Title: Measurement-induced phase transitions on dynamical quantum trees

Speakers: Xiaozhou Feng

Series: Perimeter Institute Quantum Discussions
Date: December 01, 2022-12:30 PM
URL: https://pirsa.org/22120062
Abstract: Monitored many-body systems fall broadly into two dynamical phases, "entangling" or "disentangling", separated by a transition as a function of the rate at which measurements are made on the system. Producing an analytical theory of this measurement-induced transition is an outstanding challenge. Recent work made progress in the context of tree tensor networks, which can be related to all-to-all quantum circuit dynamics with forced (postselected) measurement outcomes. So far, however, there are no exact solutions for dynamics of spin- $1 / 2$ degrees of freedom (qubits) with "real" measurements, whose outcome probabilities are sampled according to the Born rule. Here we define dynamical processes for qubits, with real measurements, that have a tree-like spacetime interaction graph, either collapsing or expanding the system as a function of time. The former case yields an exactly solvable measurement transition. We explore these processes analytically and numerically, exploiting the recursive structure of the tree. We compare the case of "real" measurements with the case of "forced" measurements. Both cases show a transition at a nontrivial value of the measurement strength, with the real measurement case exhibiting a smaller entangling phase. Both exhibit exponential scaling of the entanglement near the transition, but they differ in the value of a critical exponent. An intriguing difference between the two cases is that the real measurement case lies at the boundary between two distinct types of critical scaling. On the basis of our results we propose a protocol for realizing a measurement phase transition experimentally via an expansion process.

Measurement induced phase transitions on dynamical quantum trees

Xiaozhou Feng, Brian Skinner and Adam Nahum

Xiaozhou Feng The Ohio State University

Brian Skinner
The Ohio State University

Adam Nahum ENS, Paris

Measurement-induced phase transitions on dynamical quantum trees: arXiv:2210.07264

Traditional Phase Transition vs Measurement Induced Phase Transition

Mean-field ferromagnetic transition of magnetization

M.Kardar, Cambridge 2007

1. equilibrium state or ground state
2. characterized by expectation value of observables
for review: Fisher, Khemani, Nahum and Vijay, arXiv:2207.14280 Potter and Vasseur, arxiv: 2111.08018
3. Dynamics of quantum many body system
4. Characterized by no expectation value of any operator but quantum information dynamics

Quantum Entanglement

Consider a two spin system

$$
\psi_{1}=\frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle) \quad \text { entangled state }
$$

Entanglement: information shared by no subsystem alone but the whole systems together!

With measurement

$$
\psi_{1} \rightarrow|\uparrow\rangle \otimes|\downarrow\rangle \quad \text { or } \quad|\downarrow\rangle \otimes|\uparrow\rangle
$$

Measurement turns an entangled state into a product state

Measurement induced phase transition

A phase transition characterized by the dynamics of quantum entanglement

Measurement induced phase transition

A phase transition characterized by the dynamics of quantum entanglement

Consider a 1D qubit chain with a product state at the beginning and then turn on a random unitary evolution
a quantum circuit without any measurements

Measurement induced phase transition

A phase transition characterized by the dynamics of quantum entanglement $\quad S=-\operatorname{tr} \rho_{A} \ln \rho_{A}$
entanglement entropy between subsystem A and B

How does the entanglement between the two subsystems evolve ?

Measurement induced phase transition

A phase transition characterized by the dynamics of quantum entanglement

now randomly measure qubits at each time slice with rate p per spin

Measurement induced phase transition

A phase transition characterized by the dynamics of quantum entanglement

Skinner, Ruhman and Nahum, PRX 2019
Chan, Nandkishore,Pretko and Smith, PRB 2019
Li, Chen and Fisher, PRB 2019

Measurement induced phase transition

A phase transition characterized by the dynamics of quantum entanglement

Skinner, Ruhman and Nahum, PRX 2019
Chan, Nandkishore,Pretko and Smith, PRB 2019
Li, Chen and Fisher, PRB 2019

Measurement induced phase transition

By tuning the measurement rate, the growth of entanglement exhibits different scaling laws !!!

We call this measurement induced phase transition (MPT)
unitary time evolution: increase the entanglement
measurement: cancel the entanglement between the qubit with the rest of the system

Challenges

No analytical understanding about the quantum critical point and critical exponents !

Challenges

2. Hard to simulate for large system size

Haar random circuit: ~ 24 qubits
hard to get accurate enough critical point/ exponents
3. Hard to achieve in experiment
quantum tomography requires exponential number of detections for the same density operator
post-selection problem requires the exact same measurement outcome

Challenges

2. Hard to simulate for large system size

Haar random circuit: ~ 24 qubits
hard to get accurate enough critical point/ exponents
3. Hard to achieve in experiment
quantum tomography requires exponential number of detections for the same density operator
post-selection problem requires the exact same measurement outcome
superconducting qubits: Koh, Sun, Motta, and Minnich, arXiv:2203.04338
trapped ions: Noel, Niroula, Zhu, Risinger, Egan, Biswas, Cetina, Gorshkov, Gullans, Huse and Monroe Nature
Physics 2022

Purification Phase transition

starting with a maximally mixed state

Quantum Tree Model

1. The critical point and critical exponents can be exactly solved by mapping to statistical polymer problems
2. The numerical calculation can be done efficiently by a pool method for even the infinite large tree

Quantum Tree Model

Nahum, Roy, Skinner, and Ruhman, PRX Quantum 2, 010352 (2021)

Only works for the forced measurement case

No solution for a tree model with real measurements

Real Measurement vs Forced Measurement

Real measurement: the usual measurement in physics. The measurement outcomes are random with probabilities based on the Born rule

Forced measurement: the measurement outcome is pre-determined with no randomness

To get forced measurement: run the system with real measurements multiple times and discard the realizations with wrong measurement outcomes

Quantum Tree Model

Here we propose a model which has well-defined time order and can have real measurements collapse process

$\Theta / \operatorname{cc} \mathbb{N}^{12 / 1 / 22} \Theta$

Quantum Tree Model

Here we propose a model which has well-defined time order and can have real measurements collapse process

no randomness in locations of measurements
12/1/22

Quantum Tree Model

Here we propose a model which has well-defined time order and can have real measurements

weak measurements with strength θ

$$
K_{\sigma}=\cos \theta \mathbf{1}+(\sin \theta-\cos \theta) u|\sigma\rangle\langle\sigma| u^{\dagger}
$$

$$
\sum_{\sigma} K_{\sigma}^{\dagger} K_{\sigma}=\mathbf{1}
$$

$$
\rho \rightarrow \frac{K_{\sigma}^{\dagger} \rho K_{\sigma}}{\operatorname{tr} K_{\sigma}^{\dagger} \rho K_{\sigma}}
$$

$\theta=\frac{\pi}{4}$, no measurement and K behaves like identity operator, always stay mixed
$\theta=\frac{\pi}{2}$, projective measurement, purified at the first step

Quantum Tree Model

Here we propose a model which has well-defined time order and can have real measurements

random unitary operator
projective measurement (real/forced)

MPT in our Quantum Tree Model

We are interested in the purity of the top qubit versus the increase of system size (total layers k)
It is found that our tree model exhibits a phase transition by tuning the weak measurement strength

weaker measurement

$$
S_{v N}=-\operatorname{tr} \rho \ln \rho
$$

MPT: real measurement induced phase transition
FMPT: forced measurement induced phase transition
stronger measurement

12/1/22

MPT in our Quantum Tree Model

We are interested in the purity of the top qubit versus the increase of system size (total layers k)
It is found that our tree model exhibits a phase transition by tuning the weak measurement strength

$$
S_{v N}=-\operatorname{tr} \rho \ln \rho
$$

MPT: real measurement induced phase transition
FMPT: forced measurement induced phase transition

MPT in our Quantum Tree Model

$$
\rho_{f}=\left(\begin{array}{cc}
1-Z & 0 \\
0 & Z
\end{array}\right) \quad 0 \leq Z \leq \frac{1}{2}
$$

Z encodes all interesting properties of our tree model. $Z=0$, pure state. $Z=1 / 2$, maximally mixed state
We define a typical purity for each k by $\quad \ln Z^{t y p} \equiv\langle\ln Z\rangle$

Recursion Relation

$$
Z_{k+1}=f\left(Z_{k}^{1}, Z_{k}^{2}, t, s\right)
$$

S : the set of measurement outcomes

$$
\rho_{k}^{1}=\left(\begin{array}{cc}
1-Z_{k}^{1} & 0 \\
0 & Z_{k}^{1}
\end{array}\right) \quad \rho_{k}^{2}=\left(\begin{array}{cc}
1-Z_{k}^{2} & 0 \\
0 & Z_{k}^{2}
\end{array}\right)
$$

$$
\begin{array}{cc:c}
& U & {\left[t\left(\sigma_{1}, \sigma_{2}, \sigma_{2}^{\prime}\right)\right]=\left[U K_{\sigma_{1}}^{(1)} \otimes K_{\sigma_{2}}^{(2)}\right]_{c d}^{a \sigma_{2}^{\prime}}} \\
\hdashline K & \\
\hdashline K &
\end{array}
$$

Recursion Relation

$$
Z_{k+1}=f\left(Z_{k}^{1}, Z_{k}^{2}, t, s\right)
$$

S : the set of measurement outcomes

$$
\rho_{k}^{1}=\left(\begin{array}{cc}
1-Z_{k}^{1} & 0 \\
0 & Z_{k}^{1}
\end{array}\right) \quad \rho_{k}^{2}=\left(\begin{array}{cc}
1-Z_{k}^{2} & 0 \\
0 & Z_{k}^{2}
\end{array}\right)
$$

$$
\left[t\left(\sigma_{1}, \sigma_{2}, \sigma_{2}^{\prime}\right)\right]=\left[U K_{\sigma_{1}}^{(1)} \otimes K_{\sigma_{2}}^{(2)}\right]_{c d}^{a \sigma_{2}^{\prime}}
$$

$$
\rho_{k+1}=\frac{t\left(\rho_{k}^{1} \otimes \rho_{k}^{2}\right) t^{\dagger}}{\operatorname{tr} t\left(\rho_{k}^{1} \otimes \rho_{k}^{2}\right) t^{\dagger}} \quad p_{s}=\operatorname{tr} t\left(\rho_{k}^{1} \otimes \rho_{k}^{2}\right) t^{\dagger}
$$

Forced Measurement Phase Transition

In the non purifying phase, non zero $Z^{t y p}$ even when system size goes to infinity

In the purifying phase, $Z^{t y p}$ decays to zero with system size increasing to infinity

$$
\begin{gathered}
\rho_{k+1}=\frac{t\left(\rho_{k}^{1} \otimes \rho_{k}^{2}\right) t^{\dagger}}{\operatorname{tr} t\left(\rho_{k}^{1} \otimes \rho_{k}^{2}\right) t^{\dagger}} \\
s=(\uparrow, \uparrow, \uparrow) \\
Z_{k+1}=A_{1} Z_{k}^{1}+A_{2} Z_{k}^{2}+O\left(\left(Z_{k}\right)^{2}\right)
\end{gathered}
$$

Forced Measurement Phase Transition

$Z_{k+1}=A_{1} Z_{k}^{1}+A_{2} Z_{k}^{2}$
$G_{k}(x)=\left\langle\exp \left(-e^{x} Z_{k}\right)\right\rangle$
$G(x)$ can be viewed as a moving wave to the left with k as time and x as position. Its recursion relation can be viewed as the discrete version of Fisher-KPP equation.

Forced/Real Measurement Phase Transition

minimal velocity

$$
v=\frac{1}{\lambda} \ln \sum_{s}\left\langle p(s)\left(A_{1}^{\lambda}(s)+A_{2}^{\lambda}(s)\right)\right\rangle
$$

$$
\frac{\ln \tan \theta_{c}}{\tan ^{2} \theta_{c}-1 / \tan ^{2} \theta_{c}}=\frac{3}{16}
$$

$$
\theta_{c}=1.1001
$$

Forced Measurement Phase Transition

$$
\ln Z_{k \rightarrow \infty_{k}}^{\text {typ }}=-\frac{C}{\sqrt{\theta_{c}-\theta}}, \quad \theta_{c}-\theta \ll 1 \quad \ln Z_{k}^{t y p} \sim-k^{1 / 3}, \quad \theta=\theta_{c}
$$

Forced Measurement vs Real Measurement

1. Different critical points
2. Similar scaling exponents

Experimental Protocol

expansion process: inverse of the collapse process
final state of the system exhibits phase transition from a mixed state to a pure state
maximally mixed single qubit state

Experimental Protocol

Experimental Protocol

Experimental Protocol

 protocol:
1.Prepare the GHZ state as discussed and construct the tree with random unitary operators and measurements
2. Classically calculate the density operator of the reference qubit using the measurement outcomes

$$
\rho_{R}=(1+\vec{n} \cdot \vec{\sigma}) / 2, \quad|\vec{n}|=1-2 Z
$$

3. Measure the reference qubit along the direction \vec{n} and record the outcome $\tau(\pm 1)$
purifying phase: high accuracy of prediction
Non-purifying phase: low accuracyof prediction

Experimental Protocol

 protocol:
1.Prepare the GHZ state as discussed and construct the tree with random unitary operators and measurements
2. Classically calculate the density operator of the reference qubit using the measurement outcomes

$$
\rho_{R}=(1+\vec{n} \cdot \vec{\sigma}) / 2, \quad|\vec{n}|=1-2 Z
$$

3. Measure the reference qubit along the direction \vec{n} and record the outcome $\tau(\pm 1)$
purifying phase: high accuracy of prediction
Non-purifying phase: low accuracy of prediction
4.Repeat above procedure many times

Experimental Protocol

 protocol:
1.Prepare the GHZ state as discussed and construct the tree with random unitary operators and measurements
2. Classically calculate the density operator of the reference qubit using the measurement outcomes

$$
\rho_{R}=(1+\vec{n} \cdot \vec{\sigma}) / 2, \quad|\vec{n}|=1-2 Z
$$

3. Measure the reference qubit along the direction \vec{n} and record the outcome $\tau(\pm 1)$
purifying phase: high accuracy of prediction
Non-purifying phase: low accuracy of prediction
4.Repeat above procedure many times

$$
\langle Z\rangle_{e x p}=\frac{1}{2}(1-\langle\tau\rangle)=\langle Z\rangle_{t h}
$$

Summary

1. Proposed a model which exhibits MPT for both forced and real measurement
2. Studied the phase diagram and derive a solution for critical points and critical exponents
3.Proposed an experimental protocol to see MPT without post-selection problem

Measurement-induced phase transitions on dynamical quantum trees : arXiv:2210.07264

Experimental Protocol

 protocol:
1.Prepare the GHZ state as discussed and construct the tree with random unitary operators and measurements
2. Measure the reference qubit along the z direction and record the outcome $\tau(\pm 1)$
3. Classically calculate the density operator of the reference qubit using the measurement outcomes

$$
\rho_{R}=(1+\vec{n} \cdot \vec{\sigma}) / 2, \quad|\vec{n}|=1-2 Z
$$

4.Repeat above procedure many times

$$
\langle Z\rangle=\frac{1}{2}\left(1-\left\langle\frac{\tau}{\hat{n}_{z}}\right\rangle\right)
$$

Forced Measurement Phase Transition

$$
\ln Z_{k \rightarrow \infty}^{t y p}=-\frac{C}{\sqrt{\theta_{c}-\theta}}, \quad \theta_{c}-\theta \ll 1 \quad \ln Z_{k}^{t y p} \sim-k^{1 / 3}, \quad \theta=\theta_{c}
$$

12/1/22
26

Quantum Tree Model

Here we propose a model which has well-defined time order and can have real measurements

random unitary operator
projective measurement (real/forced)

