Title: Physical interpretation of non-normalizable quantum states and a new notion of equilibrium in pilot-wave theory

Speakers: Indrajit Sen

Series: Quantum Foundations

Date: January 11, 2023 - 11:00 AM

URL: https://pirsa.org/23010097

Abstract: Non-normalizable quantum states are usually discarded as mathematical artefacts in quantum mechanics. However, such states naturally occur in quantum gravity as solutions to physical constraints. This suggests reconsidering the interpretation of such states. Some of the existing approaches to this question seek to redefine the inner product, but this arguably leads to further challenges.

In this talk, I will propose an alternative interpretation of non-normalizable states using pilot-wave theory. First, I will argue that the basic conceptual structure of the theory contains a straightforward interpretation of these states. Second, to better understand such states, I will discuss non-normalizable states of the quantum harmonic oscillator from a pilot-wave perspective. I will show that, contrary to intuitions from orthodox quantum mechanics, the non-normalizable eigenstates and their superpositions are bound states in the sense that the pilot-wave velocity field vy->0 at large \pm y. Third, I will introduce a new notion of equilibrium, named pilot-wave equilibrium, and use it to define physically-meaningful equilibrium densities for such states. I will show, via an H-theorem, that an arbitrary initial density with compact support relaxes to pilot-wave equilibrium at a coarse-grained level, under assumptions similar to those for relaxation to quantum equilibrium. I will conclude by discussing the implications for pilot-wave theory, quantum gravity and quantum foundations in general.

Based on:

I. Sen. "Physical interpretation of non-normalizable harmonic oscillator states and relaxation to pilot-wave equilibrium" arXiv:2208.08945 (2022)

Zoom link: https://pitp.zoom.us/j/93736627504?pwd=VGtxZE5rTFdnT1dqZlFRWTFvWlFQUT09

Physical interpretation of non-normalizable quantum states and a new notion of equilibrium in pilot-wave theory

Indrajit Sen

Institute for Quantum Studies, Chapman University

Jan 11, 2023

Indrajit Sen (Institute for Quantum Studies, Chapman UPhysical interpretation of non-normalizable quantum st

<ロ > < 合 > < き > くき > き Jan 11, 2023

Introduction	
External motivation	
Solutions to the Wheeler-deWitt equation are generically non-	normalizable.
Example: Kodama State ¹	
¹ H. Kodama, <i>Phys. Rev. D</i> 1990, <i>42</i> , 2548, E. Witten, <i>arXiv gr-qc/0306083</i> 2003. Indraiit Sen (Institute for Quantum Studies, Chapman UPhysical interpretation of non-normalizable quantum st	・ロト・日本 11, 2023

Indrajit Sen (Institute for Quantum Studies, Chapman UPhysical interpretation of non-normalizable quantum st

Jan 11, 2023

External motivation

Solutions to the Wheeler-deWitt equation are generically non-normalizable.

Example: Kodama State

Traditional approach: Redefine the inner product

Challenges: 1. Closed-form expression difficult to obtain. 2. Interpretation of ψ not clear.

Can foundational thinking inform the discussion?

 ψ -epistemic v/s ψ -ontic theories³.

Indrajit Sen (Institute for Quantum Studies, Chapman UPhysical interpretation of non-normalizable quantum st

Jan 11, 2023

³L. Hardy, Stud. Hist. Phil. Sci. B 2004, 35, N. Harrigan, R. W. Spekkens, Found. Phys. 2010, 40, M. S. Leifer, arXiv:1409.1570 2014, M. F. Pusey et al., Nat. Phys. 2012, 8, 475–478.

Internal motivation

 $\hat{H}|\psi
angle=i\hbar|\psi
angle$ $ec{v}=ec{
abla}S/m$

Indrajit Sen (Institute for Quantum Studies, Chapman UPhysical interpretation of non-normalizable quantum st	Jan 11, 2023	

Internal motivation

Indrajit Sen (Institute for Quantum Studies, Chapman U<mark>Physical interpretation of non-normalizable quantum st</mark>

Jan 11, 2023

Internal motivation

$$\left. egin{aligned} \hat{H}|\psi
angle &=i\hbar|\psi
angle \ ec{v} &=ec{
abla}S/m \end{aligned}
ight\}$$
 Laws of nature

 $x(0) \longrightarrow$ initial condition

Indrajit Sen (Institute for Quantum Studies, Chapman UPhysical interpretation of non-normalizable quantum st

Jan 11, 2023

3

Internal motivation

$$\left. egin{array}{ll} \hat{H} |\psi
angle = i\hbar |\psi
angle \ mec{a} = -ec{
abla} (V+Q) \end{array}
ight\}$$
 Laws of nature

 $x(0) \longrightarrow$ initial condition

Indrajit Sen (Institute for Quantum Studies, Chapman UPhysical interpretation of non-normalizable quantum st

Jan 11, 2023

.

Internal motivation

$$\left. egin{array}{c} \hat{H} |\psi
angle = i\hbar |\psi
angle \ ec{v} = ec{
abla} S/m \end{array}
ight\}$$
 Laws of nature

 $x(0) \longrightarrow$ initial condition

Pilot-wave theory

x(0) and $\psi(0)$ are logically independent.

Indrajit Sen (Institute for Quantum Studies, Chapman U<mark>Physical interpretation of non-normalizable quantum st</mark>

Jan 11, 2023

.

Internal motivation

$$\left. egin{array}{c} \hat{H} |\psi
angle = i\hbar |\psi
angle \ ec{v} = ec{
abla} S/m \end{array}
ight\}$$
 Laws of nature

 $x(0) \longrightarrow$ initial condition

Pilot-wave theory

x(0) and $\psi(0)$ are logically independent.

 $\rho(x,0)$ and $\psi(0)$ are logically independent.

ヘロア 人間ア 人間ア 人間ア

Indrajit Sen (Institute for Quantum Studies, Chapman UPhysical interpretation of non-normalizable quantum st Jan 11, 2023

.

Internal motivation

$$\begin{array}{l} \hat{H}|\psi\rangle = i\hbar|\psi\rangle \\ \vec{v} = \vec{\nabla}S/m + \vec{v_f} \end{array} \right\} \text{ Laws of nature}$$

 $x(0) \longrightarrow$ initial condition

Pilot-wave theory

x(0) and $\psi(0)$ are logically independent.

 $\rho(x, 0)$ and $\psi(0)$ are logically independent^a.

^aD. Bohm, *Phys. Rev.* **1953**, *89*, 458, D. Bohm, J.-P. Vigier, *Phys. Rev.* **1954**.

ヘロア 人間ア 人間ア 人間ア

Jan 11, 2023

Indrajit Sen (Institute for Quantum Studies, Chapman UPhysical interpretation of non-normalizable quantum st

훈.

Introduction	
External motivation	\longrightarrow Internal motivation \checkmark^6
Non-normalizable states that satisfy physical constraints but need interpretation	Basic conceptual structure allows non-normalizable states but unexplored
⁶ I. Sen, <i>arXiv:2208.08945</i> 2022 .	
Sen (Institute for Quantum Studies, Chapman UPhysical interpretation of	

	Introduction		
	External motivation	\rightarrow Internal motivation \checkmark^6	
Non-normalizab	le states that satisfy physical constraints but need interpretation	Basic conceptual structure allows non-normalizable sta but unexplored	tes
⁶ I. Sen, <i>arXiv:2208.</i>	<i>08945</i> 2022 .	<ロン <回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <	500
rajit Sen (Institute for (Quantum Studies, Chapman UPhysical interpretation of	non-normalizable quantum st Jan 11, 2023	

Harmonic oscillator

Quantum Harmonic Oscillator

$$-\frac{d^2\psi}{dy^2} + y^2\psi = K\psi$$
, $y \equiv \sqrt{m\omega/\hbar}x$ and $K \equiv 2E/\hbar\omega$.
Use ansatz $\psi(y) = e^{-y^2/2}h^K(y)$

Ind	rajit Sen (Institute for Quantum Studies, Chapman U <mark>Physical interpretation of non-normalizable quantum st</mark>	Jan 11, 2023	

Quantum Harmonic Oscillator

Harmonic oscillator Velocity field	
Velocity field: eigenstates	
K () a K() a id K()	
$\psi^{K}_{ heta,\phi}(y) = \cos heta arphi^{K}_0(y) + \sin heta e^{i\phi} arphi^{K}_1(y)$	
	- ロ > - 4 回 > - 4 回 >
Indrajit Sen (Institute for Quantum Studies, Chapman UPhysical interpretation of non-normalizable quantum st	Jan 11, 2023

Harmonic oscillator
 Velocity field

 Velocity field: eigenstates

$$\psi_{\theta,\phi}^{\kappa}(y) = \cos \theta \varphi_0^{\kappa}(y) + \sin \theta e^{i\phi} \varphi_1^{\kappa}(y)$$
 $v_{\theta,\phi}^{\kappa}(y) = \frac{\hbar}{m} \frac{\cos \theta \sin \theta \sin \phi}{|\psi_{\theta,\phi}^{\kappa}(y,0)|^2}$

 Indrajit Sen (Institute for Quantum Studies, Chapman UPhysical interpretation of non-normalizable quantum st
 Jan 11, 2023

Velocity field: eigenstates

Velocity field: eigenstates

Velocity field: multiple dimensions

Equilibrium density?

Pilot-wave equilibrium

$$\mathcal{H}_{q} \equiv \int_{\mathcal{C}} \rho(\vec{y}) \ln \frac{\rho(\vec{y})}{|\psi(\vec{y})|^{2}} d\vec{y}$$

(not a well-defined relative entropy

うせん 神 ふゆく ちゃくしゃ

Indrajit Sen (Institute for Quantum Studies, Chapman UPhysical interpretation of non-normalizable quantum st Jan 11, 2023

$$H_{pw} \equiv \int_{\mathcal{C}} \rho(\vec{y}) \ln \frac{\rho(\vec{y})}{\rho_{pw}(\vec{y})} d\vec{y}$$

where,

$$\begin{split} \rho_{\rho w}(\vec{y}) &\equiv \begin{cases} |\psi(\vec{y})|^2 / \mathcal{N} &, \text{ for } \vec{y} \in \Omega \\ 0 &, \text{ for } \vec{y} \in \mathcal{C} \setminus \Omega \end{cases} \\ \text{ and } \mathcal{N} &\equiv \int_{\Omega} |\psi(\vec{y})|^2 d\vec{y}. \\ & \hat{l} \\ \text{ compact support of } \rho \text{ on } \mathcal{C} \end{split}$$

Indrajit Sen (Institute for Quantum Studies, Chapman UPhysical interpretation of non-normalizable quantum st Jan 11, 2023

$$H_{q} \equiv \int_{C} \rho(\vec{y}) \ln \frac{\rho(\vec{y})}{|\psi(\vec{y})|^{2}} d\vec{y}$$

not a well-defined relative entropy
$$C$$

$$H_{\rho w}(t) \equiv \int_{\mathcal{C}} \rho(\vec{y}, t) \ln \frac{\rho(\vec{y}, t)}{\rho_{\rho w}(\vec{y}, t)} d\vec{y}$$

where,

$$\rho_{pw}(\vec{y},t) = \begin{cases} |\psi(\vec{y},t)|^2 / \mathcal{N}(t) &, \text{ for } \vec{y} \in \Omega_t \\ 0 &, \text{ for } \vec{y} \in \mathcal{C} \setminus \Omega_t \end{cases}$$

and $\mathcal{N}(t) = \int_{\Omega_t} |\psi(\vec{y},t)|^2 d\vec{y}.$

compact time-dependent support of ρ on C

イロトイラトイラトイラト き つくぐ Indrajit Sen (Institute for Quantum Studies, Chapman U<mark>Physical interpretation of non-normalizable quantum st</mark>Jan 11, 2023

Indrajit Sen (Institute for Quantum Studies, Chapman UPhysical interpretation of non-normalizable quantum st Jan 11, 2023

H-theorem

$$\overline{H_{\rho w}(0)} - \overline{H_{\rho w}(t)} \geq 0$$

Assumption: No initial fine-grained structure

 $ho(ec y,0) = \overline{
ho(ec y,0)}$ $ho_{
how}(ec y,0) = \overline{
ho_{
how}(ec y,0)}$

イロトイラトイラトイラト き つくぐ Indrajit Sen (Institute for Quantum Studies, Chapman U<mark>Physical interpretation of non-normalizable quantum st</mark> Jan 11, 2023

H-theorem

$$\overline{H_{pw}(0)} - \overline{H_{pw}(t)} \geq 0$$

Assumption: No initial fine-grained structure

$$ho(ec{y},0) = \overline{
ho(ec{y},0)}$$
 $ho_{pw}(ec{y},0) = \overline{
ho_{pw}(ec{y},0)}$

$$\overline{
ho(ec{y},t)} \longrightarrow \overline{
ho_{
how}(ec{y},t)} \sim \overline{
ho(ec{y},t)} \longrightarrow \overline{|\psi(ec{y},t)|^2}$$

イロトイラトイラトイラト き つくぐ Indrajit Sen (Institute for Quantum Studies, Chapman U<mark>Physical interpretation of non-normalizable quantum st</mark> Jan 11, 2023

H-theorem

$$\overline{H_{\rho w}(0)} - \overline{H_{\rho w}(t)} \ge 0$$
Assumption: No initial fine-grained structure

$$\rho(\vec{y}, 0) = \overline{\rho(\vec{y}, 0)}$$

$$\rho_{\rho w}(\vec{y}, 0) = \overline{\rho_{\rho w}(\vec{y}, 0)}$$

$$\overline{\rho(\vec{y}, t)} \longrightarrow \overline{\rho(\vec{y}, t)} \sim \overline{\rho(\vec{y}, t)} \longrightarrow |\psi(\vec{y}, t)|^{2}$$

$$\psi \text{ normalizable}$$

$$\psi \text{ normalizable}$$
Index (Institute for Quantum Studies, Chapman UPhysical interpretation of non-normalizable quantum st

H-theorem

$$\overline{H_{\rho w}(0)} - \overline{H_{\rho w}(t)} \ge 0$$
Assumption: No initial fine-grained structure

$$\rho(\vec{y}, 0) = \overline{\rho(\vec{y}, 0)}$$

$$\rho_{\rho w}(\vec{y}, 0) = \overline{\rho_{\rho w}(\vec{y}, 0)}$$

$$\overline{\rho(\vec{y}, t)} \longrightarrow \overline{\rho(\vec{y}, t)} \sim \overline{\rho(\vec{y}, t)} \longrightarrow |\overline{\psi(\vec{y}, t)}|^2$$

$$\psi \text{ normalizable}$$

$$\psi \text{ normalizable}$$
Index (Institute for Quantum Studies, Chapman UPhysical interpretation of non-normalizable quantum st Jan 11, 2023

Implications

Implications: Non-relativistic quantum mechanics

Why don't we observe these states in the lab?

		r
Indrajit Sen (Institute for Quantum Studies, Chapman UPhysical interpretation of non-normalizable quantum st	Jan 11, 2023	

Implications

Implications: Non-relativistic quantum mechanics

Why don't we observe these states in the lab?

$$V(x) = \frac{mw^2x^2}{2}$$
 is not a realistic potential.

Indrajit Sen (Institute for Quantum Studies, Chapman UPhysical interpretation of non-normalizable quantum st	Jan 11, 2023	
Implications: Non-relativistic quantum mechanics

	・ロマ・ 山マ・ (叫)、 山マ・ 山マ・
Indrajit Sen (Institute for Quantum Studies, Chapman UPhysical interpretation of non-normalizable quantum st	Jan 11, 2023

Implications: Non-relativistic quantum mechanics

Implications: Non-relativistic quantum mechanics

Why don't we observe these states in the lab? Answer: Pilot-wave theory predicts such states will be **unstable**.

Emergence of the appearance of quantization.

Implications: Non-relativistic quantum mechanics

Why don't we observe these states in the lab? Answer: Pilot-wave theory predicts such states will be **unstable**.

Implications: Quantum field theory

Non-normalizable states in Fourier space.

Indrajit Sen (Institute for Quantum Studies, Chapman UPhysical interpretation of non-normalizable quantum st	Jan 11, 2023

Implications: Quantum field theory

Non-normalizable states in Fourier space.

Example: Scalar field on a flat expanding space-time

$$\sum_{\vec{k},r} \left(\frac{1}{2a^3}\pi_{\vec{k},r}^2 + \frac{ak^2}{2}q_{\vec{k},r}^2\right)\psi = i\frac{\partial\psi}{\partial t}$$

Indrajit Sen (Institute for Quantum Studies, Chapman UPhysical interpretation of non-normalizable quantum st Jan 11, 2023

Implications: Quantum field theory

Non-normalizable states in Fourier space.

Example: Scalar field on a flat expanding space-time

need not have a Fourier transform

has a Fourier transform —

$$\phi(\vec{k},t) \equiv \frac{1}{(2\pi)^{3/2}} \int \phi(\vec{x},t) e^{-i\vec{k}\cdot\vec{x}} d\vec{x} = \frac{\sqrt{V}}{(2\pi)^{3/2}} \left(q_{\vec{k},1}(t) + iq_{\vec{k},2}(t) \right)$$

シック 雌 ・ (雌・ (型・ (目・

Jan 11, 2023

Indrajit Sen (Institute for Quantum Studies, Chapman UPhysical interpretation of non-normalizable quantum st

Implications: Quantum field theory

Non-normalizable states in Fourier space.

Example: Scalar field on a flat expanding space-time ← non-unitarity

need not have a Fourier transform

has a Fourier transform —

$$\phi(\vec{k},t) \equiv \frac{1}{(2\pi)^{3/2}} \int \phi(\vec{x},t) e^{-i\vec{k}\cdot\vec{x}} d\vec{x} = \frac{\sqrt{V}}{(2\pi)^{3/2}} \left(q_{\vec{k},1}(t) + iq_{\vec{k},2}(t) \right)$$

Indrajit Sen (Institute for Quantum Studies, Chapman UPhysical interpretation of non-normalizable quantum st Jan

・ロト・日・・ヨ・・日・ しゃくの

Jan 11, 2023

Implications: Quantum field theory

Non-normalizable states in Fourier space.

Example: Scalar field on a flat expanding space-time - cosmological implications

need not have a Fourier transform

has a Fourier transform —

$$\phi(\vec{k},t) \equiv \frac{1}{(2\pi)^{3/2}} \int \phi(\vec{x},t) e^{-i\vec{k}\cdot\vec{x}} d\vec{x} = \frac{\sqrt{V}}{(2\pi)^{3/2}} \left(q_{\vec{k},1}(t) + iq_{\vec{k},2}(t) \right)$$

Example: Electromagnetic field \leftrightarrow atom (Frank-Hertz experiment)

Indrajit Sen (Institute for Quantum Studies, Chapman UPhysical interpretation of non-normalizable quantum st

ъ.

DQC

ヘロア 人間 アメ 頭 ア・

Jan 11, 2023

Implications: Quantum field theory and relativistic quantum mechanics

Non-normalizable states in Fourier space.

Example: Scalar field on a flat expanding space-time cosmological implications

 $\sum_{\vec{k},r} \left(\frac{1}{2a^3}\pi_{\vec{k},r}^2 + \frac{ak^2}{2}q_{\vec{k},r}^2\right)\psi = i\frac{\partial\psi}{\partial t}$

need not have a Fourier transform

has a Fourier transform -

$$\phi(\vec{k},t) \equiv \frac{1}{(2\pi)^{3/2}} \int \phi(\vec{x},t) e^{-i\vec{k}\cdot\vec{x}} d\vec{x} = \frac{\sqrt{V}}{(2\pi)^{3/2}} \left(q_{\vec{k},1}(t) + i q_{\vec{k},2}(t) \right)$$

Example: Electromagnetic field \leftrightarrow atom (Frank-Hertz experiment) Possible experimental prediction.

Particle interpretation of Klein-Gordon equation.

Indrajit Sen (Institute for Quantum Studies, Chapman UPhysical interpretation of non-normalizable quantum st

ъ.

DQC

イロト 人間 ト 人間 ト 人間 トー

Jan 11, 2023

Implications: Quantum Gravity

May give physical interpretation to:

1. generic solutions to Wheeler-deWitt equation.

2. the Kodama state.

3. states in shape-dynamics formulation 9 of pilot-wave theory.

⁹ D. Dürr et al., <i>J. Stat. Phys.</i> 2019 , 1–43.	< □ > < @ > < ≥ > < ≥ > < ≥ < つへ()	2
Indrajit Sen (Institute for Quantum Studies, Chapman UPhysical interpretation of non-normalizable quantum st	Jan 11, 2023	

Implications: Foundations

Indrajit Sen (Institute for Quantum Studies, Chapman UPhysical interpretation of non-normalizable quantum st Jan 11, 2023

Implications: Foundations

Pilot-wave theory is "not many-worlds-in-denial".

				× ≞ > .	5	206
Indr	rajit Sen (Institute for Quantum Studies, Chapman UPhysical interpretation of non-normalizable quantum st	t	Jan 11,	2023		

Implications: Foundations

Pilot-wave theory is "not many-worlds-in-denial".

Introducing retrocausality in pilot-wave theory is not helpful in this context.

イロトイラトイラトイラト き つくで Indrajit Sen (Institute for Quantum Studies, Chapman UPhysical interpretation of non-normalizable quantum st Jan 11, 2023

Implications: Foundations

Pilot-wave theory is "not many-worlds-in-denial".

Introducing retrocausality in pilot-wave theory is not helpful in this context.

Emergence of the appearance of ψ -epistemicity from an underlying ψ -ontic theory.

Indrajit Sen (Institute for Quantum Studies, Chapman UPhysical interpretation of non-normalizable quantum st Jan 11, 2023

Implications: Foundations

Pilot-wave theory is "not many-worlds-in-denial".

Introducing retrocausality in pilot-wave theory is not helpful in this context.

Emergence of the appearance of ψ -epistemicity from an underlying ψ -ontic theory.

Rethink the normalizability condition in general ψ -ontic models.

Indrajit Sen (Institute for Quantum Studies, Chapman UPhysical interpretation of non-normalizable quantum st

