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Abstract: | will speak about my recent work with Vladimir Kazakov where we study the SU(Nc) lattice Yang-Mills theory in the planar limit, at
dimensions D=2,3,4, via the numerical bootstrap method. It combines the Makeenko-Migdal loop equations, with the cut-off L on the maximal
length of loops, and the positivity conditions on certain correlation matrices. Our algorithm is inspired by the pioneering paper of P. Anderson and
M. Kruczenski but it is significantly more efficient, as it takes into account the symmetries of the lattice theory and uses the relaxation procedure in
the line with our previous work on matrix bootstrap. We thus obtain the rigorous upper and lower bounds on the plaguette average at various
couplings and dimensions. The results are quickly improving with the increase of cutoff L. For D=4 and L=16, the lower bound data appear to be
close to the Monte Carlo data in the strong coupling phase and the upper bound data in the weak coupling phase reproduce well the 3-loop
perturbation theory. We attempt to extract the information about the gluon condensate from this data. Our results suggest that this bootstrap
approach can provide atangible alternative to, so far uncontested, the Monte Carlo approach.

Zoom link: https://pitp.zoom.us/j/961012687962pwd=QkdJbm9GUzQ2Y nirM INIcUt2Z3Nvdz09
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RESULT
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BACKGROUND

It is characterized by using the Equations of Motion (EOM).

- Matrix model: 2002.08387 (Lin), 2108.04830 (Kazakov & Zheng) and
2108.08803 (Koch et al.)...

- Quantum systems: 200410212 (Han & Hartnoll & Kruthoff) and

follow-up works. See also: 211010701 and 220512325 (Hastings et
al.). There are earlier attempts in this direction.

- Classical dynamical systems: 1610.05335, ~"I705.07096, 1807.09814
(Goluskin et al.)...

. Lattice models: 1612.08140 (Anderson & Kruczenski) and 220311360
(Kazakov & Zheng) for lattice gauge theory. Recent results on
Lattice Ising model: 220612538 (Cho et al.)
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MULTI-MATRIX BOOTSTRAP: AN EXAMPLE

Here we propose to study the following two-matrix model:

g / dVAdVB e—Ntr(—h[A,B]z J24+A? /24 gA" /4+B? [2+gB" [4) (4)

N—o0

The integration is over Hermitian matrix. Te the best of our
knowledge, this model with general g and h value, is not solvable!
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MATRIX BOOTSTRAP

TrA?, TrA%, TrA?B?, TrABAB, TrA®, TrA“B?, TrA’BAB, TrA?BAB, TrA®,
TrA®B?, TrA°BAB, TrA*BA’B, TrA*B*, TrA3BAB, TrA’BAB?, TrA3B?AB?,
TrA’BABAB?, TrA’BAB?AB, TrA’B?A?B?, TrABABABAB ...

(5)

Toy model two-matrix model
Observable W Tr(Words)
Action Quartic action Quartic+Commutator’
EOM Linear recursion relations loop equations
Symmetry Zs Dihedral group D,
positivity Hankel matrix Hermitian
Convex? Yes No (relaxation)

Pirsa: 22120043 Page 14/55



MULTI-MATRIX BOOTSTRAP: AN EXAMPLE

Here we propose to study the following two-matrix model:

g / dVAdVB e—Ntr(—h[A,B]z J24+A? J2+gA" /4+B? /24 gB" /4) (4)

N—o0

The integration is over Hermitian matrix. Te the best of our
knowledge, this model with general g and h value, is not solvable!
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CUTOFF=4: LOOP EQUATIONS

1= TrA? 4 gTrA* — h(—2TrA2B? + 2TrABAB)

0 = —2TrA? + TrA* — h(2TrA3BAB — 2TrA*8?) + gTrAS

0 = —TrA? + TrA2B2 — h(—TrA?BA?B + 2TrA3BAB — TrA*B?) + gTrA“B?

0 = —h(2TrA?BA?B — 2TrA3BAB) + gTrA3BAB + TrABAB

B = —2TrA* + TrA® — h(2TrABAB — 2TrA%B?) + gTrA®

B = —T1A%8% 4+ TrA*B? — h(—T1A3B?AB? + 2TrASBAB® — TrA%B*) + gTrA®8?

0 = —2TrA’B? — h(—TrA*B*A’B? + 2TrA’BABAB? — TrA’B?AB?) + TrA*B? + gTrA®B?
0 = —TrA* + TrA*B? 4+ gTrA*B* — h(—TrA*BA2B + 2TtABAB — TrA%8?)

0 = TrA’BAB — h(2TrA?BAB?AB — TrA?BABAB? — TxA*BAB?) + gTrA°BAB — TrABAB
0 = TrA’BAB + gTrA°BAB — 2TrABAB — h(—2TrA?BABAB? + 2TTABABABAB)

0 = TrA’BAB + gTrA3BAB? — h(—=TrA3BA’B + 2TrA“BA?B — TrABAB)

0 = gTrA’BA’B + TrA3BAB — h(2TrA3B2AB? — 2TrA’BAB?)

0 = —TrA?B? 4+ TrA?BA?B — h(—TrA?BAB?AB + 2TrA?BABAB? — TrA3B2AB?) + gTrA“BA?B
B = TrA?BA?B + gTrA3B?AB? — h(2TrA3BA’B — 2TrA“BA?B)

B = (TrA?)2.

(6)
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EXAMPLE: CORRELATION MATRIX

TrA? "TrAd TrA B TrABAB TrA?B?

TrA* TrA® TrA*B? TrA’BAB = TrAB-
Tra’gz  TrA'B? TrA: B2 TrA’BAB TrA*BA’B (7)
TrABAB TrA3BAB TrABAB TrA?BA’B TrA’BAB
TrA2B2  TrA*B> TrA2BA’2B TrA3BAB  TrA“B?
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CUTOFF=4: LOOP EQUATIONS

1= TrA? + gTrA* — h(—2TrA2B? + 2TrABAB)

0 = —2TrA? + TrA* — h(2TrA3BAB — 2TrA*8?) + gTrAS

0 = —TrA? + TrA2B2 — h(—TrA?BA?B + 2TrA3BAB — TrA*B?) + gTrA“B?

0 = —h(2TrA?BA?B — 2TrA3BAB) + gTrA3BAB + TrABAB

B = —2TrA* + TrA® — h(2TrABAB — 2TrA%B?) + gTrA®

B = —T1A%8% 4+ TrA*B? — h(—T1A3B?AB? + 2TrASBAB® — TrA%B*) + gTrA®8?

0 = —2TrA’B? — h(—TrA*B*A’B? + 2TrA’BABAB? — TrA’B?AB?) + TrA*B? + gTrA®B?
0 = —TrA* + TrA*B? 4+ gTrA*B* — h(—TrA*BA2B + 2TrABAB — TrA%8?)

0 = TrA’BAB — h(2TrA?BAB?AB — TrA?BABAB? — T3A*BAB?) + gTrA°BAB — TrABAB
0 = TrA’BAB + gTrA°BAB — 2TrABAB — h(—2TrA?BABAB? + 2TTABABABAB)

0 = TrA’BAB + gTrA3BAB? — h(—TrA3BA3B + 2TrA“BA?B — TrA°BAB)

0 = gTrA’BA’B + TrA3BAB — h(2TrA3B2AB? — 2TrA’BAB?)

0 = —TrA?B? 4+ TrA?BA?B — h(—TrA?BAB?AB + 2TrA?BABAB? — TrA3B2AB?) + gTrA“BA?B
B = TrA?BA?B + gTrA’B?AB? — h(2TrA’BA3B — 2TrA“BA?B)

B = (TrA?)2.

(6)
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RESULT

Am7
A=§
A=9

| + A=10,11

. [0-421783612 < (T1A%) < 0.421784687
" 1 0.333341358 < (TrA*) < 0.333342131
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COMPARE WITH MC

Compared to the MC study of the same model 2111.02410 (Jha), we are
convinced that for this model bootstrap is at least two order of
magnitude more efficient than MC.

- MC: 80-85 hours for N=800 simulation to get 4.5 digits.

- Bootstrap: ~ 40 hours to get 6 digits. (These are old results and
can be greatly improved by at least one order of magnitude.)
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LATTICE GAUGE THEORY

We are going to bootstrap the large N, limit of the following theory:

Z= /HdU#(X) exp(—S) (9)

NC T
= ; tr(Up + UY) (10)

where Up iIs the product of four unitary link variables around the
plaguette P and we sum up over all plaquettes P, including both
orientations. In our last work we bootstrap the one plaquette

average:
1
Up = —{trt)
P Nc< rUp)
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COMPARE

Plaquette model Lattice YM SU(o0)
Observable Wi Wilson loops
Action Quartic action Wilson Action
EOM Linear recursion relations MM loop equations
Symmetry Z lattice symmetry+C

positivity Hankel matrix Hermitian+Reflection
Convex? Yes No (relaxation)

k

We improved the method of 1612.08140 (Anderson & Kruczenski) by
the following points:

- Symmetry reduction and Reflection positivity
- Large N relaxation

- Back-track loop equations

- Some other technical improvements...
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MAKEENKO-MIGDAL LOOP EQUATIONS

Doing the following infinitesimal transformation
Uu(x) = Un(x)(1+ i€) to the Wilson loop WIC], we can get the
following loop equations schematically:

(linear) + 2AW|(C] = 2A(nonlinear)

S

0—0-0Q0
3 -
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MAKEENKO-MIGDAL LOOP EQUATIONS

(linear) 4+ 2AW|C] = 2A(nonlinear)
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MAKEENKO-MIGDAL LOOP EQUATIONS

(linear) + 2AW|[C] = 2A(nonlinear)

0=0-00

SR
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POSITIVITY BY INNER PRODUCT

Generalization: Any inner products defined on the vector space of
operators or its subspace could leads to positivity condition:

(O|0) = (01O = a*TMa >0 M= 0. (16)

In the above case of single-variable integration and Hermitian matrix
integration, we were taking adjoint to be Hermitian conjugation:

ot = o*T (17)
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POSITIVITY BY HERMITIAN CONJUGATION

In parallel to the bootstrap for Hermitian matrix model, we have:
Path*T = Reverse o Path

For a simplest example:

P&th‘] = ’ y P&th;g = l

Path; Path,

Path! 1 Up -
Path] Up 1 o
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POSITIVITY BY HERMITIAN CONJUGATION

Of course the matrix can be arbitrarily big when we consider multiple
Wilson paths:

e
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BOOTSTRAP

There are actually 6 Wilson loops in the matrix:

J -

£

-

[J-1+

B

After the optimization, we get (A = 1):

0< | 1<0.69300
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COMPARE

Toy model

Lattice YM SU(o0)

Observable

W

Wilson loops

Action

Quartic action

Wilson Action

EOM

Linear recursion relations

MM loop equations

Symmetry

Zy

L1

lattice symmetry+C

positivity

Hankel matrix

Correlation Matrix+?

Convex?

Yes

No (relaxation)
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REFLECTION POSITIVITY

We can also define the inner product by reflection positivity:
ol =00

Figure: Three reflection symmetries on the lattice allowing new positivity
conditions on Wilson loops combining the original and reflected Wilson
lines.
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REFLECTION POSITIVITY

Reflection Positivity is a new independent positivity condition (Gray
curve and Orange curve).

0.8}
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COMPARE

Toy model Lattice YM SU(o0)
Observable W Wilson loops

Action Quartic action Wilson Action
EOM Linear recursion relations MM loop equations
Symmetry Z, lattice symmetry+C
positivity Hankel matrix "Correlation Matrix+Reflection
Convex? Yes No (relaxation)
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SYMMETRY REDUCTION

Coming from the matrix of inner products, our positivity conditions is
formally similar to S-matrix. It is a well-known fact that we can
decompose the S-matrix w.rt the spin channel.

We notice that our inner product defined above is invariant under
some symmetry group.

((goO)|(g o O2)) = (Oh]|O,), Vg € G (23)

We can decompose the positivity conditions w.r.t the irreducible
representation of the symmetry group. (This is mathematically
guaranteed)
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SYMMETRY GROUP

For the correlation matrix with 0 — 0, the invariant group G is

By x Z;. Here By is the Hyperoctahedral group in D spacetime
dimensions. It acts on the Wilson path by doing the corresponding
spacetime rotation and reflection on the lattice. Z, is the group
reversing the path.

Dimension || Hermitian site&link re- | diagonal re-
Conjugation | flection flection

Pirsa: 22120043

2
3
4

BQXZZ
83 XZQ
B4><ng

Z/QXZQ"
Bzx?fsz
83)(232

Z’Q X 262
z
82 X ;‘Z%

Table: Invariant groups of correlation and reflection matrices 0 — 0

Page 41/55



2
o
=
O
=)
=
o
)
=
=
e
=
o
Ll
=
VI
o
=
=
N
o
a

Page 42/55

Pirsa: 22120043



Pirsa: 22120043

SYMMETRY GROUP

."J+‘“| }+] ?+|_¢I+I-')

- -01- T+ [+ 1+ 3+ 0D

-+ +xb

I’I l-r}- AI+L%1+Z"]+}J)
:gLJ C}TFCHD+ﬁHj)
-:%TWEH +1 D

(24)
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SELECTION OF MULTIPLETS OF WILSON PATH

We discard positivity constraints from less important Wilson Paths.

To better illustrate the efficiency of these reduction and selection
techniques, take an example of the correlation matrix for the paths
0 — 0, at 3D and Lyax = 16: it has a huge size 6505 x 6505. After the
symmetry reduction and truncation of the multiplets, the positivity
of the correlation matrix becomes the positivity conditions of 20
smaller matrices !, each with size:

38, 15,25, 18,62, 33, 68,75, 56, 78,
22,18,34,15,56,33,57,76, 69,73

So the SDP gets greatly simplified.
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COMPARE

Toy model Lattice YM SU(o0)
Observable W Wilson loops

Action Quartic action Wilson Action
EOM Linear recursion relations MM loop equations
Symmetry Z, lattice symmetry+C
positivity Hankel matrix ‘Correlation Matrix+Reflection
Convex? Yes No (relaxation)
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RELAXATION

We can relax them to make them convex by replacing x* = T, with
x> < T, or, in the positive semi-definite matrix form,

1 x
= 0.
(X Tq) e
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RELAXATION

Our general strategy: we treat the quadratic terms in the loop
equations as independent variables, and replace the algebraic
equality by the convex inequality:

Q= xx*

T L3
X)to.
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RELAXATION

In our example, at Lnax = 12, the relaxation matrix is:

(1)

Here q is the variable in place of square of s _‘ ik
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FINAL SCHEME

min/max | |,

subject to MM loop equations
CMirrep — 0’
RefM™P » 0, x3
R>=0 y
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Figure: 2D: the upper and lower bounds from our bootstrap at Lmax = 8
(yellow region), Lmax = 12 (orange curves) and Lmax = 16 (blue curves). The
dashed line is the exact solution.

ford <1
forA > 1
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(a) 4D (b) 3D

Y

Figure: Our bootstrap results for plaquette average in 4D and 3D LGT: upper
bounds at Lyax = 8 (yellow domain) at Lnax = 12 (orange curves) and
Lmax = 16 (blue curves). The red circles represent the MC data for SU(10) LGT

(with 5 purple squares for SU(12)). Dashed upper and lower lines represent
the 3-loop PT and strong coupling expansion, respectively.
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FUTURE DIRECTION: TECHNICAL IMPROVEMENT

This is a general framework, any technical breakthrough will benefit
other project in this category: Hierarchy in operators, solver of SD
equation, parallelization, effective action... After this, we expect to
reach Ln.x = 24 in the near future.
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FUTURE DIRECTION: POSSIBLE APPLICATIONS

- Finite N bootstrap(soon)

- Glueball spectrum
- Confinement

They are all related to observables in the asymptotic region
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QUESTIONS?
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