for m < n sending vertices to vertices.
2. Reduced simulation algorithm.

3. New class of vertices of Ay with update rules.

13Raussendorf et al. 2020.
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Theorem (14)

Given an n-qubit Clifford unitary U and an (n — m)-qubit stabilizer state |o) the linear map

® : Herm((C?)®™) — Herm((C*)®") defined by
(X) = U(X @ M,)U!
satisfies the following properties
1. ® js injective.

2. If X € Am is a vertex then ®(X) € N\, is a vertex.

3. A vertex X € N\, is of cnc type if and only if ®(X) € A, is of cnc type.

14Okay, Zurel, and Raussendorf 2021.
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1-qubit: All the vertices of A1 is of cnc-type

A, =

N =

2-qubits: The number of vertices of A, is 22320.

(I£X+Y+2)

There are 8 orbits under the action of the Clifford group Cl,. Note that |Cl2| = 11520

Among these orbits 2 of them are of cnc-type:

1X 1y 1z Xl XX XY XZ Yl

Type 1:
0 —1 —1 0 1 0 0 0
i IX 1Y ¥4 X1 XX XY XZ Yl

Type 2 :

0 —1 0 0 1 0 —1 —1
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Isotropic subspaces of Ep

£y

N —
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Q2 is defined using a collection C constructed as follows

(i) C contains [/,

(ii) for each J € C and 0 # a € J exactly one of the two maximal isotropic subspaces distinct from J

containing a belongs to C.

Then we define

A

Q=5 —-Q
where Q = (U J) — {0}.
Jec
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The vertex with coordinates

Type 3 :
is given by
where
(—1)Y
(-1’
(-1
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i

"

IX Iy [Z XI5 XY X7 y! Y ¥y YZ ZI X & ZZ
| 1 1 1 1 1
-3 -3 -3 3 0 0 -1 -3 0 1 0 Ioo-1 o 0

1 ' r”
Ala=AT+ 3 (A7 - A7)

I={(x1+2,2z1+x) and Q = {0,x1,x1 + 21,21, %, X2 + 2,2}

X 1Y 1z Xl XX XY XZ Yl YX YY YZ Zl zZX 4 d zz
—1 1 -1
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(12) v(a) # s =

(1b) y(2) = s =

adl&acQ
(22) 5'(a) # s =

(2b) ¥/ (a) = s =

agl&adgn
(32) 7/(a) # s =

(3b) 5'(a) =s =

SAFY |-|5=0

& & =
Y s 2470 4 AL 4 A2
Area (L " T@Lt @t

- =
r.am3) 4
sA7Y L
naAl,Qna &'
i B a als
Tr(A] o15) (a)
nsaYons 2% |+ A%
a’trq'la (a) L (a) L
- g
Tr(A] o3) 3
SAY s A0 . a®
MaALeMa  “(ayL ™ T(ay L
5
TH(A) oN13) 2
&g &1
5 A7 s
MaALQMa Tyt " VgL
- _
TH(A) gN3) 2
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The extended set of vertices consisting of cnc-type and the image of the new class of 2-qubit vertices
Wi = V" U{®(A )] (2,1,7)}

where @ : Ay — A,

If the initial state can be expressed as a probabilistic mixture of the vertices in W, then the classical

simulation is efficient.
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— X Y 1z X XX XY XZ Yl  YX YY vZ zx zv 2z
0 -1 0 0 1 (T . 1 0 =1 i =
s\ | XLIX | XLIY | XLIZ | YLIX | YLIY | YLIZ | ZLIX | ZLIY | Z11Z | XY, YX | XZ,ZX | YZ,ZY | XY,ZX | XZ,YX | XX,YY
11 2 0 0 0 0 0 0 0 0 0 0 12 0 0 1
11 |0 0 1/2 |1/2 |0 1/2 |1/2 |0 1/2 | 1/2 0 0 0 1/2 0
11 |0 1/2 | 1/2 |0 0 0 12 | 172 |12 | 172 0 0 1/2 0 0
11 | 1/2 |12 |0 1/2 |1 1/2 |0 1/2 |0 0 1 1/2 97 1/2 0
noooIx % Iz X1 XX XY XZ Yl ¥YX Yy vz z 22X 2y 7Z
Type 3 -1 -1 _1 1 0 -1 -1 0 0 1 1 0
2 2 22 2 2
s\ | XLIX | XLIY | XLIZ | YLIX | YLIY | YLIZ | ZLIX | ZLIY | ZLIZ | XY, YX | XZ,ZX | YZ,ZY | XY,ZX | XZ,YX | XX,)YY
11 [1/4 |1/4 |0 0 1/4 |0 0 1/4 | 1/4 | 1/4 0 1/4 0 0 1/2
‘11 |0 0 1/4 | 1/4 |0 1/4 | 1/4 |0 0 1/4 0 1/4 0 1/2 1/2
1.1 | 1/2 |1/2 |3/4 |1/4 |0 1/4 |3/4 |1/2 |[1/2 |1/4 0 1/4 1/2 0 0
-1-1 | 1/4 [ 1/4 |0 1/2 |3/4 |12 |0 1/4 | 1/4 | 1/4 1 1/4 1/2 1/2 0
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The local part: Projecting down to local contexts, i.e., those of the form (X!, IX) etc, gives an

embedding

T . /\2 — N5232

into the nonsignaling polytope of the (2, 3,2) Bell scenario, i.e., 2 parties, 3 measurements and 2

outcomes.

Alice performs X/, YI or ZI and Bob performs IX, IY or IZ.
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The nonlocal part: The remaining contexts, i.e., those of the form (XX, YY) etc, can be assembled

into a Mermin square linear system with odd parity.

Let MP; denote the nonsignaling distributions on the Mermin scenario whose support respects the

underlying linear system.

For instance, distributions that come from quantum theory belong to MP;.
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— X Y 1z X XX XY XZ Yl  YX YY vZ zx zv 2z
0 -1 0 0 1 (T . 1 0 =1 i =
s\ | XLIX | XLIY | XLIZ | YLIX | YLIY | YLIZ | ZLIX | ZLIY | Z11Z | XY, YX | XZ,ZX | YZ,ZY | XY,ZX | XZ,YX | XX,YY
11 2 0 0 0 0 0 0 0 0 0 0 12 0 0 1
11 |0 0 1/2 |1/2 |0 1/2 |1/2 |0 1/2 | 1/2 0 0 0 1/2 0
11 |0 1/2 | 1/2 |0 0 0 12 | 172 |12 | 172 0 0 1/2 0 0
11 | 1/2 |12 |0 1/2 |1 1/2 |0 1/2 |0 0 1 1/2 97 1/2 0
noooIx % Iz X1 XX XY XZ Yl ¥YX Yy vz z 22X 2y 7Z
Type 3 -1 -1 _1 1 0 -1 -1 0 0 1 1 0
2 2 22 2 2
s\ | XLIX | XLIY | XLIZ | YLIX | YLIY | YLIZ | ZLIX | ZLIY | ZLZ | XY, YX | XZ,ZX | YZ,ZY | XY,ZX | XZ,YX | XX,)YY
11 [1/4 |1/4 |0 0 1/4 |0 0 1/4 | 1/4 | 1/4 0 1/4 0 0 1/2
‘11 |0 0 1/4 | 1/4 |0 1/4 | 1/4 |0 0 1/4 0 1/4 0 1/2 1/2
1.1 | 1/2 |1/2 |3/4 |1/4 |0 1/4 |3/4 |1/2 |[1/2 |1/4 0 1/4 1/2 0 0
-1-1 | 1/4 [ 1/4 |0 1/2 |3/4 |12 |0 1/4 | 1/4 | 1/4 1 1/4 1/2 1/2 0
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Marginalizing to nonlocal operators and then extending to nonlocal contexts defines a map

ext : NSz — MP%{

Page 27/32
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Marginalizing to nonlocal operators and then extending to nonlocal contexts defines a map

ext : NSz — MP%{

Page 28/32
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The local vs nonlocal decomposition:

Ay —"— NSz

l o

MP; —— MP{

Az is precisely the preimage of MP; under the ext map.

This gives a decomposition of A, into two polytopes NS,3, and MP; whose vertices are

well-understood.

Vertices of MP; are given by maximal nonlocal cnc sets®.

150Okay, Chung, and lpek 2022.
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» Classification of vertices of A,.

» Update rules under Pauli measurements.

» The role of symmetries, i.e., the Clifford action.
6

» Arbitrary local dimensions'®.

» Relation to other polytopes, e.g., nonsignaling.

167 urel et al. 2021.
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Thank you for your attention!
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