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Abstract: Recent advances in mechanical sensing technologies have led to the suggestion that heavy dark matter candidates around the Planck mass
range could be detected through their gravitational interaction alone. The Windchime collaboration is developing the necessary techniques, systems,
and experimental apparatus using arrays of optomechanical sensors that operate in the regime of high-bandwidth force detection, i.e., impulse
metrology. Today's sensors can be limited by the added noise due to the act of measurement itself. Techniques to go beyond this limit include
sgqueezing of the light used for measurement and backaction evading measurement by estimating quantum non-demolition operators -- typically the
momentum of a mechanical resonator well above its resonance frequency. In this talk, we will discuss the theoretical limits to noise reduction using
such quantum enhanced readout techniques for these optomechanical sensors.
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Background

| apply the ideas of quantum metrology to searching for new physics using quantum sensing platforms.

Advisors :

Jake Taylor Peter Shawhan Dan Carney
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Part | ; Dark Matter

Many astrophysical observations provide evidence for the existence of dark matter (DM).
However, the exact nature of dark matter is still unknown. Today | will focus on particulate DM.
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Dark Matter Wind

*  We may be moving through the DM halo at v ~ 220 km/s

Dark Matter

June 1

\

Kuhlen et. al.
March 1

0912.2358

Typical v~ 220 km/s — but can vary *a lot* on small scales (streams etc.)

4

<3 ’P*‘ Figrire s@urce : APS/Alan Stonebraker
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Detection of Dark Matter?

* Many researchers around the world look for DM through potential interactions with standard model
particles.

Open Access

Search for inelastic scattering of WIMP dark matter in XENONI1T

E. Aprile et al. (XENON Collaboration)
Phys. Rev. D 103, 063028 — Published 19 March 2021

Search for Invisible Axion Dark Matter with the Axion Dark Matter
Experiment

N. Du et o/, (ADMX Collaboration)
Phys. Rev. Lett. 120, 151301 — Published 9 April 2018

PhySICS see Viewpoint: Homing in on Axions?

Snowmass 2021 White Paper: The Windchime Project, arXiv: 2203.07242 4
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Detection of Dark Matter?

* Many researchers around the world look for DM through potential interactions with standard model
particles.

Search for inelastic scattering of WIMP dark matter in XENONI1T

E. Aprile et al. (XENON Collaboration)
Phys. Rev. D 103, 063028 — Published 19 March 2021

Search for Invisible Axion Dark Matter with the Axion Dark Matter
Experiment
N. Du et o/, (ADMX Collaboration)

Phys. Rev. Lett. 120, 151301 — Published 9 April 2018

PhySICS see Viewpoint: Hor

= Qur goal: Detection of dark matter directly through its gravitational interaction with visible matter

Snowmass 2021 White Paper: The Windchime Project, arXiv: 2203.07242 4
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Detection of Dark Matter?

* Many researchers around the world look for DM through potential interactions with standard model
particles.

Search for inelastic scattering of WIMP dark matter in XENONI1T

E. Aprile et al. (XENON Collaboration)
Phys. Rev. D 103, 063028 - Published 19 March 2021

Search for Invisible Axion Dark Matter with the Axion Dark Matter

Experiment

N. Du ef ol (ADMX Cellaboration)
Phys. Rev. Lett. 120, 151301 — Published 9 April 2018

Ph)/SICS See Viewpoint: Hon

= Qur goal: Detection of dark matter directly through its gravitational interaction with visible matter

= Can we be sensitive to gravitational interaction with Planck-scale DM particles ?

Snowmass 2021 White Paper: The Windchime Project, arXiv: 2203.07242 4
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Gravitational Interaction with Dark Matter

= At this mass level, the passing DM provides a gravitational impulse to the detector

b ad
J“ Gravity only?
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Gravitational Interaction with Dark Matter

= At this mass level, the passing DM provides a gravitational impulse to the detector

%+

Gravity only?
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Gravitational Interaction with Dark Matter

= At this mass level, the passing DM provides a gravitational impulse to the detector

F(t)

muv
%
Gravity only? ] -
Gm _ Gm m 1 cm _ {F
A 2 28 o G0 o 15728 i 1 . Ap(’r)/ F(t)dt
Va o~ Ry 6 x 10 m/smpl R -
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Detector Array Concept
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Video courtesy: Sean Kelley, NIST
Carney, Ghosh, Krnjaic, Taylor, Phys. Rev. D 102, 072003 6

Pirsa: 22120065 Page 12/40



Detector Array Concept

* The array comprises of many acceleration sensors.

* Dark matter (DM) particle passes by at speed ~ 220 km/s.
* DM interacts with individual sensor via

_ Gnmgmy

F =

P2

Video courtesy: Sean Kelley, NIST
Carney, Ghosh, Krnjaic, Taylor, Phys. Rev. D 102, 072003
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Force

Detector Array Concept

Force

The array comprises of many acceleration sensors.

Dark matter (DM) particle passes by at speed ~ 220 km/s.
DM interacts with individual sensor via

_ Gnmgmy

F = 2

Video courtesy: Sean Kelley, NIST
Carney, Ghosh, Krnjaic, Taylor, Phys. Rev. D 102, 072003 6
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Detector Array Concept

The array comprises of many acceleration sensors.
Dark matter (DM) particle passes by at speed ~ 220 km/s.

DM interacts with individual sensor via

P G NMgMy

P2

Assuming a cross-sectional area A, the number of dark
matter particles passing through the detector per unit

time is,
R— PxVA4 1 (me Ag
My year \ my 1 m?

Video courtesy: Sean Kelley, NIST

Carney, Ghosh, Krnjaic, Taylor, Phys. Rev. D 102, 072003
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Impulse Measurement Basic Readout Scheme

-
+

distance = x

laser in ,\/L‘
* Impulse imparted upon sensor induces

displacement.

v

* Readout displacement by probing the
system with light as,
Ap
/ * Light phase shift o« displacement

/\I\/ / * Light phase can be readout via

7 interferometer

readout light phase E light phase shift ~ x(t)

via interferometer
- measure x(t)
- infer F(t)
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Standard Quantum Limit of Impulse Measurement

Pirsa: 22120065

*Caves et al, 1980

Measure x Time t passes
- =
= il 2 - A
Y = exp(-x“/Ax*) Ax decreases A — A+ Aap ;
2m

AxAp = h/2 \ -

minimal uncertainty Ap increases optimize hi

—> “standard  Azggr =1/ —

quantum limit” -

AlsqL = 4/ hTm
1scm? T2 Gm _ Gm m 1 cm
- 17 0 Bl bl g —
Avgqr, ~ (5 x 10 m/s)( o ) AVim b~ T 6 x 10 m/Smp] R

8
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Paths Towards Gravitational Detection of DM

~ 10? detectors
~ mg each

Scale of the device

Gravitational detection

Environmental isolation 2 af Planck scile. DM

~ dilution refrigerator
~ freely falling detectors

Data pipeline and analysis

~ improvements in data analysis
techniques for large datasets

LFACICL 2

Pirsa: 22120065

Measurement-added noise
suppression

~ orders of magnitude below SQL
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Paths Towards Gravitational Detection of DM

~ 107 detectors
~ mg each

Scale of the device

Gravitational detection

Environmental isolation - AF Plamole senle TIAS .

~ dilution refrigerator
~ freely falling detectors

Data pipeline and analysis

~ improvements in data analysis
techniques for large datasets
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Measurement-added noise
suppression

~ orders of magnitude below SQL
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Wl n d C h | m e Accelerometers

The collaboration ., e
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Roadmap of Part I

* SQL for continuous position measurement in optomechanical measurements
* Methods to go below SQL :

* Squeezing

* Backaction Evasion through QND measurements

* Benefits of moving to microwave domain readout

11
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Continuous Position Measurement in Optomechanical
System

Xin Yin
laser in

Fin

Xout Yout

x
Hi = hggpa—X = hGx X

€I
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* A prototypical optomechanical system consists of :
= A partially transparent fixed mirror on one side.

= Asuspended, moveable mirror on another side.
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Noise in Measurements

* Various sources of noise in quantum measurement :

Coupling of the measurement device with its
environment

Measurement added noise (Depends on how we
probe the system)

* Measurement added noise in optomechanical system:

Pirsa: 22120065

» Shot Noise : Arises from statistical counting
error of photons

= Backaction Noise : Arises from fluctuations in
the radiation pressure of light

Ser (N?/HZ)
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Noise in Measurements

* Various sources of noise in quantum measurement :

®= Coupling of the measurement device with its 107
environment 10-181 Position Sensing Noise PSD
-10—}‘115
* Measurement added noise (Depends on how we  10% ot S
N [ e '\-_‘
probe the system) LR s = RGN O R o P N " AP EIA ..
2 ,‘.'
"‘; -10-1';5 , F
" J .~ ~-=-= Shot
10 .
. . ‘ [ sl B | Thermal
* Measurement added noise in optomechanical system: ;5 ;1 5 g S
10-50 __________________ ‘t,z', Total noise
* Shot Noise : Arises from statistical counting 10-55! ~
-4 -2 0 2 4 6 a 10
error Of phOtOﬂS 10 10 10 10 n )10 10 10 10
" Z
* Backaction Noise : Arises from fluctuations in
the radiation pressure of light k 2 2
P & Srr X a(Fin) + B{X5) + v(Yin)
13
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Methods to get below SQL

General representation of the force power spectral density

Srr o a{F) + B(XZ) +

¥in)®

Squeezing

(Xin) —+ €, (Yia) > &

SXinKn < 0

Backaction evasion

Combining them

s —0

B =50 (Y2 e

11

14
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Benefits of Squeezing : Phase Estimation

. ‘Psqz

*Ghosh, Feldman, Hong, Marvinney, Pooser, and Taylor,

€«700%
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Phase Shifts from Momentum vs Position

AX
Measure x Time t passes
® e T
Hix = ax X = sl DT —
int Y = exp(-x?/Ax?) Ax decreases g, P %t
2m
AXAp = 1/2 | o
minimal uncertainty Ap increases optimize ht
—>“standard  Azggr =1/ —
quantum limit” -
Ap
Measure p T¥me t passes
- - ® - ®
Hin, = apX [Hp] =0
= exp(-p?/Ap? Ap decreases
Y p(-p“/Ap?) p [ Ap —> Ap
e, No increase in error
. 16
R >
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Backaction Evading Measurement with Optomechanical
System

AP x —zx(t +tg), Ap = —k

Ad x z(t), Ap = +k
= We study a concrete optomechanical realization where,

* Two ring cavities share a common mechanical

element, a two-sided mirror.
oo
* The light interacts with the shared mirror twice
from opposite directions with a short time delay
ty.
delay line f,
—
!yt
Hint = hGzX — hG'zX Ghosh, Carney, Shawhan, Taylor, Phys. Rev. A 102, 023525

1/

Pirsa: 22120065 Page 28/40



Backaction Evading Measurement with Optomechanical
System

Ap x —x(t +tq), Ap= —k

Ad x z(t), Ap = +k 10770 s oy o e ey gy ; L
10-15 Velocity Sensing Noise PSD
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Hint = hGzX — hG'z X Ghosh, Carney, Shawhan, Taylor, Phys. Rev. A 102, 023525
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Backaction Evading Measurement with Optomechanical
System

AP x —zx(t +tg), Ap = —k

8
A¢p x z(t),Ap = +k e
10fi L
104}
kel |
8 102
5 .
2 10°
Z ”
o 107°
E A
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0N i E - Velocity Sensing Approximate
107 .f.:" Velocity Sensing Exact
TindS - Position Sensing
delay line f, 10-10 Lo umnl s il ¢ erinl T IR N I I wul |
e 10-8 1 10™ s g 10° 102
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e ! . f
Hinty = hGx X — hG'z X Ghosh, Carney, Shawhan, Taylor, Phys. Rev. A 102, 023525
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Combining Squeezing with Backaction Evasion

* Noise spectrum for continuous position measurement  *

] Hip, = KGzX

Xo = Yourcost + Xy sin

€% tan 0 - 1 2
F2) = - Gh X2) + Y2
(Fg) R xe| (Xin) s (Yin)
tan @
2 |hm(w? — 1)+ ———— | (X Y5
¥ [’"’(‘”’“ "”Gﬂxezznxmw]( a¥ia)
+ (FZ2) -

Hint = ﬁG’pX

Xo = Yourcosl + Xy siné

Noise spectrum for continuous momentum measurement

2z

ie*®= tan 0 wn :

P2y = |20 orhyemem| (X2

( E) G.rm_yxc)(m ? e . ( "
ieiﬁb(‘ 3 2 2
Grmxexm| Vind + {Fin)

2
Ym ()2 _ 2 e
+2 [hm A3 (Wm v )+ m2v2G’2|XcJ2|Xm|2

] {(XinYin) .

* At8 - 0 (phase quadrature measurement) and mechanical frequency w,, — 0, BA term goes to 0 in momentum

sensing.

* Rest of the terms can be reduced using squeezing.

(X?) =
(r?) =

{X.Y}) =

. - . 2
((’2’ cos® ¢ + e~ " sin® d)) ,

(r? " cos? ¢ + €'

(€727 — ") sin 20,

(SR SR B S

sin® @) ,

k

‘ wl;f%sl;{;'}fr“man, Hong, Marvinney, Pooser, and Taylor, arXiv:2211.14460
» i
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Combining Squeezing with Backaction Evasion

1071
Position, no squeezing ! = Position, no squeezing s =
-15 Broad-band Search . 10725 Naioctand Sean e
1 O Momentum , no squeezing g | Momentum , no squeezing ,.’
ﬁ '''''' Position, with squeezing ﬁ —————— Paosition, with squeezing ',"'
:;J;_ 1 0_20 ''''' = Momentum , with squeezing ’ ”I.’ % ————— Momentum , with squeezing P
z i Z 10°%
o
O]
R
O
-
......................... :“.,‘"_'_'_'_—_-_-_-_-_'_-_-_-_-_-_-_-_"
e 1 0—40 !
102 10° 102  10* 10° 108 102  10° 102  10* 10° 108
Frequency (Hz)

Frequency(Hz)

* Narrow-band search strategy for position and

Broadband search strategy for position and momentum
sensing. The phase quadrature noise is plotted for both momentum sensing plotted for both techniques at the
optimal power and optimal quadrature angle for each

sensing protocols while operating at the optimal
power for position sensing with a 1 MHz target. frequency.
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Paths Towards Gravitational Detection of DM

Environmental isolation

~ dilution refrigerator
~ freely falling detectors

Pirsa: 22120065

~ 107 detectors
~ mg each

Scale of the device

Gravitational detection

of Planck scale DM

Data pipeline and analysis

~ improvements in data analysis
techniques for large datasets

Measurement-added noise
suppression

~ orders of magnitude below SQL

)
(N}
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Moving from Optical to Microwave Domain

Pirsa: 22120065

wcopt

= 100 THz, kop = 10 MHz

o

k.
We, i = 1GHZ, Kypje = 10 KHz

m

Ppeak = hwan
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QND Readout in the Microwave Domain

= |deally, we are looking for a system : Hint — Osz

g
L e <o

Front view

* With Brittany Richman, Daniel Carney, Chris

Lobb and Jake Taylor
24

«p,.»
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QND Readout in the Microwave Domain

= |deally, we are looking for a system : Hint — Osz

i =,
B/‘/"—’ \
Ifﬂ/ll"L/ Z - u,
l v

Front view Side view

= We are working on the optimum way to observe the EMF * With Brittany Richman, Daniel Carney, Chris
Lobb and Jake Taylor

24
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Windchime Vision

Dark matter mass (kg) Dark matter Compton frequency (Hz)
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Conclusion & Future Directions

* We studied the fundamental limitations to the sensitivity of a given device to small, rapid impulses.
* We demonstrated the case of impulse sensing with an optomechanical sensor.

* This protocol has a wide variety of applications in metrology, particle physics, especially aiding the
direct detection of dark matter.

= Current and future directions:

= Development of backaction evasion/QND measurement proposals using optical and
microwave platforms

= Application of quantum error correction tools for enhanced quantum metrology

= Search for new physics using table-top experiments
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Conclusion & Future Directions

* We studied the fundamental limitations to the sensitivity of a given device to small, rapid impulses.
= We demonstrated the case of impulse sensing with an optomechanical sensor.

* This protocol has a wide variety of applications in metrology, particle physics, especially aiding the
direct detection of dark matter.

= Current and future directions:

= Development of backaction evasion/QND measurement proposals using optical and
microwave platforms

= Application of quantum error correction tools for enhanced quantum metrology

= Search for new physics using table-top experiments
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