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Abstract: Quantum correlations in general and quantum entanglement in particular embody both our continued struggle towards a foundational
understanding of quantum theory as well as the latter's advantage over classical physics in various information processing tasks. Consequently, the
problems of classifying (i) quantum states from more general (non-signalling) correlations, and (ii) entangled states within the set of all quantum
states, are at the heart of the subject of quantum information theory.

In this tak 1 will present two recent results (from https://journals.aps.org/pra/abstract/10.1103/PhysRevA.106.062420 and
https://arxiv.org/abs/2207.00024) that shed new light on these problems, by exploiting a surprising connection with time in quantum theory:

First, | will sketch a solution to problem (i) for the bipartite case, which identifies a key physical principle obeyed by quantum theory: quantum
states preserve local time orientations--roughly, the unitary evolution in local subsystems.

Second, | will show that time orientations are intimately connected with quantum entanglement: a bipartite quantum state is separable if and only if
it preserves arbitrary local time orientations. As avariant of Peres's well-known entanglement criterion, this provides a solution to problem (ii).

Zoom link: https://pitp.zoom.us/|/976078379997pwd=cXBY UmFV aDRpeFJSZ0JzV mhSg dwQT09
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Outiine

1. Problem I: characterisation of bipartite quantum states
1.1 No-signalling as a physical principle
1.2 No signalling for locally quantum observables

2. Sketch of solution
2.1 Step 1: no-signalling vs no-disturbance
2.2 Step 2: no-disturbance for dilations
2.3 Step 3: preserving time orientations

3. Problem ll: characterisation of separable bipartite states
3.1 The Peres-Horodecki criterion
3.2 Changing time orientations

4. Sketch of solution

4.1 Improving the Peres-Horodecki criterion
4.2 Invariance under change of time orientations

5. Conclusion and Outlook
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Bipartite correlations

e classical correlations

® natural interpretation on (classical) probability space (e.g. measures on phase space)
® constrained by Boole's ‘conditions of possible experience’, Pitowsky (1994)

® Bell's theorem: classical correlations C quantum correlations
key problem in QI (informal): What differentiates quantum from classical correlations?

® proposed physical criteria to single out quantum correlations: no-signalling + ?
® information causality, Pawtowski et al. (2009)
® macroscopic locality, Navascués and Wunderlich (2010)
® |ocal orthogonality, Fritz et al. (2013)
® ... Popescu (2014)

— not conclusive, e.g. almost quantum correlations, Navascués et al. (2015)

Pirsa: 23010070 Page 4/38



No-signalling
Notation: let u(A, B | a, b) denote the joint probability distribution for (local)

observables a, b
— a 'behaviour’ is a collection of joint probability distributions (u(A, B | a, b)).p

® relativistic causality: correlations factorise conditioned on common cause A

(A B 2.6) = [ dX u(\i(A | 2. (B | b.)
® quantum theory (i.e., the Born rule) violates factorisability, but satisfies no-signalling

1(A|a) = Z;uAB\ab Vb w(B | b) = Z,uAByab Va

¢ insufficient to single out quantum states: PR-box, Popescu and Rohrlich (1994)

idea: constrain observables to quantum observables locally

Page 5/38
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No-signalling for locally quantum observables

locally quantum observables: a € A = L(H 4)sar b € B = L(HB)sa

Theorem (Klay et al. (1987), Wallach (2000))

Let H 4, Hp be Hilbert spaces with dim(H 4), dim(#Hg) > 3 finite. There is a one-to-one
correspondence between non-signalling behaviours (ju(A, B | @, b)) acr(# 4)en.ber(Hy)en aNd
operators p, € L(HA R Hp), tr[py] =1 and 0,(a ® b) :=tr[pu(a ® b)] =0 fora,b>0.

Remarks:
® p, is called a POPT (positive on pure tensors) or a block positive state

® POPT correlations are no stronger than quantum correlations, Barnum et al. (2010)
— holds for bipartite case only: Acin et al. (2010); Lobo et al. (2021)

problem: POPT states are quantum states if and only if they are positive
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No-signalling for locally quantum observables

O constraints state space

Klay et al, Wallach
B POPT states

locally quantum
€
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No-signalling for locally quantum observables

locally quantum observables: a £ A = L(Ha)sar b € B = L(HB)sa

Theorem (Klay et al. (1987), Wallach (2000))

Let H 4, Hp be Hilbert spaces with dim(H 4),dim(#Hg) > 3 finite. There is a one-to-one
correspondence between non-signalling behaviours (1(A, B | a, b))acr(# 4).n.beL(Hp)en AN
operators p, € L(HA R Hp), tr[py] =1 and 0,(a ® b) :=tr[p,(a ® b)] >0 fora, b > 0.

Remarks:
® p, is called a POPT (positive on pure tensors) or a block positive state

® POPT correlations are no stronger than quantum correlations, Barnum et al. (2010)
— holds for bipartite case only: Acin et al. (2010); Lobo et al. (2021)

problem: POPT states are quantum states if and only if they are positive

Pirsa: 23010070 Page 8/38



No-signalling for locally quantum observables

O constraints state space

Klay et al, Wallach
e POPT states

locally quantum
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Outline

2. Sketch of solution
2.1 Step 1: no-signalling vs no-disturbance
2.2 Step 2: no-disturbance for dilations
2.3 Step 3: preserving time orientations
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Step 1: no-signalling vs no-disturbance

idea: collect observables into co-measurable subsets

Notation (cf. Doring and Frembs (2022)): the ‘context category’ V(H) is the
collection of all commutative subalgebras V C £(H) (‘contexts’), ordered by inclusion

e no-disturbance (in V(#)): for all V,V, V' € V(H) such that V C V, V/,

pvily = py = pvly
where p1; = py|y; denotes marginalisation
— for noncontextual correlations: (11(A | a)).czn) = (v)vev), Gleason (1975)

* no-disturbance (for product contexts) V = (V4, V) € V(Ha) x V(Hp): for all
VA C Viu, V€ V(H.a) and Vs C Vg, Vs € V(i)

IJJ(VA-VB)I(\:"A,VB) = “’(\7‘,4._\/5) = “'(VA~VB)‘('\7A.VB)
_ . z
(Va,Vi) = H(va,VB) = p"'(VA-Vé)‘(VA.VB)

(V4. Vi)
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Step 1: no-signalling vs no-disturbance

idea: collect observables into co-measurable subsets

Notation (cf. Doring and Frembs (2022)): the ‘context category’ V(H) is the
collection of all commutative subalgebras V C £(H) (‘contexts’), ordered by inclusion

e no-disturbance (in V(#)): for all V,V, V' € V(#H) such that V C V, V/,
pvily = py = pvly
where py;, = py|; denotes marginalisation
— for noncontextual correlations: (11(A | a)).czmn) = (v)vevm), Gleason (1975)

® no-signalling: restriction to trivial contexts (14) C V4, V), € V(H 4) and
(1) C Vg, V;S € V(Hg)

H’(VAsVB)‘(UlA)-VB) o l""(“l_@*,‘/g) — H‘(VA.VB)I“HA),VB)

(V. Vi) (Va(18)) = BV, (1)) = H(va,vi) (Vi (1))
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No-disturbance for locally quantum observables

O constraints state space
e Klay et al, Wallach
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No-disturbance for locally quantum observables

0 constraints state Space

€

3 Gleason

% ’ quantum states
=

O

Pirsa: 23010070 Page 14/38



Naimark’s theorem in contexts

* for every Vu € V(HA). t(vy,) : P(Va) x P(Hp) — [0,1] defines an (unnormalised)
positive operator-valued measure (POVM) E4 : P(V) — L (Hp) by

(g4, 98) = tI‘%B[EuVA(QA)QB] Vga € P(Va), g8 € P(Hg)

— Klay et al: (E:A)VA@(HA) extends to positive linear map ¢, : L(H ) = L(HB)
® positivity under Choi-Jamiotkowski isomorphism (CJI)

CJI c i, (O -
p, POPT < ¢, positive p, positive <= ¢, completely positive

idea: dilation (purification) in contexts

apply Naimark’s theorem: given a POVM El}_”ﬂ, there exists K, v : Hg — Kp, and a
projection-valued measure (PVM) ¢VA : P(H_4) — P(Kg) such that E}}/A - V*QQL/AV
,
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Step 2: no-disturbance for dilations

Definition

We say that i1 = (pv)vev(u ) xV(Hg) Satisfies no-disturbance for dilations if
1(q.a, gs) = tra,[(viey4(qa)v) gs] for a Hilbert space K, linear map v : Hp — K,
and projection-valued measures (04 )y ev(4). €4 P(Va) = P(Kg) such that

Vg4 € P(VA), Va € V(HA) gks € P(KB) : 1/(94, k) = tras [Vior4(q4)aK,V
satisfies the no-disturbance principle for all product contexts in V(H_4) x V(Kg).

Remarks
® interpret u(y, .y for every V4 € V(H 4) as a state of incomplete information
— arises from coarse-graining of ancillary degrees of freedom
®* noncontextuality condition
— stronger version of Gleason's theorem applies, J. Bunce and Wright (1993)
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Intermediate result

Theorem

Let H 4, Hp be Hilbert spaces with dim(H 4),dim(Hg) > 3 finite, and let
= (v )vev(r) xV(Hg) Satisfy no-disturbance for dilations. Then i corresponds to

ou(a® b) = try[pu(a)b] = tra, [(v:Pu(a)v) b]

for ¢,, decomposable, i.e., ¢, = v*®,v, where Kg is some Hilbert space, v : Hg — Kp a
linear map, and ®,, : J(H 4)sa — J(KB)sa @ Jordan homomorphism.

Remarks:
® Jordan algebra of observables: 7(H)s, := (L(H)sa, {-,-}) ({a,a'} :=ad + d'a)

® a Jordan homomorphism ® preserves anti-commutators {-, -}

“®({a,a'}) = {®(a), ¥(a)}

Page 17/38
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Completely positive vs decomposable maps

Theorem (Stinespring (1955))

Let A be a C*-algebra. A map ¢ : A — B(H) is completely positive if and only if ¢ there
exists a Stinespring dilation (¢, v, K), where K is a Hilbert space, v : H — K a linear
map and ® : A — B(K) a C*-homomorphism such that

d=vdv.

Remarks:
® 2 Jordan homomorphism ¢ : 7(A) — J(B) preserves anti-commutators
® a C*-homomorphism ¢ : A — B preserves anti-commutators and commutators

1 |
ad = 5{a, alt+ 5[3, a'l

— a Jordan homomorphism ¢ : 7(A) — J(B) is a C*-homomorphism ¢ : A — B if
and only if ® preserves commutators
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Step 3: preserving time orientations

idea: consistency with time orientations
Alfsen and Shultz (1998): difference between 7(H)s, and £(H) is given by maps

VR x J(H)sa = Aut(T(H)sa) W(£t, a)(a) = ettes Tt

Example (‘Bloch sphere’): state space of M,(C).

V(t,a) and W(—t, a) are distinguished by the direction
of rotation along the axis in the Bloch sphere, whose
antipodal points are given by the eigenvectors of a.

Page 19/38
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Step 3: preserving time orientations

idea: consistency with time orientations
Alfsen and Shultz (1998): difference between 7(H)s, and L£(H) is given by maps

V:R x J(H)sa = Aut(T(H)sa) W(+t, a)(a) = eTa T

— infinitesimally, 5| _ W(+t, a)(a') = *i[a, 4]
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Intermediate result

Let Ha, Hp be Hilbert spaces with dim(H 4),dim(Hg) > 3 finite, and let
1= (v )vev.i)xv(Hg) Satisfy no-disturbance for dilations. Then 1 corresponds to

0(2® b) = try4a[6,(3)B] = tryg [(v*,(a)V) b]

for ¢, decomposable, i.e., ¢, = v*®,v, where Kg is some Hilbert space, v: Hp — Kp a
linear map, and ®,, : J(H.4)sa = J(Kp)sa @ Jordan homomorphism.

Remarks:

® Jordan algebra of observables: 7(H)sa := (£L(H)sa, {-,-}) ({a,d'} := ad + 2'a)

® a Jordan homomorphism ¢ preserves anti-commutators {-, -}

b({a,a'}) = {¢(a), ®(a)}
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Step 3: preserving time orientations

idea: consistency with time orientations
Alfsen and Shultz (1998): difference between 7(H)s, and L£(H) is given by maps

V:R x J(H)sa = Aut(T(H)sa) W(+t,a)(a") = eT3 T

— infinitesimally, 5| _ W(+t, a)(a') = £i[a, a]

— a Jordan homomorphism ® : J(H 4) = J(Hg) is a C*-homomorphism if and only
if it preserves time orientations ¥V 4 and V3

Definition
We say that = (pv)vev(m )< V(1) Preserves time orientations if

VteR,ae j(HA)sa . ¢’,u © w./-l(_t: a) o w%(t: ¢£(a)) 2 cbﬂ- ;
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Main result |

Theorem | (Frembs and Déring (2022))

Let H 4, Hp be Hilbert spaces with dim(H 4),dim(H ) > 3 finite, and let
T (NV)VEV(H 1) x V(M) Preserve time orientations (and thus satisfy no-disturbance for
dilations). Then (1 uniquely extends to a quantum state o, € S(L(H 4) ® L(HB)).

Sketch of proof:

® 4 satisfies no-disturbance: 1 i g pu POPT & ¢ L(H4) — L(Hp) positive

® 1 satisfies no-disturbance for dilations: ¢, = v*®,v for v: Hz — K and
S, T(Ha)sa = J(KB)sa @ Jordan homomorphism
® . preserves time orientations: ¢, = v*®,v with ®, a C*-homomorphism

® Stinespring’s theorem: ¢, = v*®,v <= ¢, completely positive
- ; S 2 =
® Choi’s theorem: ¢, completely positive <= p,, positive
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Partial Summary

O constraints state space

locally quantum
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Outline

3. Problem lI: characterisation of separable bipartite states
3.1 The Peres-Horodecki criterion
3.2 Changing time orientations
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The Choi-Jamiotkowski isomorphism revisited

Choi-Jamiotkowski

L(HA®HB) ¢

isomorphism

Frembs and Cavalcanti

J

ﬁ[{%(HA ® Hp) ¢

Choi’s theorem

L(HAQHB)+ ¢

(2022) C(Ha

» L(H A, HB)

%B )d(!c‘.

L™
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The Choi-Jamiotkowski isomorphism revisited

Choi-Jamiotkowski

L(HA®HB) ¢ » L(Ha, Hp)

isomorphism

A

Frembs and Cavalcanti (2022) £(Ha, Hp)
& y LB )dec

Lp(HA®HB) ¢

L=

Choi's theorem

L(Ha®HB)+ ¢ » L(H A, HB)cp

0,

Notation: let Sp(A ® B) denote the space of normalised operators p € Lp(H 4 @ Hp),
corresponding to decomposable maps under the Choi-Jamiotkowski isomorphism
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Quantum states are time-oriented

observables O (oeally guantiim) time orientation (tensor product)
Jordan algebras C*-algebras
i 1
| , state
E ! space

no-disturbance
for dilations !

v

quantum states

//PV S(A® B)

%
2.
b P

states S(O) ® B)

Proposition | (Frembs and Doéring (2022))

p € Sp(A® B) is a quantum state p € S(A ® B) if and only if it is time-oriented with
respect to A_ = (7 (M), V%) and By, = (T (Hs), V).
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Quantum states are time-oriented

observables O {larally st time orientation (tensor product)
Jordan algebras C*-algebras
1
, state

1
' space
w

qua ntum states
W S(A® B)

separable states
S-.N:]'J(A '\ B)

no-disturbance
for dilations

T e

states S(0)

%
2
N

® B)
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Quantum states are time-oriented

observables © (locally quantum) time orientation (tensor product)
Jordan algebras C*-algebras
1
, state

1
' space
w

quantum states

//—F)Lp.l//-) S(A® B)

B , separable states
Ssep(A ® B)

no-disturbance
for dilations

e e e e - -

states S(0O) ®Sp(A @ B)
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Changing time orientations?

15 /21
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The Peres-Horodecki criterion - states and maps

* Peres (1996): p € S(A ® B) separable = positive partial transpose (PPT) p’4
— Horodecki et al. (1996): ‘<’ only for dim(H 4) = 2, dim(Hg) = 2,3

¢ Choi(-Jamiotkowski) isomorphism: L£(H 4 ® Hp) 3 py <= ¢, € L(H.4, HB)

Po = Z | ® ¢(Ej) ¢p(a) = try[p(a’™ @ 1p)]

Let p € S(A® B), let ¢, be the map under the Choi-Jamiotkowski isomorphism, and let
(®,, v,Kg) be a Stinespring dilation of ¢,. Then
¢pTA ;@;@; == V*q);;v

Sketch of proof:
Y E@a,ra(Ej) =pT4 = (0)A =Y Ej o ¢i(Ey) = Y Ej ® v Oi(Ej)v
i ]

ij
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The Peres-Horodecki criterion - decomposable maps @

Let p € Sp(A ® B), i.e., p corresponds to a decomposable map ¢, under the
Choi-Jamiotkowski isomorphism. Then p'4 € Sp(A ® B).

Sketch of proof:
® peSp(A® B) &L ¢, decomposable: ¢, = v*®,v, ®, Jordan x-homomorphism
® &7 is also a Jordan x-homomorphism: for all a, aeA,

oi({a.a'}) = ®p({a,a'}7) = @y({a", a"}) = {Py(a"). ,(a™)} = {P,(a). P5(a)}

*--—

, , CJ1
® P14 = @, v*® v decomposable < pTa e Sp(A® B)

idea: relate partial transposition to change in time orientation

Pirsa: 23010070
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Improving the Peres-Horodecki criterion

Let p € S(A ® B), then ¢, has a Stinespring dilation ¢, = v*®,v

Choi’s theorem
=

Ta . ; . s
p A positive Py a completely positive

Lm. 1 , .
e @;‘, completely positive

Stinespring’s theorem
—

3 Stinespring dilation ¢; = (v/)"®) v’

Variant on PPT criterion: When is ¢, = v*®7v a Stinespring dilation?

*
P

Theorem (Frembs (2022))

Let p € S(A® B), let ¢, be the map under the Choi-Jamiotkowski isomorphism, and let
¢, = v*®,v be a Stinespring dilation of ¢,. Then p is separable if and only if
¢y, = v*®v is a Stinespring dilation of ¢, i.e., if and only if ®7 is a C*-homomprphism.

*
P

18 /21
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Main Result |l

Theorem Il (Frembs (2022))

p € Sp(A ® B) is separable if and only if it is time-oriented with respect to A, =
(J(Ha),Va) and By = (T (Hp), Vp) as well as A_ = (T (H.), V") and B..

Sketch of proof:
‘=" p separable JLL ®, and &7 in ¢, = v*®,v are C*-homomorphisms
e p is time-oriented with respect to both A, and B as well as A_ and B
‘=" p time-oriented with respect to A, and By and A_ and B,
VteR,a€ J(Ha), : PpoWVAa(t,a)=Vg(t,®(a)) 0P,
¥t & R’ ac j(,HA)sa : q){? e w:kél(t? 8) = ‘UE;(I‘, q)(a)) & q).U
— by differentiation: [®,(a),®,(d')] = —[®,(a),®,(a")] =0 forall a,a’ € T(H.A)sa
— ®,(A) C B is a commutative subalgebra <= ®,, ®; C*-algebra homomorphisms

Thm
< p separable

19/21
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Summary of results

locally quantum time orientation tensor product
observables O ( yq ) ( . P )
Jordan algebras C*-algebras
1
| state
i space

no-disturbance !
quantum states

/y S(A® B)
Thm. | separable states

S:-Gi‘]] (A & B)

for dilations

= - -

states S(O) Sp(A® B)

Theorem Il (Frembs (2022))

p € Sp(A ® B) is separable if and only if it is time-oriented with respect to A, =
(J(Ha),Vy) and By = (T (Hp), Vi) as well as A_ = (J(Ha), V) and B,.
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Conclusion

Summary

(I) classification of bipartite quantum states within non-signalling correlations from:
(i) locally quantum observables,
(i) no-disturbance for dilations
(iii) preservation of time orientations

(I1) classification of separable states from: invariance under change of time orientation

key insight: entanglement encodes intrinsic, relative notion of time direction

... towards a classification of entanglement in terms of time orientations ...
® time orientations in CJI, Frembs and Cavalcanti (2022)
® infinite dimensions (cf. Frembs and Doring (2022)), multipartite entanglement

® possible applications to quantum causal models, quantum ‘states over time' and
quantum Bayes' theorem, (space)time from entanglement etc.
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Thank you
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