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Any theory of quantum gravity must in some way account for bulk
diffeomorphism invariance. There are basically two options:

Diffeomorphism invariance is fundamentally part of the quantum theory.

Diffeomorphism invariance is only emergent in the semiclassical regime.

Evidence to take the latter seriously: AdS/CFT. The bulk spacetime itself is
emergent at large N. So diffeomorphisms of that bulk are also emergent.

Diffeomorphism invariance is a kind of gauge symmetry. What does it mean for
a gauge symmetry to be emergent?
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Gauge symmetries are redundancies in our description of reality, whose purpose
is to allow for a better conceptual and computational grasp of the underlying
physics.

In differing regimes, we may use different descriptions of reality, which are
redundant in different ways.

A gauge symmetry is emergent if our description of physics in a more
fundamental regime is less redundant than our description in a less

fundamental regime.

classical limit :
quantum theory » classical theory

less redundant description more redundant description

( emergent gauge symmetry)

In field theory and gravity, gauge symmetries allow us to use mathematically

local structures to describe non-local degrees of freedom.

So, instead of emergent gauge symmetry, you may also think of this talk as
being about emergent non-local degrees of freedom.

[Rovelli, 2013, “Why gauge?”| [Witten, 2016, “Symmetry and Emergence”|
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In holography, the emergence of the bulk appears to be largely quantum
information theoretic in nature.

I will focus on one aspect of this story: the link between gauge symmetry and
entanglement. Motivation comes from gravity, but I won’t restrict to the
gravitational setting.

Gauge symmetry Entanglement

Non-locg] de ibution

Erees Non-local disty :
: i ma 1011
of freedom of quantum informs

Non-locality

Quantum entanglement would give rise to emergent classical gauge symmetry.
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This talk: Identify the mechanism for this to happen.
Precise and elementary, but also very general (not model-specific).
Takeaways:

You don’t need something like traditional constraint quantisation to
quantise a theory with gauge symmetry — you can use entanglement
instead.

The structure of multipartite entanglement simplifies significantly in the
classical limit — you can describe it with gauge symmetry.
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Toy example: three entangled spins
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Consider a spin j with Hilbert space H. Let J be the angular momentum
operator, and let |7, m) be usual eigenbasis.

Spin coherent states are an overcomplete basis of H:

& (:) p -5 ")
- ——— ) < —,\' 'l] M
(’sm(m(“‘ s

In) = D(n) |j,—j), where D(n)= exp

where n is a unit 3-vector of angle 0 from e® = (0,0, 1).

These states provide us with a notion of a classical limit at large j.

: 1 ifn=n,
lim |(n|n’)|* = I nu 1_1
Jj—roo 1 0 otherwise.

. . ~ - +
The classical state space is S°, and any classical observable A : §° — C has an
operator representation

1=ne
:1 (25 + 1) |n) (n| A(n),

such that )
Aln) =~ A(n) |n).
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Classical limit of unentangled spins

Suppose we have three spins ji, j2, J3.

We can get a classical limit by defining
In1,ns,n3) = n;) ® |n2) ® [n3)
These states satisfy

i =——n

otherwise.

. 5
lim  |(n1,ns,n3/n}, 0}, nk)|* = j
2t 1].3 -_')]-3 — OO0 ye! ~ 1 [)

~)
&

. 5 ~) —~ )
The classical state space is §< x $“ x §=.

=128
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Classical limit of entangled spins

Let [0,0) € H = H, ® Hs ® Hs be the unique state of zero angular momentum.

This is a highly entangled state:

J1 J2 Js 5 : .

: /1 ]2 73 : o i
= ( e 11, M1) ® |72, M2) X |73, Mm3) .
0,0) | \ony me g/ ™) ® [2,m2) ® |3, ms)

A== S = s = e &y -
Wigner 3j-symbol

Act with SU(2) representations of the first two spins:

|11, 902; My, M) = (U 1(¥1, m1) ® Us (32, m2) ® 13) |0,0) .

where U, (v;, m;) = exl')(fi}-z'-'z,;-*"'.t- m-J ’)

Here 11,19 € [0,7) and m;, m, are unit 3-vectors. Each of (¥;,m;) and

(1), my) parametrise points on S?, the group manifold of SU(2)

Thus, we have an S® x S? of such states.
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Classical limit of entangled spins

These states form an overcomplete basis for H; ® Ho ® Hsz. Moreover:

!
2

&

‘ o (1

lim 1, Yo my, molt) , Wh: m), mb)|° =
b D1y % V1, Yoy My, My :
J1,42,53—00 1(] otherwise.

Thus, these states give a classical limit, with classical state space S® x S°.

"lassical observables A : S? x §% — C may be represented as operators:
Classical observables 4 : S x S \
= / dp A(¢y,v9;my, my) |11, 9Pe; my, my) (Y1, 12; my, ms|,
4 b‘fi X Sfﬁ

(for some measure p) which obey

A |91, 102; My, mo) & A(Y1, Po;my, my) |1, 12; My, my) .

if i, = 9! and m; = m,
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Classical limit of entangled spins

Let [0,0) € H = H, ® Hs ® Hs be the unique state of zero angular momentum.

This is a highly entangled state:

J1 J2 Js 5 : .

: /1 ]2 73 : o i
= ( e 11, M1) ® |72, M2) X |73, Mm3) .
0,0) | \ony me g/ ™) ® [2,m2) ® |3, ms)

A== S = s = e &y -
Wigner 3j-symbol

Act with SU(2) representations of the first two spins:

|11, 902; My, M) = (U 1(¥1, m1) ® Us (32, m2) ® 13) |0,0) .

where U, (v;, m;) = exl')(fi}-z'-'z,;-*"'.t- m-J ’)

Here 11,19 € [0,7) and m;, m, are unit 3-vectors. Each of (¥;,m;) and

(1), my) parametrise points on S?, the group manifold of SU(2)

Thus, we have an S® x S? of such states.

Page 12/65



Two classical limits of the same quantum system:
states: Inq, no, ng) |91, ¥2; M7, Mo)
repinies Ny s s —lea T s T = eo
entanglement: separable highly entangled
Hilbert space: Hi @ Ho @ Hs  Hi ® Ho ® Hs
classical state space: S? x §2 x S? g3 x §°
local structure: preserved
What happened to the local structure (i.e. decomposition into three spins)?
To answer this, consider

pi(Y1, Y2, my, mo) = tr; |11, 1¥2; My, ma) (Y1, Y2; My, My,

Pij ('r,j_.'] ,ormy, mp) = trﬁ \ 1, YoMy, [ng) (-@-“_.‘1 ,Wasmy, Mo,

i.e. the reduced states of each spin ¢+ and pair of spins 7.
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One may show:

1,
T i

pi(YP1,2; my, my) =
so there is actually only one possible classical state for each individual spin.
Similarly (w.l.o.g. consider ij = 23):

oz (11, my)
291kl

p23(V1,2; My, My) &

where
a3 (1, m)7az (v, m’) ~ Sy Omm 23 (1, m)

are a set of approrimately mutually orthogonal projection operators, labelled by
points in S®. Thus, there are S® possible classical states for each pair of spins.

Aside: ‘classically resolvable’. See later.
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To recover the local structure we can use gauge symmetry.

For each spin define a space of kinematical states N = SU(2) = 53, and
introduce a gauge group G = SU(2) that acts simultaneously (i.e. diagonally)
from the right.

Then the space of physical states for the full system is

-

Nkin. 5 Nkino o pfkin G13(2) x SU(2) x SU(2)
G SU(2)

Similarly, the space of physical states of each individual spin is a singleton:

W E R )
G  SuU@)’

while the space of physical states for each pair of spins is an S*:

= e

=SU(2) = S,

as required. This S? parametrises bilocal degrees of freedom: the kinematical

state of one spin relative to the kinematical state of another.

= SU(2) x SU(2) = 8° x S5.
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Two classical limits of the same quantum system.:
states: Ing, no, ng) 191, 100 My, Mo)
regime:  ji,ja,js = 00 1, Jasjz — 00
entanglement: separable highly entangled

Hilbert space: H; ® Ho ® Hs Hi @ Ho ® Hjs ¢<— no constraints

. 2 2 2 b ar
classical state space: 5% x 5% x §° SR

local structure: preserved preserved
gauge symmetry: none 121

Thus, quantum entanglement has led to emergent classical gauge symmetry.

This was a toy example. For most of the rest of the talk, I will describe the
general mechanism underlying this phenomenon.
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To recover the local structure we can use gauge symmetry.

For each spin define a space of kinematical states N = SU(2) = 53, and
introduce a gauge group G = SU(2) that acts simultaneously (i.e. diagonally)
from the right.

Then the space of physical states for the full system is
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Similarly, the space of physical states of each individual spin is a singleton:

W E R )
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state of one spin relative to the kinematical state of another.

= SU(2) x SU(2) = 8° x S5.
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Classically resolvable subsystems
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Locality and the classical limit

Physical systems have ‘local structure’ if they are composite, i.e. divisible into
subsystems (e.g. the spins, subregion in QFT, ...)

Each subsystem s has a set of observables O, ‘local to’ that subsystem.
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Locality and the classical limit

Physical systems have ‘local structure’ if they are composite, i.e. divisible into
subsystems (e.g. the spins, subregion in QFT, ...)

Each subsystem s has a set of observables O, ‘local to’ that subsystem.

If A€ O, cannot be formed as a combination of observables in O, and Oy,
then A measures non-local degrees of freedom (e.g. A is a Wilson line).
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Locality and the classical limit

Physical systems have ‘local structure’ if they are composite, i.e. divisible into
subsystems (e.g. the spins, subregion in QFT, ...)

Each subsystem s has a set of observables O, ‘local to’ that subsystem.

If A€ O, cannot be formed as a combination of observables in O, and Oy,
then A measures non-local degrees of freedom (e.g. A is a Wilson line).

To understand emergent gauge symmetry, we need to know what happens to
quantum subsystems in a classical limit. Actually not all quantum subsystems

will be well-behaved in this limit (e.g. very small subregion in QFT).
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What is a quantum subsystem?

A quantum subsystem is a von Neumann algebra As; C L(H), where H is the
Hilbert space of the full system.

In this talk: assume dim(7?) finite. Will also assume no pre-existing quantum
gauge symmetry. This implies A, is a Type I factor. Can then write:

Hilbert space of s

A= B(H b L where H="H, @ H.

N =
Hilbert space of
complement of s
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What is a quantum subsystem?

A quantum subsystem is a von Neumann algebra As; C L(H), where H is the
Hilbert space of the full system.

In this talk: assume dim(7?) finite. Will also assume no pre-existing quantum
gauge symmetry. This implies A, is a Type I factor. Can then write:

Hilbert space of s

A= Bl heo I wwliere S S WH ol

S
Hilbert space of
complement of s

More generally:
-*4.‘" =1, ®---01;,_1 & B (.H.') ® 1 i+1 - 1115

where

H=H1Q  H; ® - &Hy.

is a tensor factorisation into subsystem Hilbert spaces H,;.
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What is a classical limit?

Let NV be space of classical states, C'(N') be set of functions N — C, and pick a
set of operators C C L(H) that is ‘approximately isomorphic’ to C'(N):

N e A A

(45D . . e o i
(“~” denotes equality in the classical limit x — 0 where x = h,G,1/N
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What is a classical limit?

Let NV be space of classical states, C'(N') be set of functions N — C, and pick a
set of operators C C L(H) that is ‘approximately isomorphic’ to C'(N):

N e A A

(45D . . e o i
(“~” denotes equality in the classical limit x — 0 where x = h,G,1/N
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What is a classical limit?
Let NV be space of classical states, C'(N') be set of functions N — C, and pick a
set of operators C C L(H) that is ‘approximately isomorphic’ to C'(N):

N e A A

;f‘;‘ ~ ;'th. E? ~ lB Eal + B B 3 — ;’ﬁ + B *I?T, etc....
(“~” denotes equality in the classical limit x — 0 where x = h,G,1/N?,

At leading order in y, the map A(z) A is implemented by

o~ R .L'T\'T AN T
A= /\ dp(x) N(2) 7(z) A(z).

for some measure ;2 on A and projection operators 7(x) obeying

7(2)7(y) = Opy@(x), forall z,ye N,

Here, N = dim(#H) and N(z) = rank(7(x)).
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‘Complete’ classical limit

By measuring 7 () we can determine with high precision if the state of the
classical degrees of freedom is .

If N(x) = rank(7(x)) > 1, then there is more than one quantum state

consistent with a given classical state x. This indicates that there are still some
‘left over’ quantum degrees of freedom in the classical limit.
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‘Complete’ classical limit

By measuring 7 () we can determine with high precision if the state of the
classical degrees of freedom is .

If N(x) = rank(7(x)) > 1, then there is more than one quantum state

consistent with a given classical state x. This indicates that there are still some
‘left over’ quantum degrees of freedom in the classical limit.

A ‘complete’ classical limit is one for which N (x) = 1, so that classical degrees
of freedom suffice to determine the full state. Then we may write

=l

A~ / du(z) N |x) (x| A(x),

and we have

Alz) =~ A(z) |z) forall AeC, z e N.
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What is the classical limit of a subsystem?

Two sets of operators:
A, = B(H,) ® 15 defining quantum subsystem s.
C defining (complete) classical limit.
To understand the classical limit of the subsystem, consider the intersection:

G, = AL C.

This consists of operators measuring classical degrees of freedom in s.
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What is the classical limit of a subsystem?

Two sets of operators:
A, = B(H,) ® 15 defining quantum subsystem s.
C defining (complete) classical limit.

To understand the classical limit of the subsystem, consider the intersection:
G, = AL C.

This consists of operators measuring classical degrees of freedom in s.
Gelfand-Naimark theorem implies C; is approximately isomorphic to an algebra
C'(Ns) of functions on a space N of classical subsystem states.

Explicitly:

A= { Lo | To A= A x),x € ./\/‘} )

The classical observable A, € C(Nj) corresponding to A € C, is defined via

A= (1)

Page 30/65



This construction of N, works for any quantum subsystem. But in general N
doesn’t fully account for physics in s.

It is not guaranteed that knowledge of classical degrees of freedom in s suffices
to determine complete state of s.

So a complete classical limit for the full system does not necessarily imply its
quantum subsystems behave in a completely classical way.

Consider classical subsystem operators:

: / ! du(z) N |z) {z 1(1)}

o -_"\." -

In an extreme case: the only A, satisfying this condition is A; o< 1. Then
there is only one element in Ny, i.e. no classical degrees of freedom.

We would need to describe the subsystem in a completely quantum way:.
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Classical resolvability

We are interested in the opposite case, where classical degrees of freedom
suffice to describe subsystem.

Suppose we know full system is in some classical state in A/ (but we don’t
know which one).

We will say subsystem s is classically resolvable if knowledge of x suffices to
determine its quantum state p, (to a high degree of accuracy in the classical
limit).

More precisely, suppose x,y € N correspond to xg,y, € N,;. We already know:

ps(x) = ps(y) Ts = Ys

(by definition of x4, y,). Subsystem s is classically resolvable if reverse is true:

Ty =y = ps(z) = ps(y).
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States of classically resolvable subsystem
Suppose s classically resolvable, Ace
A=A, @1; ~ / du(x) N |z) (x| A(x).
\L trz both sides, where N; = dim(H;3):
A, ~ / | dp(z) Ns ps(z)As(zs),

where N, = dim(H,), and A,(x,) = 1(-L Ji=" (] (L ® 1 ;) =)

Classical resolvability means we can set

0 otherwise.

o 1 i e
‘4*(’«) ' { el (” P (U)

Then A, appproximately proportional to 0ol

But (x) implies ~1,, is approximately proportional to a projection operator.
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States of classically resolvable subsystem

)

Thus, in a classically resolvable subsystem s, the reduced density matrix

01T
is always approximately proportional to a projection operator, for any = € N:

_ fe(xs) T . \
pal) = % where Nz )= rank(n (2.
N (x,

(c.f. toy model)

The projection operator 7,(x,) is a classical operator. It measures whether x,
is the classical state of subsystem s.

The classical degrees of freedom in subsystem s can’t be in more than one state:

ﬁ—‘w (‘l“i \} '—Fr‘t' (-U‘t' \} ~ {S;f.‘,‘ Ys 'ﬁ_ﬁ' (‘l.h ) 5

ps(x) determines the way in which s is entangled with other subsystems. So
these are strong constraints on entanglement.
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Classically resolvable subsystem =%
complete classical limit for subsystem

General classical subsystem operator for classically resolvable subsystem:

A : J-V J P i
fl,,- ~ l Vs '..-I_-.S ) 77‘» ;':l—;. ( T, ) ’ ~L‘ ( - } ..
[\" ( ! S ( - *-'?\‘"h.(;']'ﬁ) oo 1 s\ ],

(s the pushforward of 1 to V.

So subsystem s may be treated with a self-contained classical limit of the kind
previously described.

Note: in general 74(z) has rank greater than 1, so this is not a complete
classical limit.

But a classically resolvable system can be described using only classical degrees
of freedom...

This is consistent because we are assuming s is part of a larger completely
classical system. This is extra information compared to before, where we only
considered classical limits of isolated systems.
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Gauge symmetry from entanglement
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Gauge symmetry from entanglement

Take a completely classical limit of a quantum system. Classical states z € A/
corresponding to quantum states |z) € H.

Assume the quantum system has a classically resolvable ‘local structure’, i.e.
division into classically resolvable subsystems (and unions of subsystems also
classically resolvable). Then we decompose

H=H1® - - QH; Q- Hy.

For each subsvstom s; there is a classical space N of subsystem states, and a
map from x € N to corresponding x; € N;. Reduced states are approximately
propor tlonal to projection operators acting on H;:

i (%)

Skt ey

where N =k e

Classical subsystem operators may be written

A; =~ / dpg(x;) —— 7 (x;) A; (x5) where N; =dim(H,; )
N, N; ( )

JN;

Projection operators are mutually approximately orthogonal:

Tl Vi (1h) = Oy T (0 )
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Gauge symmetry from entanglement

pi(x) tells us how s; is entangled with the other subsystems in the state x.

In this case, p;(x) o< 7, (x;) means some part of s; is maximally entangled with
[N LA~ ( :

some part of its complement.

Roughly speaking: s; and its complement share log, (/V;(x;)) maximally

entangled qubits / Bell pairs.
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The unentangled case

Sanity check: separable subsystems. Should be no gauge symmetry. Not hard
to confirm this.

Unentangled subsystems implies p;(x) is rank 1, so p;(x) = |2;) (x;| for some

|z;) € Hi. We have (2;|y;) = 0z,,,. Classical subsystem operators may be
written

A; ~ / dps(2:) Ny |5) {xs| Ai(zs).
JN;

) :'_{
So separable subsystems undergo a complete classical limit, unlike entangled
case.

Set of subsystem states x; determines full system state via
ehideli= ) il @@ e ) () ® e &l (s |
x also determines z1,...,x,, so we have a bijection
Ne— N x oo x Ngx: o xN,.

No non-local degrees of freedom, so no gauge symmetry.
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The entangled case

Return to the entangled case. Classical subsystem operators:

; NG _
/ (']H-gi(‘i?‘) _7!}%(1!)4!(1!) ‘ Az
JN; N -,'_(.‘3_?-_,' )
Define
Cl{}("il.l = C] ~>,\‘ NS C;’ )

This is the set of operators which only depend on local degrees of freedom.

Most general Aleal € Cloval:

Alocal & / dﬂ-] (4171 ) ok / d}“-n. (-I3rr. ) N Tocal (4171 g ..I?,,_) Aloeal (-17] yee s -l-'u.._)-
& v"\';._l. e “-\,.‘"_”

where
'ﬁlc)t';—ll(-l-‘ 1y il-"'u,) — 'ﬁ'l (;J:'l ) K- X 'ﬁu(l"n )
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Non-local degrees of freedom

-7 £ -}
Define ('non--loca—ll =C \('loc_'al-
If Cron-local 18 non-empty, then there are non-local classical degrees of freedom.
Suppose |z) is entangled, and Ajocal € Ciocal Satisfies Ajgear [) = 1. Then

rank(Apeal) = tank( Tlocallz s Tal) = L

On the other hand, |z) (x| is rank 1 and |z) (x| € C.
Therefore Cpon-10cal i non-empty: it contains |x) (x|.

|x) (x| measures if the classical state is . Thus, to know if the classical state is
xr, we have to measure non-local degrees of freedom.
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Non-local degrees of freedom

N.B. presence of non-local degrees of freedom depends on structure of
entanglement between subsystems in the state .-:1').

Separable implies no non-local degrees of freedom.

Subsystems could be entangled in some states, but separable in others.
Moreover, when entangled, can be entangled in different ways.

One can show that the number of non-local degrees of freedom shared by two
subsystems s;, s; is counted by their mutual information

L5 () = try(ps; () log pii (@) — tri{pi(z) log pi(=)) — tr;(p;(x) log p; ().
They share non-local degrees of freedom if and only if the mutual information
is non-vanishing (in the classical limit)

Can be interpreted as a variable ‘bulk topology’.
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Kinematical states

Have shown that entanglement between classically resolvable subsystems leads
to classically emergent non-local degrees of freedom.

Now: account for these non-local degrees of freedom using gauge symmetry.

First step is to construct a space of kinematical states for each subsystem. A
kinematical state will include a purification of p;(x):

;) € H; ® Hi(x;) such that tr; () (sl ) = pil),

where H,;(x;) is an auxiliary Hilbert space of sufficiently high dimension.

For simplicity we can set #H;(x;) = CNi(*i),

We are adding log, N;(x;) qubits to the subsystem — these are edge modes.
I
!
|
v,
|

More notationally convenient to view the
purification as a map V¥ : H; — H;(x;)*.

The purification condition may then be written

pi(z) = U,
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Kinematical states

Kinematical subsystem state space:

NER = {(2,,9,) | 33 € N, U € Py()},

where P;(x;) is the space of purifications of p;(x)

Full kinematical state space:
.Mkin. = J\/’i{iu. Vo .j\/‘?_kiu. S /\/‘,1!{111

A general kinematical state may be written

((';Zl.] ) ‘;[J 1 )w e (‘ 35 ’) ("_):“? lIf_”)) & Jf\/‘kill,'

How do we project to physical states? Two steps: impose constraints, then
gauge reduce.
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Constraints, gluing and gauge reduction

Let X : 2+ (x1,...,2,) map full system states x € N to corresponding
subsystem states x; € N, and let

image(X) = N1 X --- X Np,.
First constraint is almost trivial:

(Eiv B e Ny < N

So (x1,...,x,) can come from at least one state of the full system.
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Constraints, gluing and gauge reduction

Let us introduce some additional reference structures. Analogous to e.g.

coordinate systems in gravity.

A section Y of X, i.e. a map

YN X xN; = N

such that X oY is the identity.
A choice of purification ®,(x;) € P;(x;) for each subsystem s; and each
s (& ./\f‘-,;.

From this, define gluing states for (z1,...,2,) € N1 x -+ x Ny;:

leleg - ) = Nyl ) 0 Nl o) ("«D ()& D (T, )) Yz 2 )0

®, (.-'i-'l) SR 2% (‘.-'1-'“)

= J\-‘rl(;lﬂ.‘l) ..l\"r“ (.’IL‘.“_) | B
e e
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Constraints, gluing and gauge reduction

We can use these states to glue together the kinematical subsystem states.

If (x1,...,2,) € N1 X -+ X N, we define |z;; ¥;) € H, by
‘-7:-'1.: \_[lr_> — (\I]'l R R l]:'j!) ‘(T(;Iﬁ'lﬁ See s .'I'”_j> :

| |
\IJJ{ R L2
‘.Iﬁ.'?_; \]_f,> : |
‘(7('7'1! ceey ""-'-n,)>

Essentially, take tensor product of purifications for each subsystem, then
project auxiliary degrees of freedom onto |o(z1,...,2,))
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Constraints, gluing and gauge reduction

One can show: we can obtain any physical state by gluing in this way.

But not all kinematical states when glued together will yield sensible classical
states. Restricting to those which do:

Nkin. — {((Il vy) s )) = .N_kin' } i PR it = ;N‘l DX o .’\/.;

and |z;; ¥;) = |y) for some y € N }

This is the ‘constraint surface’ Akin. = A/kin.

Gauge reduction map is

R:N¥o 5 N ((x1,T7) (Tn, Upn)) > |35 0;) .
Any physical observable may be written as a function of the kinematical
subsystem states. In particular, non-local physical observables can be
decomposed into local kinematical observables.
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Constraints, gluing and gauge reduction

We can also glue together any proper subset of the full set of subsystems.

E.g. the physical states of a union of subsystems s; U s; are in one-to-one
correspondence with the reduced states p;;(x), which can be obtained by
gluing the kinematical states (x;, V;) and (2, ¥;):

pij (z) = (V; ® U)oy (i, 2;)(¥; ® ¥y)T,

where

Oy (Jf-,j, .'.'ITJ,') = FI: ‘U(;’l'] R }) ((T(J-'l SLra e }‘ .

Classical resolvability of s;, s; and s; U s; ensure: o;; only depends on z;, x;.
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Gauge transformations

A local gauge transformation is a change of purifications ¥, — U_:f ¥, with
U; € U(N;(x;)). This changes the kinematical state of the subsystem, but not

its physical state.
Thus, the local gauge group in subsystem s; is U (N;(x;)).

In order to leave the physical state |z;; ¥;) of the full system invariant, U; must
obey

lo(z1,.. ., T0)) = (U1 ®---® B a1y T )

This defines the global gauge group:

(;(1) — St'a‘b[_.?t\i\rI ()| U NG (2 ) ( ‘U(Il Yoty ‘l"!i.)> ) .

N.B. these are state dependent gauge groups. (Same is true in gravity.)
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Summary

For subsystems to have good classical limits, they must be classically
resolvable, meaning the subsystem state can be determined by classical
measurements alone.

Classical resolvability implies that the reduced state in any subsystem is
approximately proportional to one of a set of mutually orthogonal
projection operators, p;(x) o< 7;(x;).

If rank(7;(2z;)) > 1, then there are emergent non-local degrees of freedom.

These can be accounted for by introducing a gauge symmetry where the
kinematical states are purifications of p;(x). In other words, log, N;(x;)
auxiliary qubits as ‘edge modes..

We can glue together arbitrary collections of subsystems by projecting
auxiliary qubits onto entangled gluing states |o(x; ‘

Any classical physical observable may be decomposed into a combination
of local kinematical observables.

This provides a precise general picture of how entanglement leads to classically
emergent gauge symmetry.
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Entangled group coherent states
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Entangled group coherent states

The toy model of three spins is a special case of a larger family based on
unitary representations of Lie groups.

Let H=H1®: - ® Hn, and let G; act unitarily and irreducibly on H;.

In separable case, there is a well-known construction of classical limits, with
classical space of states N; for each subsystem being a coadjoint orbit of G.

Construct coherent states for full system by taking the tensor product of
coherent states for the subsystems.

Then space of states for full system is N' = N7 x -+ x N,,, which is a coadjoint
Orl)it Of C; — (-_:l BB (;r”.

There is no emergent gauge symmetry (consistent with no entanglement).
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Entangled group coherent states

In the paper: a modification of this construction.
Involves the choice of a subgroup
HieG =g o G
with special properties. I explain how to construct a set of coherent states for
full system, with entanglement determined by H.

I show: this yields a good classical limit, and all subsystems are classically
resolvable. Also: the entanglement leads to an emergent gauge symmetry, with
a certain gauge group K satisfying

HoGE I GG

For the three spin toy model: GG; = SU(2), H is the diagonal subgroup, and
=

This gives a very large and varied class of classical limits with gauge symmetry
emerging from entanglement.
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‘Gravitational’ aspects
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Gravity from entanglement

There is a general expectation that spacetime can emerge from structure of
quantum entanglement.

So diffeomorphism invariance of that spacetime should also emerge from
entanglement.

The mechanism described here is a very generic (model-independent) way for
this to happen.

Not too much of a stretch to suggest that it is general enough to include the
gravitational case.
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Classical resolvability of subregions in gravity

Reduced density matrix of spacetime subregion:

o,xp( A/4G + .. )
- tl‘((_‘xp(—}i/\ﬂ(}' e )) ?

where A is an area operator. [Jafferis, Lewkowycz, Maldecena, Suh, 2015]
In classical G — 0 limit, this is proportional to a projection operator onto
minimal area states.

Can show fidelity of reduced density matrices p, p’ for two different subsystem
states obeys [Kirklin, 2019]

(VYoo V) = exp (- 0(1/6)) 0.

which implies projection operators for p, p’ are approximately mutually
orthogonal.

Thus, gravitational subsystems are classically resolvable, consistent with
present work.
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Variable ‘bulk topology’

Different states have different kinds of entanglement, so different kinds of
non-local degrees of freedom. Interpret this as different ‘bulk topologies’.

For example:

Represents entanglement structure in two different states.

Dots are subsystems, lines are present when mutual information is
non-vanishing.

Pirsa: 22120023 Page 58/65



Variable ‘bulk topology’

Different states have different kinds of entanglement, so different kinds of
non-local degrees of freedom. Interpret this as different ‘bulk topologies’.

For example:

Represents entanglement structure in two different states.

Dots are subsystems, lines are present when mutual information is
non-vanishing.

Pirsa: 22120023 Page 59/65



Pirsa: 22120023

Modular symmetries

The emergent gauge transformations I have described are approximate modular

symmetries of each subsystem — i.e. transformations which do not change the
reduced density matrix.

In gravity, subregion modular symmetries are transformations of geometric
CdgC modes. [Czech, de Boer, Ge, Lamprou, 2019]

So this is consistent. (Suggests a direct entanglement interpretation of
geometric edge modes...)

Page 60/65



Pirsa: 22120023

Quantum error correction

QEC has had important conceptual implications in gravity.

QEC also plays a role here. Suppose we take a classical limit of a system with
Hilbert space H and obtain a classical state space N/ with emergent gauge
symmetry. So

NEB- o Nkin. 4 A

Suppose we do constrained quantisation of A/, So quantise N to H*" and
identify physical states
:lel)'h‘, & =Hk111.

by imposing some operator constraints.

There is then a sense in which original Hilbert space H is embedded as a code
Sllbspacg of "H_km. .
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Conclusion

A general mechanism for the emergence of classical gauge symmetry from
quantum entanglement.

This proceeded from an understanding of classical resolvability.

Toy model of three entangled spins, and a group-theoretic generalisation.

Evidence that the mechanism could be responsible (in part) for
diffeomorphism invariance in gravity.
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Future directions

Phase space structure (Berry curvature — symplectic form).

Semi-classical limit (some degrees of freedom remain quantum... to what
extent do they respect emergent gauge symmery?).

dim(H) = oo, Type Il and Type 111 subsystems, compatibility with
pre-existing quantum gauge symmetry.

Specific gravitational applications: coadjoint orbits of the corner
symmetry group, relationship with spin network states, etc.

Other implications of classical resolvability (e.g. entropy cone...).

Dynamics... chaos, decoherence, etc.
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Thank you for listening!
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