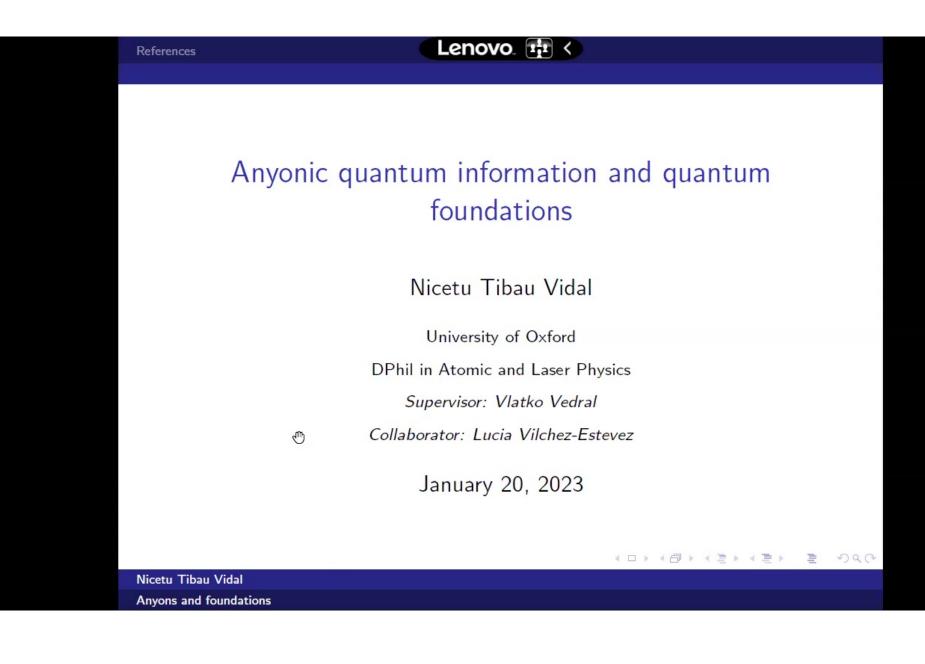
Title: Anyonic information theory and quantum foundations

Speakers: Nicetu Tibau Vidal


Series: Quantum Foundations

Date: January 20, 2023 - 1:00 PM

URL: https://pirsa.org/23010101

Abstract: In this talk, I present the latest works on anyonic information theory and how it is linked to aspects of quantum foundations. First, the theory of 2+1 D non-abelian anyons will be introduced. The newly discovered notion of anyonic creation operators will be presented, as well as their use as local elements of reality within the Deutsch-Hayden interpretation of quantum mechanics. Lastly, I will show strange properties of anyonic entanglement that appear due to the lack of a tensor product structure, such as the different spectra of marginals in bipartite systems. This property makes the Von Neumann entropy a bad entanglement measure. I will explain the challenges of defining entanglement measures for anyonic systems and current approaches.

Zoom link: https://pitp.zoom.us/j/99863263804?pwd=MUhkYTBzcUlwTmJ0Z3F4aFo3Rkt6QT09

References

Motivation

- Fermionic information perspective¹. Quantum foundations should study fundamental theories. No-signalling vs. local-tomography.
- I would like to use constructor theory to classify all information theories.
- System composition is essential in that effort. Local ontic/generalised states for quantum mechanics². Does the construction hold for constrained systems?
- ▶ For fermions, local ontic states are the creation operators³.

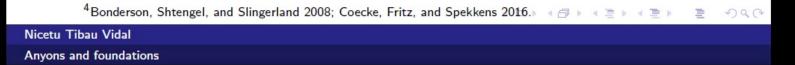
²Deutsch and Hayden 2000; Brassard and Raymond-Robichaud 2017.

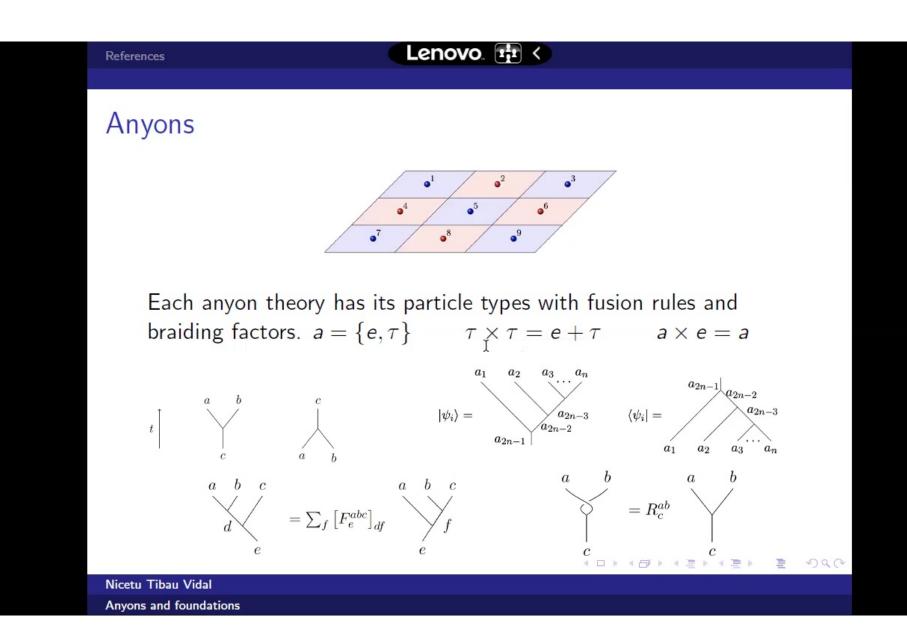
³Tibau Vidal, Vedral, and Marletto 2022.

・ロア・雪ア・雪ア・雪子 しんし

Nicetu Tibau Vidal Anyons and foundations

Pirsa: 23010101

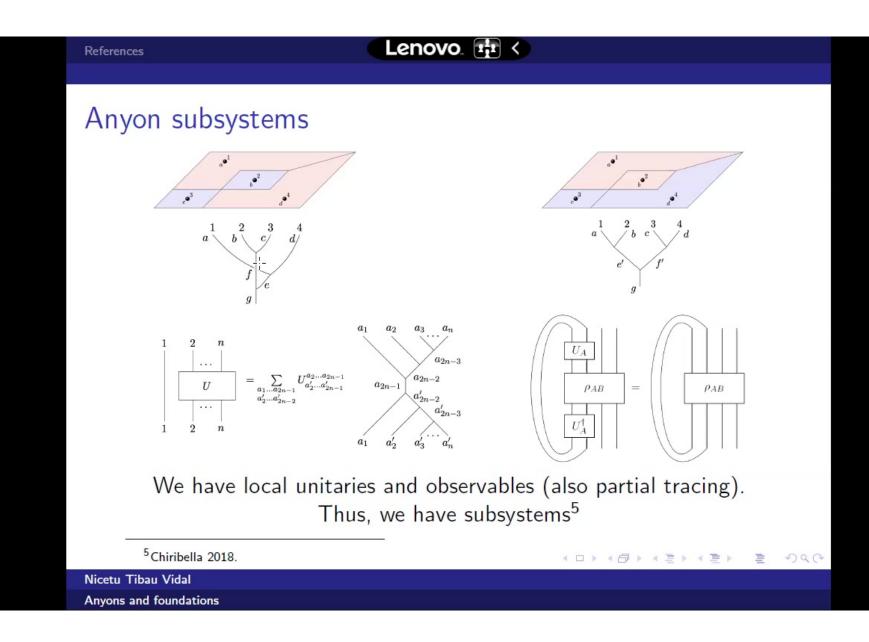

¹Tibau Vidal et al. 2021; D'Ariano et al. 2014.


Why anyons?

- There are no tensor product structures or creation operators. How is composition described?
- Fundamental theory of nature used in condensed matter physics. Proposed to be used for topological quantum computation.
 - Constrained quantum systems. Connections with quantum gravity?
 - Anyons are described diagrammatically⁴. Not a symmetric monoidal category, though.

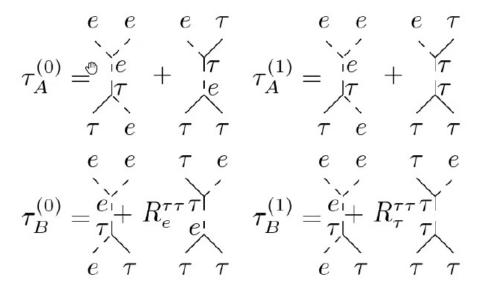
Objective 1: Understand the notion of locality in anyons without a tensor product-like structure.

Objective 2: Study the information properties and structures.



Nicetu Tibau Vidal Anyons and foundations

References


3

DQC

Anyonic creation operators

We require $U_B^{\dagger} \tau_A U_B = \tau_A$. Not observables

We combine the annihilating terms to minimize the number of operators needed to generate the local algebra of observables. We need **two annihilation operators** per lattice site.

Nicetu Tibau Vidal Anyons and foundations

References

Local elements of reality

In the Deustch-Hayden interpretation of QM, we can **use annihilation operators as the local elements of reality**.

You can have a local realistic account of anyons. Reinterpreting the Heisenberg picture.

$$\begin{aligned} |\psi_{0}\rangle \text{ is fixed.} & \hat{q}(t) = \left(\tau_{A}^{(0)}(t), \tau_{A}^{(1)}(t), \tau_{B}^{(0)}(t), \tau_{B}^{(1)}(t)\right) = \\ &= U^{\dagger}\left(\tau_{A}^{(0)}(0), \tau_{A}^{(1)}(0), \tau_{B}^{(0)}(0), \tau_{B}^{(1)}(0)\right) U \\ &\text{Tr}\left(\hat{O}_{AB}U |\psi_{0}\rangle\langle\psi_{0}| U^{\dagger}\right) = \sum_{j} o_{j} \operatorname{Tr}\left(p_{j}\left(\hat{q}(t), \hat{q}^{\dagger}(t)\right) |\psi_{0}\rangle\langle\psi_{0}|\right) \end{aligned}$$
Creation operators are part of the ontology. This violates
Leibnitz principle!

Nicetu Tibau Vidal Anyons and foundations

References

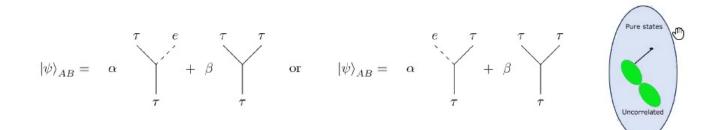
Asymmetric marginals

Information theory perspective. Usually the Von Neumann entropy is used to quantify entanglement in **pure states**.

 $S(\rho_A) = S(\rho_B)$ because we have a Schmidt decomposition $|\psi\rangle_{AB} = \sum_j \sqrt{p_j} |\psi_j\rangle_A \otimes |\varphi_j\rangle_B.$

The lack of tensor product allows us to find:

$$|\psi\rangle_{AB} = \frac{1}{\sqrt{2}} \begin{pmatrix} \tau & e & \tau & \tau & \rho_A = \\ & & & \tau & \tau \\ & & & \tau & \rho_B = \frac{1}{2} \begin{pmatrix} & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ &$$


Thus, $S(\rho_B) = 1$ and $S(\rho_A) = 0$

ふって 聞 不問を不可を入口を

Nicetu Tibau Vidal Anyons and foundations

Entanglement quantification

We can find all pure uncorrelated states. States that satisfy: $\operatorname{Tr}\left(\hat{O}_{A}\cdot\hat{O}_{B}\rho\right) = \operatorname{Tr}\left(\hat{O}_{A}\rho_{A}\right)\cdot\operatorname{Tr}\left(\hat{O}_{B}\rho_{B}\right).$

Local operations $U_A \cdot U_B$ is the largest group that leaves the uncorrelated states set invariant. Similar structure to alignable states transformations. Mappings are state-dependent?

Relative entropy, teleportation protocol is possible?, entanglement distillation,...

Nicetu Tibau Vidal Anyons and foundations

References

Daa

Conclusions

- Anyons provide a different perspective on subsystem and entanglement structures of constrained systems.
- We have found anyonic annihilation operators, that can act as local elements of reality.
- Tensor product decompositions are not necessary to define subsystems and entanglement.
- Pure anyonic states have asymmetric marginal spectra. The Von Neumann entropy is a bad entanglement measure.
- Local operations do not cover the uncorrelated state set. We need state-dependent maps, similar to alignable states in QRF's. Relevant to entanglement-coherence invariants.

(口)(日)(日)(日)(日)(日)

Nicetu Tibau Vidal Anyons and foundations

References

Lenovo. 🔢 <

Possible future directions

- Study free operations using process theory. Not describable by unitaries. Link to anyonic entanglement measures.
- Connect to alignable states in perspectival quantum reference frames and subsystem relativity.
- Study the relation of local ontic states with process theories, explore the consequences of breaking Leibnitz principle.
- Link process theories with constructor theory regarding subsystem composition. Classify all information theories.
- Revisit reconstruction efforts where local tomography is emphasised, how to recover constrained quantum theories?.
- Express and analyse the BMV experiment in diagrammatic form. Explore consequences for quantum gravity.

Nicetu Tibau Vidal Anyons and foundations DQQ