Title: Fitting models to data using Markov Chain Monte Carlo

Speakers: Dustin Lang

Collection: Symmetries Graduate School 2023

Date: January 30, 2023 - 2:00 PM

URL: https://pirsa.org/23010089

emcee: An Affine-Invariant Sampler

Dustin Lang
Perimeter Institute for Theoretical Physics

Ĭ

Symmetries Graduate School 2023-01-30

Borrowing heavily from Dan Foreman-Mackey's slides https://speakerdeck.com/dfm/data-analysis-with-mcmc1

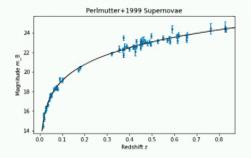
These slides are available at https://github.com/dstndstn/MCMC-talk

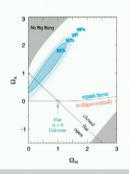
Pirsa: 23010089 Page 2/29

Recap from last week's lecture (1)

- Markov Chain Monte Carlo (MCMC) draws samples from a probability distribution when you can numerically evaluate the probability function (up to a constant)
- Used extensively in data analysis: inferring parameters of models, given observed data
- ► Usually in a Bayesian context; the probability function we run MCMC on is the posterior probability:

 $posterior(params|data) \propto prior(params) \times likelihood(data|params)$



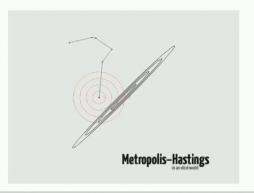


Pirsa: 23010089 Page 3/29

2

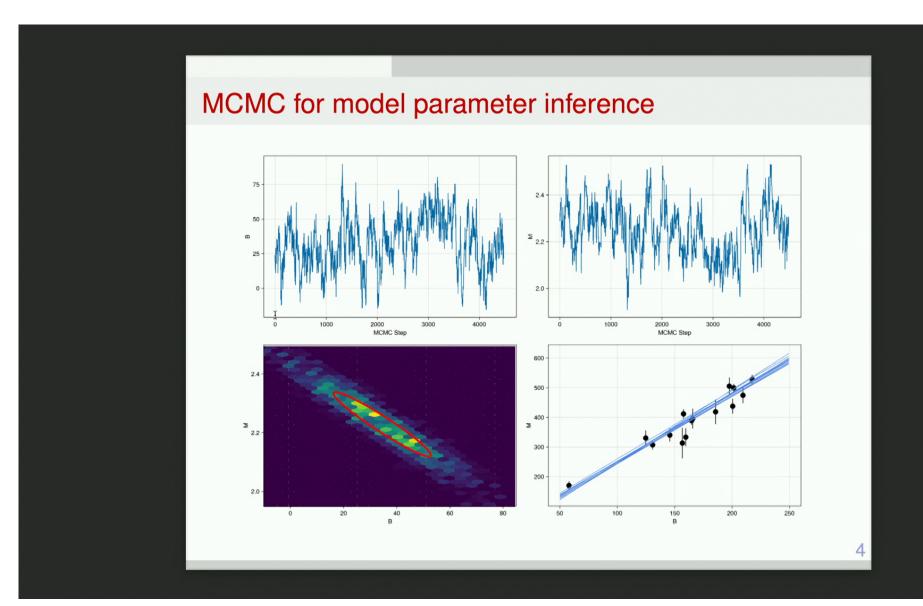
Recap from last week's lecture (2)

- ► The "classic" Markov Chain Monte Carlo algorithm is Metropolis—Hastings, which moves a walker or particle around the state space (model parameter space)
- A randomly-drawn *proposed* jump gets *evaluated* (by calling the probability function), and then *accepted*, or not
- ► A big difficulty is to *customize* the *proposal distribution* to get the algorithm to work efficiently

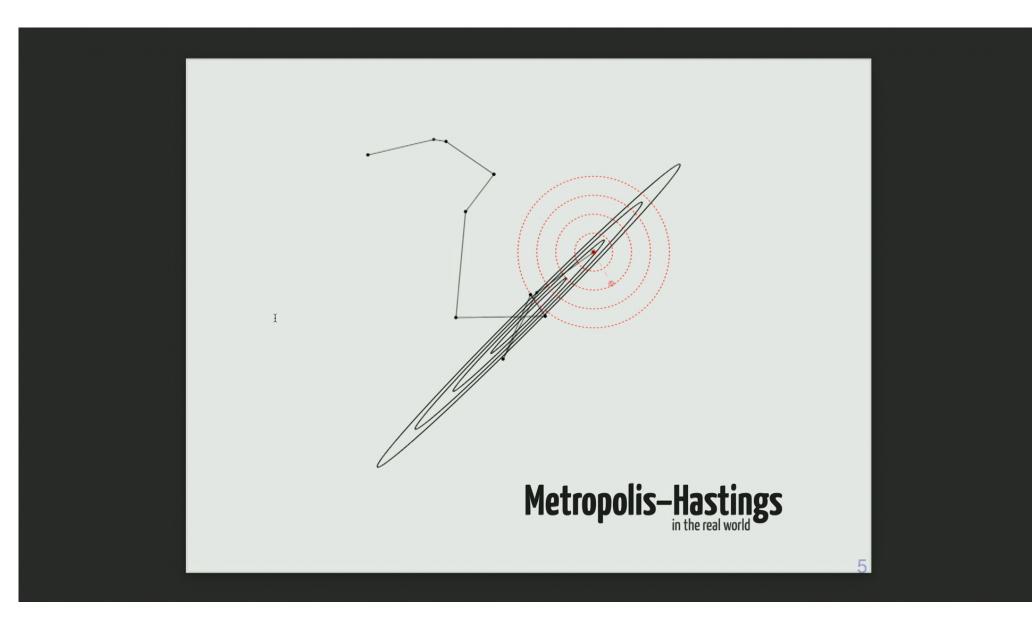


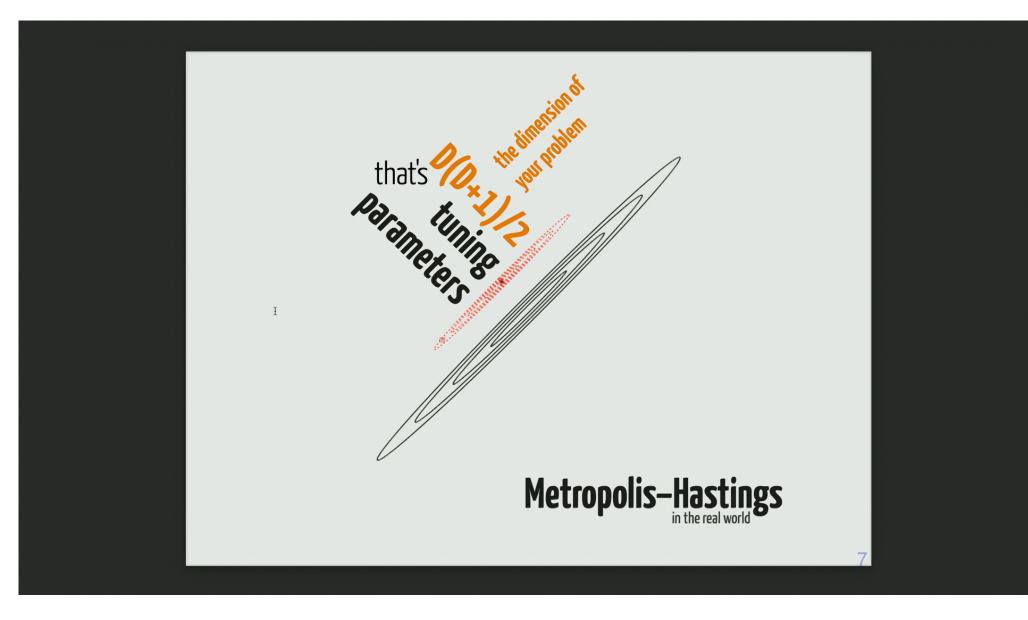
Pirsa: 23010089

3

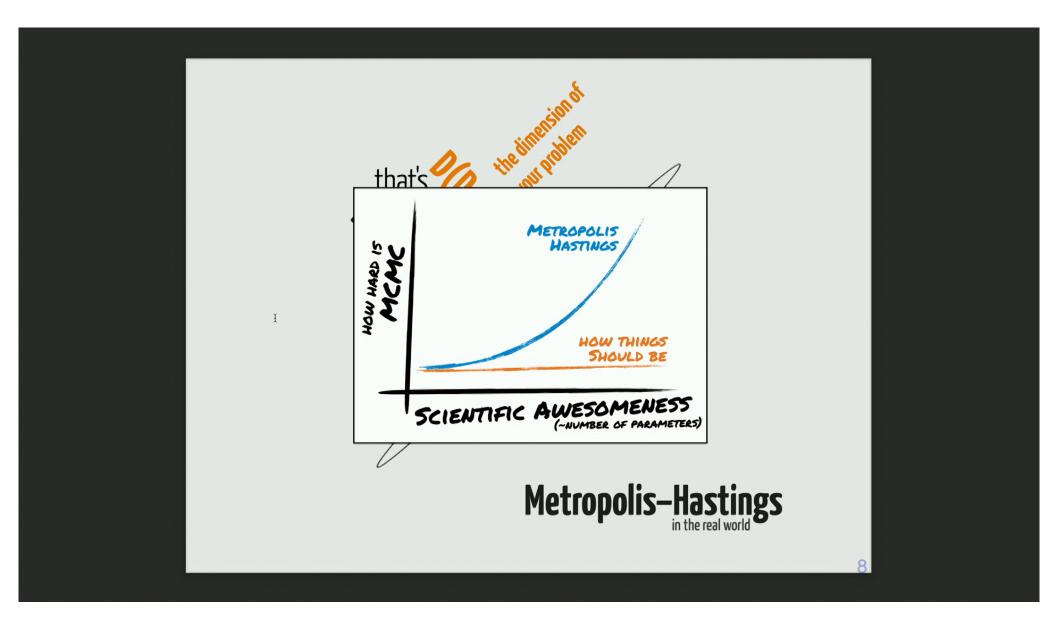


Pirsa: 23010089 Page 5/29

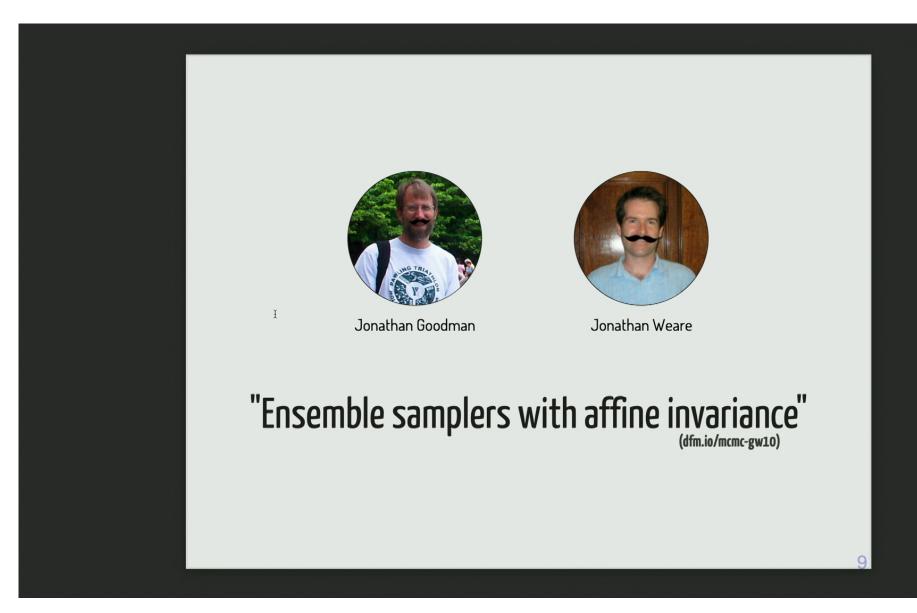




Pirsa: 23010089 Page 7/29

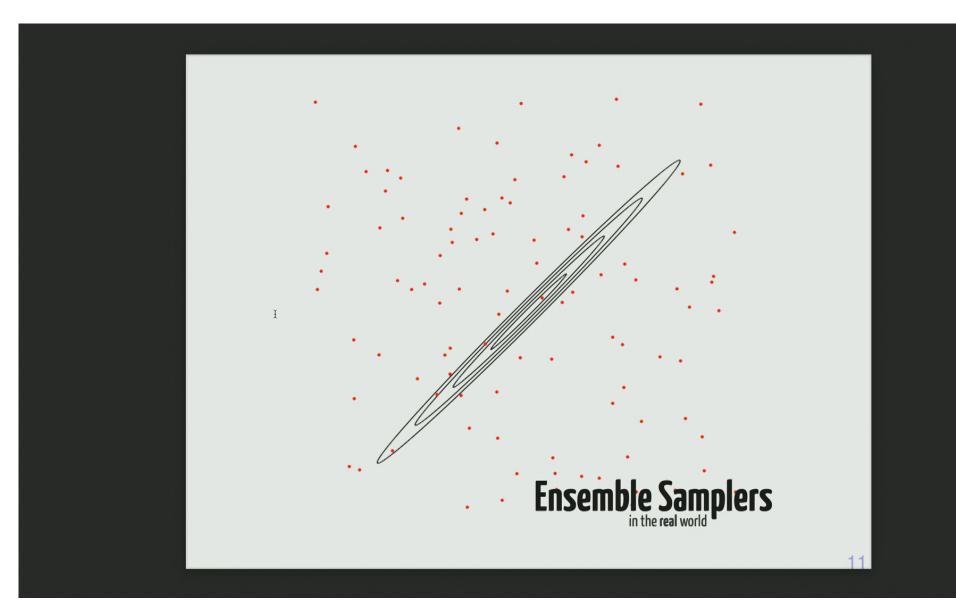


Pirsa: 23010089 Page 8/29

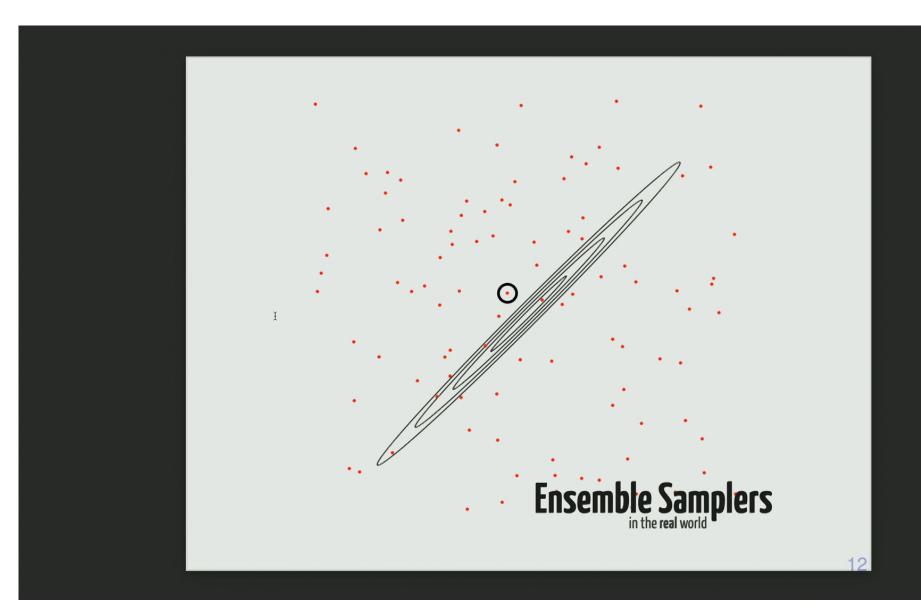


Pirsa: 23010089 Page 9/29

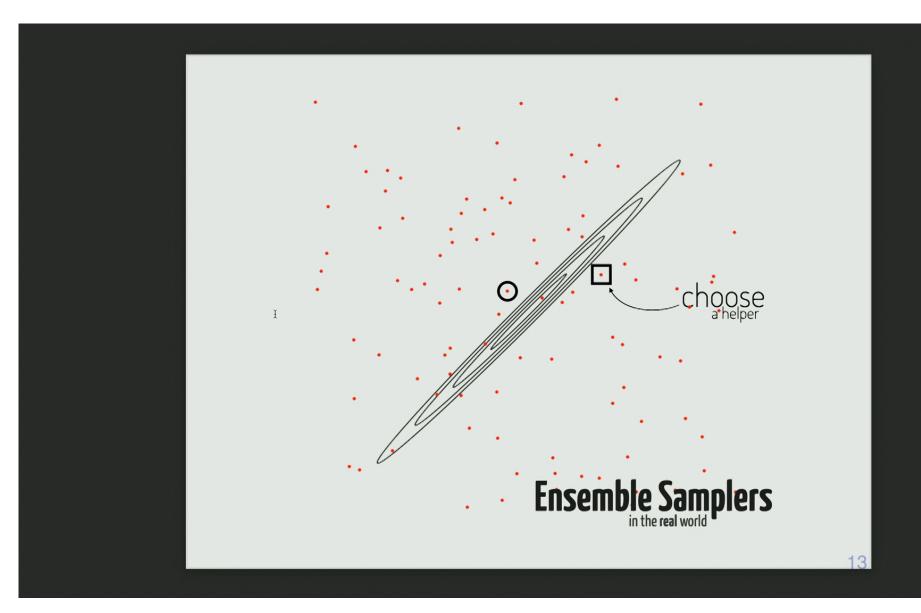
Pirsa: 23010089 Page 10/29



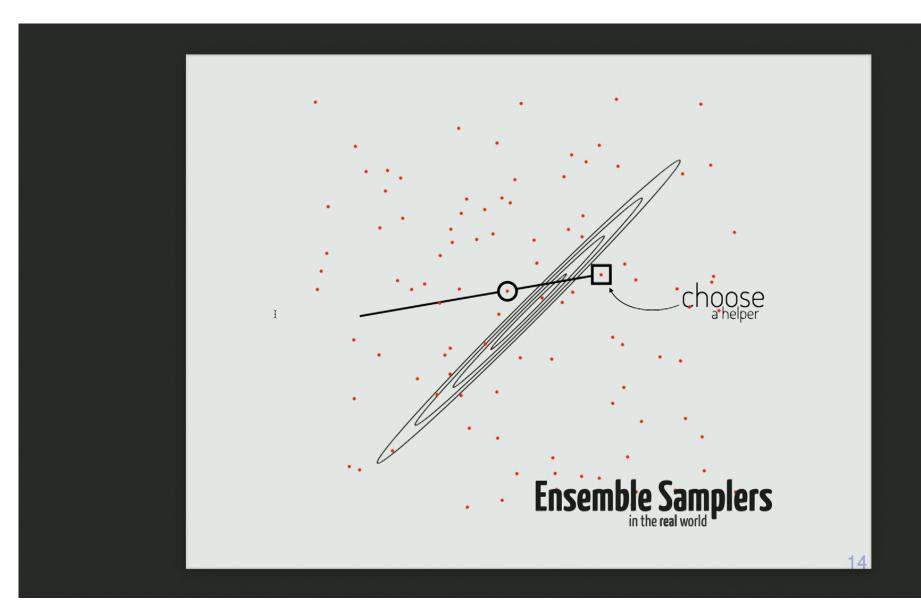
Pirsa: 23010089 Page 11/29

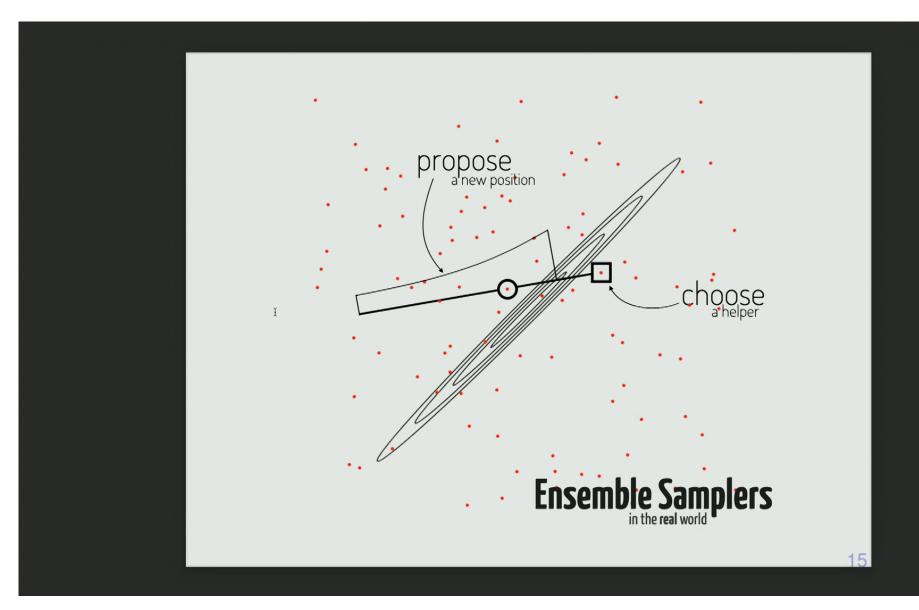


Pirsa: 23010089 Page 12/29

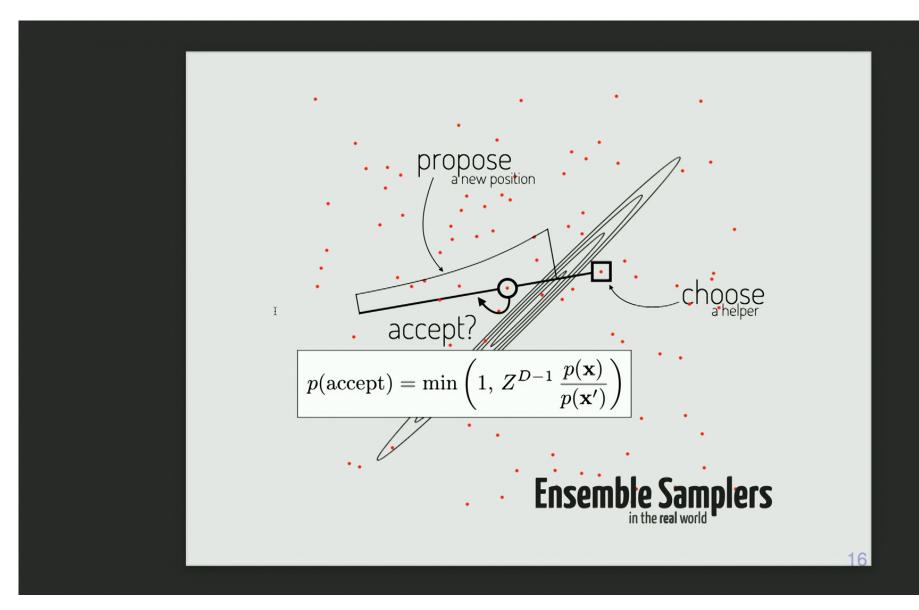


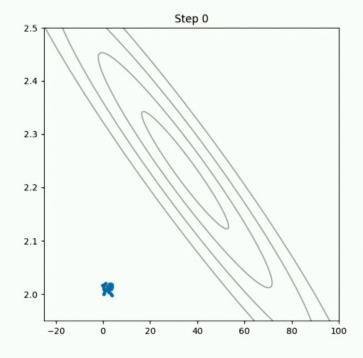
Pirsa: 23010089 Page 13/29



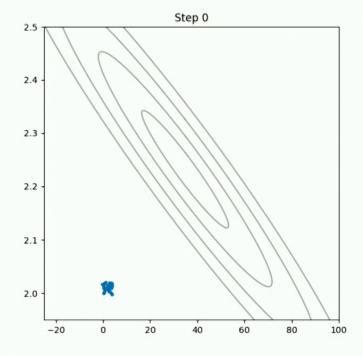


Pirsa: 23010089 Page 15/29



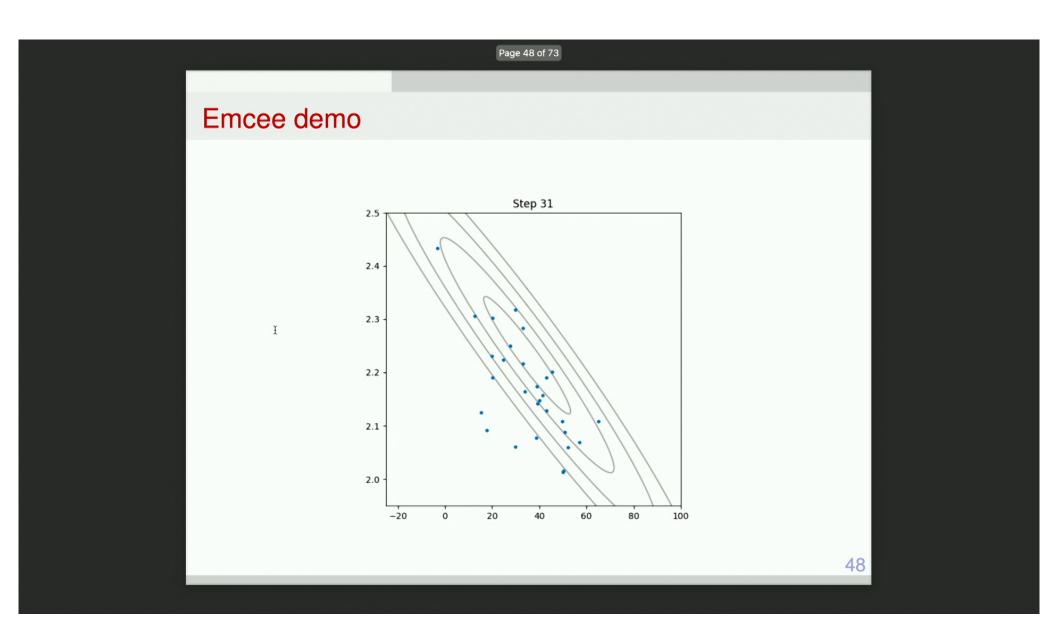


Pirsa: 23010089 Page 17/29

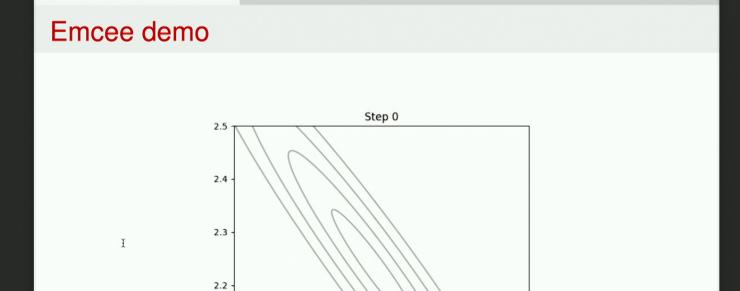


1/

Pirsa: 23010089 Page 18/29



Pirsa: 23010089 Page 19/29



40

60

80

100

2.1

2.0

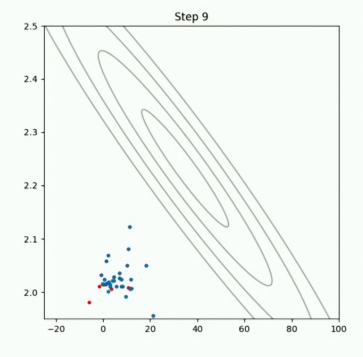
-20

ò

20

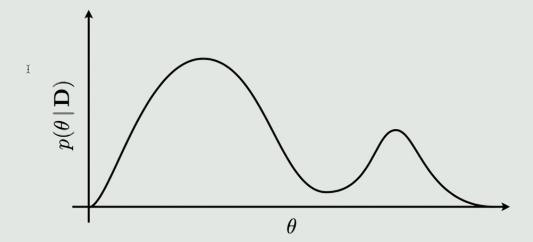
57

Pirsa: 23010089 Page 20/29



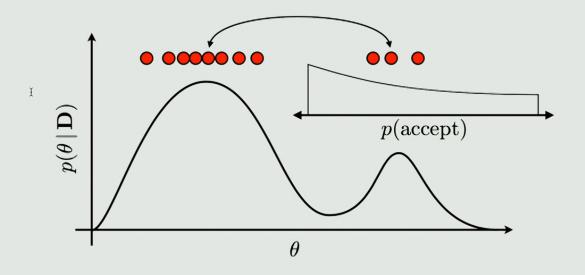
66

what about multimodal densities?



6/

Pirsa: 23010089 Page 22/29



1

Pirsa: 23010089 Page 23/29

Differential Evolution move

- emcee allows us to use different move types (different proposal functions)
- ► The Differential Evolution (DE) move can improve the sampling for multi-modal distributions
- ▶ *DE move: randomly select *two* "helpers"
- Propose moving by their vector difference
- (If they are from different modes, this proposes jumping between modes)
- Mixing in a fraction of DE moves with the regular "Stretch" move works well!

Pirsa: 23010089 Page 24/29

Differential Evolution move

- emcee allows us to use different move types (different proposal functions)
- ► The Differential Evolution (DE) move can improve the sampling for multi-modal distributions
- ▶ *DE move: randomly select *two* "helpers"
- Propose moving by their vector difference
- (If they are from different modes, this proposes jumping between modes)
- Mixing in a fraction of DE moves with the regular "Stretch" move works well!

′ '

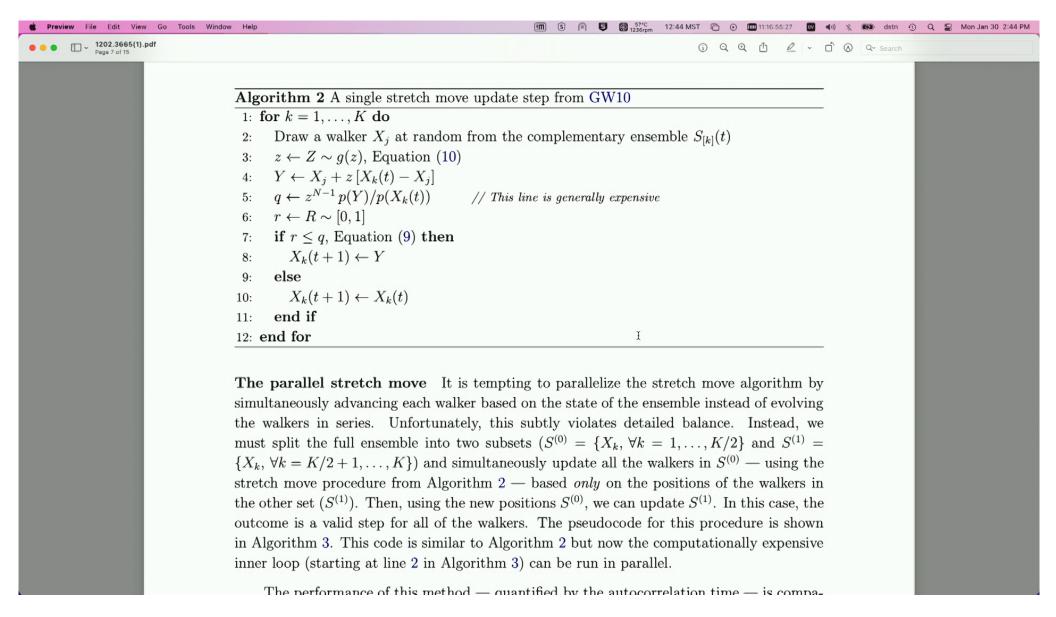
Pirsa: 23010089 Page 25/29

Summary

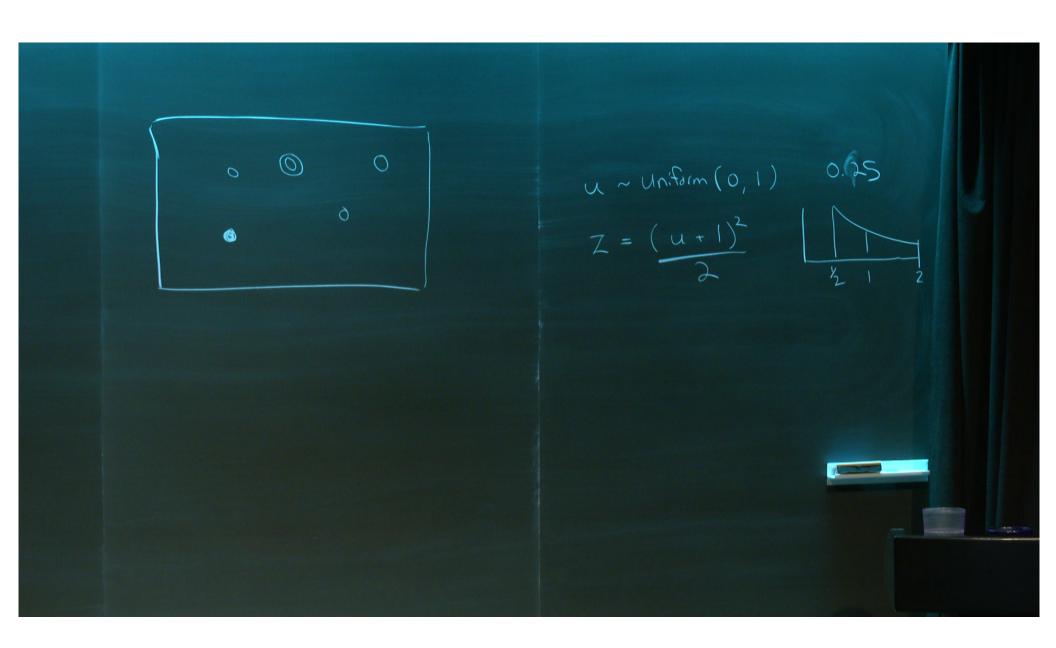
- Traditional Metropolis—Hastings MCMC suffers from a lack of affine invariance – requires tuning parameters that change for each specific probability function
- ► Ensemble samplers like emcee use the distribution of the walkers to achieve affine invariance
- ▶ → much easier to use, and faster sampling
- ► (Huge side effect: parallelizable!)
- Multi-modal distributions still hard, but DE Move can help
- MCMC isn't scary!

, 0

Pirsa: 23010089 Page 26/29



Pirsa: 23010089 Page 27/29



Pirsa: 23010089 Page 28/29

