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emcee: An Affine-Invariant Sampler

Dustin Lang
Perimeter Institute for Theoretical Physics

Symmetries Graduate School 2023-01-30

Borrowing heavily from Dan Foreman-Mackey’s slides
https.//speakerdeck.com/dfm/data-analysis-with-mcmc1

These slides are available at
https://github.com/dstndstn/MCMC-talk
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Recap from last week’s lecture (1)

» Markov Chain Monte Carlo (MCMC) draws samples from a
probability distribution when you can numerically evaluate
the probability function (up to a constant)

» Used extensively in data analysis: inferring parameters of
models, given observed data

- Usually in a Bayesian context; the probability function we
run MCMC on is the posterior probability:
posterior(params|data) o

prior(params) X likelihood(data|params)
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Recap from last week’s lecture (2)

» The “classic” Markov Chain Monte Carlo algorithm is
Metropolis—Hastings, which moves a walker or particle
around the state space (model parameter space)

» A randomly-drawn proposed jump gets evaluated (by
calling the probability function), and then accepted, or not

> A big difficulty is to customize the proposal distribution to
get the algorithm to work efficiently

Metropolis-Hastings
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MCMC for model parameter inference

FEh |
50
@ A | M |
254 | 1
[
0 |
1
] 1000 2000

Pirsa: 23010089



Metropolis-Hastings

in the real world
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Metropolis-Hastings

in the real world
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Metropolis-Hastings

in the real world
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Jonathan Goodman Jonathan Weare

"Ensemble samplers with affine invariance’

(dfm.io/meme-gw10)
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iemceetioc

arxiv.org/abs/1202.3665
dan.iel.fm/emcee
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~ - Ensemble Samplers

in the real world
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p(accept) = min (1, zp-1 PX) )

. p(x’)
Ve

" Ensemble Samplers

in the real world
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Emcee demo
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Emcee demo
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Emcee demo

Pirsa: 23010089 Page 19/29



Emcee demo
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Emcee demo
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what about multimodal densities?




what about multimodal densities?

e

p(accept)




Differential Evolution move

» emcee allows us to use different move types (different
proposal functions)

» The Differential Evolution (DE) move can improve the
sampling for multi-modal distributions

» ' DE move: randomly select two “helpers”
» Propose moving by their vector difference

» (If they are from different modes, this proposes jumping
between modes)

» Mixing in a fraction of DE moves with the regular “Stretch”
move works well!
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Summary

» Traditional Metropolis—Hastings MCMC suffers from a lack
of affine invariance — requires tuning parameters that
change for each specific probability function

» Ensemble samplers like emcee use the distribution of the
1 walkers to achieve affine invariance

» — much easier to use, and faster sampling

» (Huge side effect: parallelizable!)

» Multi-modal distributions still hard, but DE Move can help
» MCMC isn’t scary!
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Algorithm 2 A single stretch move update step from GW10
1 forck=:1 ...k do

Draw a walker X at random from the complementary ensemble Sj(t)
2+ Z ~ ¢(z), Equation (10)
Y « X; + 2 [Xi(t) — Xj]
q Lo p(Y)/p(Xk(t)) // This line is generally expensive
r <+ R~[0,1]
if » < g, Equation (9) then

Xk(t + 1) «Y
else

Xik(t+1) « Xi(t)
11:  end if
12: end for I

—
=

The parallel stretch move [t is tempting to parallelize the stretch move algorithm by
simultaneously advancing each walker based on the state of the ensemble instead of evolving
the walkers in series. Unfortunately, this subtly violates detailed balance. Instead, we
must split the full ensemble into two subsets (S© = {X;, Vk = 1,...,K/2} and SV =
{Xi, Vk = K/2+1,...,K}) and simultaneously update all the walkers in S® — using the
stretch move procedure from Algorithm 2 — based only on the positions of the walkers in
the other set (S(V)). Then, using the new positions S(*), we can update S1). In this case, the
outcome is a valid step for all of the walkers. The pseudocode for this procedure is shown
in Algorithm 3. This code is similar to Algorithm 2 but now the computationally expensive
inner loop (starting at line 2 in Algorithm 3) can be run in parallel.
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