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Motivation

General goal: describe the space X of topologically ordered states
of quantum many-body systems at zero temperature T = 0.

Assumptions:
@ By many-body systems, we mean a lattice spin system with
local interaction
@ Often assumed to be gapped or some analog of thereof.
@ Equivalence relation: evolution by a local Hamiltonian and
addition of disentangled degrees of freedom.

Belief: There is a class of states of lattice systems with a

continuous limit described by a unitary TQFT. All the information
: k

must be encoded in the entanglement structure of the state.

A mathematical definition of such a class is yet to be understood.

Modest goal: classify invertible states of matter. [A. Kitaev]
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Topological invariants of states

We can probe the space of states from a given class by considering
families parameterized by some manifold M — X and construct
their invariants.

By topological invariants of a family of states, we mean locally
computable quantities or objects, which do not depend on the
location of computation and do not change if we continuously
deform the family.

If M = pt, it gives an invariant of the topological phase =
connected component of the space A'.

A
We can guess what sort of invariants we should expect from the
corresponding effective field theory and try to define it
microscopically.
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Berry classes for 0d systems

Let M be a smooth manifold parameterizing a family ¢ : M — Aj
of Od states. We can pick a connection G € Q}(M, D) such that

d{A)y = (DA)y = (dA+[G, A])y. (1)

If F = dG + 3[G, G], then %[(FM] € H?(M,R) defines the usual

Berry class that is quantized.
The space of all 0d states has the homotopy type of CIP*°. The

only non-vanishing homotopy group mp(CP>°) = Z is responsible
for the existence and the quantization of the Berry class.
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Generalization to many-body systems with locality

For many-body systems, one has to impose locality by allowing
only deformations that can be performed by a local Hamiltonian.
Even if we restrict to such G, the average (F), is not defined in
the thermodynamic limit.

Intuition: Suppose at long distances our d-dimensional lattice
system is described by a trivial (d+1)-dimensional QFT on X. If
the parameters are a slowly varying function ¢ : ¥ — M, the
partition function Z(X, ¢) may have a topological term

Z~exli [ 6°8)

where B is a (d + 1)-form gauge field on M. We shouldbe able to
compute the cohomology class of [dB].
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Generalization to many-body systems with locality

For many-body systems, one has to impose locality by allowing
only deformations that can be performed by a local Hamiltonian.
Even if we restrict to such G, the average (F), is not defined in
the thermodynamic limit.

Intuition: Suppose at long distances our d-dimensional lattice
system is described by a trivial (d+1)-dimensional QFT on X. If
the parameters are a slowly varying function ¢ : ¥ — M, the
partition function Z(X, ¢) may have a topological term

Z~exli [ 4°8)

where B is a (d + 1)-form gauge field on M. We shouldbe able to
compute the cohomology class of [dB].

What is the class of states we should consider? How to define
families of states preserving locality?
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L ocal Hamiltonians

By a local Hamiltonian in this talk we mean a Hamiltonian which
is a sum of uniformly bounded traceless almost local terms (with
rapidly decaying tails).

Notation:
%) - the space of local Hamiltonians;

DV - the space of localtHamiltonians preserving the state 7, i.e.
<[Ha ])1.!'1 =0;
E)ﬁ - the space of local Hamiltonians preserving the state v

localized on A;
@ﬁlmAn - the space of local Hamiltonians preserving the state 1/

localized on the intersection of Aq,...,A,.
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The key property

The condition on 7 Let H € ©®¥. We require that it is possible to
find a decomposition H =", Ha, such that Hy, € @ﬁk. We also
require that it is true for lower-dimensional cones.
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The key property

The condition on 7: Let H € ©¥. We require that it is possible to
find a decomposition H =), Ha, such that Hy, € @ﬁk. We also
require that it is true for lower-dimensional cones.

Any invertible or gapped state satisfies this condition (Main tool of
the proof: Lieb-Robinson bound and the integral transform used in
the quasi-adiabatic continuation).

Nikita Sopenko Equivariant Berry classes and 2d chiral states

Pirsa: 22120050

Page 10/38



The key property

More precise formulation is the exactness of the following complex:

S PG D> PDY S DY 0
-k j
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Berry classes for 1d systems

Let M be a smooth manifold. We define a smooth family of states
¥ : M — X by requiring that there exists G € Q(M, D) such that

d(A)w = (DA)w = <dA+ [G,ADw

We have F = dG + %[G, G| satisfying DF = 0. Note that
([F, A])y = (DDA}, = dd(A),, = 0. Therefore F preserves 1 and
there is a splitting F = F4, + F4, such that F4. € Q%(M, 91).

Ao ® A1

I
DF 4, is a 3-form taking values in local observables localized on the
interface AgA;. The Berry class is given by

[(DF a,)y] € H3 (M, iR).
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Berry classes for 1d systems

Let M be a smooth manifold. We define a smooth family of states
¥ : M — X by requiring that there exists G € Q'(M, D) such that

We have F = dG + %[G, G| satisfying DF = 0. Note that
([F, A])y = (DD.A),, = dd(A),, = 0. Therefore F preserves 9 dnd
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DF 4, is a 3-form taking values in local observables localized on the
interface AgA;. The Berry class is given by

[(DF a,)y] € H3(M, iR).

Nikita Sopenko Equivariant Berry classes and 2d chiral states

Pirsa: 22120050 Page 13/38



General construction

There is a general construction for any dimension d that produces
a class in HI2(M, iR).

All the information can be packaged into a single equation

dG* + %{G‘,G'} = —8G*

!

where G* = G +g(® + g 4 for gK) € Qk+2(M, C(D¥)) and
{-,-} is a natural bracket on the extended complex.

The Berry class is given by
d :
(gl a,)v] € HUT2(M, iR)

and does not depend on the choice of the solution of the equation
or regions Ap, ..., A4.
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Equivariant classes

Suppose we have an on-site action of a Lie group G and consider
G-invariant states up to a G-invariant equivalence.

Intuition: the partition function of a (d+1)-dimensional QFT
describing the lattice system at low energy may depend on the

1
background gauge fields, e.g.

 k
Zasnya ~ exaliy- [ AdA

where A is a U(1) gauge field. We should be able to define an
invariant taking values in H*(BU(1),R) = R that corresponds to
k.
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General construction

There is a general construction for any dimension d that produces
a class in HIt2(M, iR).

All the information can be packaged into a single equation

iG> %{G',G'} S, Te

!

where G* = G + g + g + . for glk) € Qkt2(M, C (D)) and
{-,-} is a natural bracket on the extended complex.

The Berry class is given by
d .
(gl a,)u] € HH2(M, iR)

and does not depend on the choice of the solution of the equation
or regions Ap, ..., A4.
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Example: 2d system with U(1) symmetry

Let Q be the total charge for the U(1) action that is a sum of
on-site terms. We can split

Q= Qa, +Qa, +Qa,
such that é,q;. c E)ﬁj. We can modify Q,q!. so that [Q, é,q,.] =10

Note that [Qa,, Qa,] is an almost local observable. The
equivariant Berry class can be defined by

= 4ﬂf([éAn>éA1]>¢'
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Example: 2d system with U(1) symmetry

Remarks:

@ When the state is a ground state of some gapped
Hamiltonian, o coincides with the Hall conductance.

@ For invertible states we have o € 2Z for bosonic systems and
o € Z for fermionic.

@ Defined for any state that has no local spontaneous symmetry
breaking.
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Equivariant classes

Remarks:

@ One can similarly define invariants for any term in the
effective action that consists of gauge fields corresponding to
internal symmetries described by a Lie group G and variations
of the parameters of the family.

Example: [ ¢ A F corresponds to the Thouless pump invariant
of a family of 1d U(1)-invariant states.

Example: ﬁ | AdAdA corresponds to the invariant of a 4d
U(1)-invariant state.

I
For finite group symmetry G, one can define invariants for

invertible states in low dimensions using similar methods.

For the construction of invariants coming from a spatial
structure (such as "gravitational Chern-Simons coupling”) we
need a better understanding of the class of topologically
ordered states.
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Example: 2d system with U(1) symmetry

Let Q be the total charge for the U(1) action that is a sum of
on-site terms. We can split

Q = C)Au + éAl a7 QAQ
such that é,q'. - Qﬁ,-- We can modify (i),qj so that [Q, (f},q,.] = 0.

Note that [Qa,, Qa,] is an almost local observable. The
equivariant Berry class can be defined by

= 4ﬂf([éAnaéA1]>¢'

It does not depend on the splitting or the choice of regions
Ao, A1, As. This class in fact takes values in the equivariant
cohomology of a point HE, 1 (pt,R) = R.
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Chiral states in 2d

Non-chiral states can be efficiently described by commuting
projectors or tensor networks (Levin-Wen model).

One of the main features of chiral states is the non-existence
of boundaries with short-range correlations.

Various candidates for chiral states of lattice spin systems
have been proposed inspired by Laughlin wave function.

While some expected properties of such states can be checked
numerically, it is difficult to verify that they are
representatives of the correct topological phase.

To the best of our knowledge, no general construction exists
for an arbitrary unitary rational vertex algebra.

A representative of a non-trivial invertible 2d state has not
been constructed. ((Eg); state conjectured by Kitaev.)
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Chiral states in 2d: general construction

Let V be a good unitary rational vertex operator algebra, and let V
be the Hilbert space of the vacuum module. We define a model on
a finite lattice I' with on-site Hilbert spaces V; =V for j € I'.

For a collection of disjoint holomorphic embeddings of unit disks
we define

Nikita Sopenko Equivariant Berry classes and 2d chiral states

Pirsa: 22120050 Page 22/38



Chiral states in 2d: general construction

Let V be a good unitary rational vertex operator algebra, and let V
be the Hilbert space of the vacuum module. We define a model on
a finite lattice I' with on-site Hilbert spaces V; =V for j € I'.

For a collection of disjoint holomorphic embeddings of unit disks

we define
(Wrl: Q) V; = C
Jer

s
e
&
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Chiral states in 2d: general construction

The norm (W |Wr) is given by the partition function on the
following surface

It can be computed by cutting the surface into elementary blocks,
so that we get a tensor network \
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Chiral states in 2d: general construction

The norm (W |Wr) is given by the partition function on the

jjﬁ ﬂjﬂj

VAV Ay AW V]

following surface

It can be computed by cutting the surface into elementary blocks,

so that we get a tensor network .
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Chiral states in 2d: general construction

The average
(Vr|OalVr)

OA Y- o=
(Ondur (Wr|Vr)
is given by the partition function on the surface with insertions
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Chiral states in 2d: general construction

Claims:

The states are well-defined in the thermodynamic limit and
have rapid decay of correlations in the bulk at least for large
enough holes.

The holes effectively "screen” the correlations.
The correlation length depends on the size of the holes.

Insertions of vertex operators and variations of the moduli of
the surface can be implemented by a local Hamiltonian
evolution of the lattice system, and therefore define a state in
the same topological phase. .

The state is not a tensor network state. However, it can be
obtained as a limit of a family of tensor network states
together with a decoupled complex conjugated copy.
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Chiral states in 2d: general construction

Claims:

The states are well-defined in the thermodynamic limit and
have rapid decay of correlations in the bulk at least for large
enough holes.

The holes effectively "screen” the correlations.
The correlation length depends on the size of the holes.

Insertions of vertex operators and variations of the moduli of
the surface can be implemented by a local Hamiltonian
evolution of the lattice system, and therefore define a state in
the same topological phase.

The state is not a tensor network state. However, it can be
obtained as a limit of a family of tensor network states
together with a decoupled complex conjugated copy.
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Chiral states in 2d: U(1) symmetry

If V has a U(1) symmetry, the construction naturally defines U(1)
invariant states with the on-site action being the action on the
vacuum module of the U(1) charge. The action of the charge Qa4
on a region A corresponds to the insertion of [, J(z)% into the
defining correlator.

000000
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Chiral states in 2d: U(1) symmetry

If V has a U(1) symmetry, the construction naturally defines U(1)
invariant states with the on-site action being the action on the
vacuum module of the U(1) charge. The action of the charge Qa4
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Chiral states in 2d: U(1) symmetry

If V has a U(1) symmetry, the construction naturally defines U(1)
invariant states with the on-site action being the action on the

vacuum module of the U(1) charge. The action of the charge Qa4
on a region A corresponds to the insertion of [, , J(z)%.

The equivariant Berry class is given by the level k of the
subalgebra of U(1) currents J(z)J(w) = k(z — w)™2 + ...
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Chiral states in 2d: U(1) symmetry

If V has a U(1) symmetry, the construction naturally defines U(1)
invariant states with the on-site action being the action on the

vacuum module of the U(1) charge. The action of the charge Qa4
on a region A corresponds to the insertion of [, , J(z)%.
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Conclusion

@ We have defined the topological invariants generalizing the
Berry classes and their equivariant analogs for a certain class
of states that includes gapped states.

@ The construction of chiral 2d states from a unitary rational
vertex operator algebra has been proposed that generates
examples of 2d states with non-trivial equivariant Berry
classes.
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General construction

There is a general construction for any dimension d that produces
a class in HIt2(M, iR).

All the information can be packaged into a single equation

dEH %{G',G'} S, Te

where G* = G + g + g + . for gk € QKT2(M, C(D¥)) and
{-,-} is a natural bracket on the extended complex.

The Berry class is given by
d .
(gl a,)u] € HE2(M, iR)

and does not depend on the choice of the solution of the equation
or regions Ap, ..., A4.
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Equivariant classes

Remarks:

@ One can similarly define invariants for any term in the
effective action that consists of gauge fields corresponding to
internal symmetries described by a Lie group G and variations
of the parameters of the family.

Example: [ ¢ A F corresponds to the Thouless pump invariant
of a family of 1d U(1)-invariant states.

Example: ﬁ | AdAdA corresponds to the invariant of a 4d
U(1)-invariant state.

For finite group symmetry G, one can define invariants for
invertible states in low dimensions using similar methods.

For the construction of invariants coming from a spatial
structure (such as "gravitational Chern-Simons coupling”) we
need a better understanding of the class of topologically
ordered states.

Nikita Sopenko Equivariant Berry classes and 2d chiral states

Pirsa: 22120050 Page 37/38



Example: 2d system with U(1) symmetry

Let Q be the total charge for the U(1) action that is a sum of
on-site terms. We can split

Q = Qap + Qa, + Qa,
such that é,q;. = E)ﬁj. We can modify QAJ. so that [Q, é,q:.] = 0.

Note that [Qa,, Qa,] is an almost local observable. The
equivariant Berry class can be defined by

O i= 47Tf([éAna éf"ll])Ib'

It does not depend on the splitting or the choice of regions
Ao, A1, As. This class in fact takes values in the equivariant
cohomology of a point HE, 1 (pt,R) = R.
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