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Abstract: Quantum theory has a temporal composition, which is expressed under many different operational frameworks. Here, points in time are
imbued with a Hilbert space structure, and quantum states are passed between times through a series of experimental interventions. A multi-time
guantum process, therefore, carries the same complex properties as a many-body quantum state. This invites the question: to what extent can
temporal correlations be as interesting as spatial ones, and how can we access them? One particular avenue through which this structure manifestsis
in open quantum systems. System-environment dynamics can precipitate non-Markovian processes by which correlations persist between different
times. Recently, the advent of high-fidelity quantum devices has made it possible to probe coherent quantum systems. In this talk, | will discuss my
recent work in which we show how this serves as a novel test bed to capture many-time physics. We build frameworks to extract generic
gpatiotemporal properties of quantum stochastic processes, show how process complexity may be manipulated, and elevate user-control into the
theory to make it self-consistent. Remarkably, many of these complex features are already present in naturally occurring noise, and hence the results
have direct application to the development of fault-tolerant quantum devices. | will also briefly discuss some of my future research goals: the
existence of exotic temporal phenomena and how emergent spatiotemporal features can be captured through renormalisation group approaches; the
learnability of spacetime quantum correlations and avenues here to quantum advantage; and the taming of correlated noise in quantum devices
through bespoke error suppression and error correction.
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The Spacetime Structure of Quantum Mechanics
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» Quantum theory has a spacetime structure
with curious causal properties

» Particularly emerges in the context of open
quantum systems

Chiribella et al. Phys. Rev. Letters 101, 180501 (2008) Leifer & Spekkens Phys. Rev. A 88, 052130 (2013) Pollock et al. Phys. Rev. A 97,012127 (2018)
Hardy, Phil. Trans. R. Soc. A 370, 3385 (2012) Costa & Shrapnel, New Journal of Physics 18, 063032 (2016) Cotler et al. J. High Energy Phys. 2018, 93 (2018)
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The Spacetime Structure of Quantum Mechanics
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» Quantum theory has a spacetime structure
with curious causal properties

» Particularly emerges in the context of open
quantum systems -
tg = t[

0
Simple ‘0>_ " ‘ @7 @

example, £ states

cJt: ,
0} S i

Chiribella et al. Phys. Rev. Letters 101, 180501 (2008) Leifer & Spekkens Phys. Rev. A 88, 052130 (2013)
Hardy, Phil. Trans. R. Soc. A 370, 3385 (2012) Costa & Shrapnel, New Journal of Physics 18, 063032 (2016)
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My work:

What generates spatiotemporal correlati

What is their structure?

How can we access/measure/manipulate them?

Pollock et al. Phys. Rev. A 97,012127 (2018)
Cotler et al. J. High Energy Phys. 2018, 93 (2018)
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Process Tensors
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» Introduce the process tensor

Tr:0lAk—1.0] = p(Ar_1.0)

Pollock
97,01
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Process Tensors

_ » Introduce the process tensor
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Process Tensors
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Controls are events we can choose, process
exists independently

Controls: deterministic, classical stochastic,
quantum stochastic

Instruments can click with outcome ; at time ¢;
PI‘(.’I}‘,}‘, tj; Tyj—1, tj-—-'l; R A tO‘A;j:O)-

We now have a description of quantum

stochastic processes
Milz et al. Quantum 4, 255 (2020)
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» Introduce the process tensor
Tr:0lAk—1:0] = p(Ar—1:0)
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Many-Time Physics
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» Arbitrary correlations across time, mediated by an environment
» Formally structured in the same way as spatial many-body correlations
» What’s missing is a way to study these correlations in a practical setting for arbitrary open dynamics

Aharonov et al. Phys. Rev. A 79, 052110 (2009)  Chiribella et al. Phys. Rev. A 80, 022339 (2009)

Costa et al. Phys. Rev. A 98, 012328 (2018) Costa & Shrapnel, New Journal of Physics 18, 063032 (2016) Milz et al. SciPost Phys. 10, 141 (2021)
Ried et al. Nature Physics 11, 414-420 (2015) Pollock et al. Phys. Rev. A 97, 012127 (2018) White et al. arXiv:2107.13934 (2021)
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Process Tensor Tomography
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Nature Communications 11, 6301 (2020)
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Process Tensor Tomography
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» Estimate non-Markovian dynamics

» Uniquely constrain on a complete
basis

» Use the process tensor to predict
random sequences

» Compare how close the two are:
‘reconstruction fidelity’

» Generalised Born rule connects
process tensor to reality

» Fit a physical, maximum
likelihood model
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Extracting Process Properties

E;
» Obtain 2-map/4-body process marginals across seven steps
Negativity <Z?3 Z:> <Zi XJ>

0 - [Nv¥#38 0.0088 0.0008 0.01 0.01 0.0086
1 -0.14 LEELY 0.0083| 0.013 0.0087 0.0089
_10-3
2 R 0.14 (X\7X8 0.0098|0.0089 0.0073| 3
L 3 - .
Ejv1y 3 AT o o TR = 10 The noise itself
P 3 0.058 0.062 0.062 [URL! (TIEN 0.012 . 10+ Complex acros
5% 0.058 0.058 0.054 0.068 JLRF] 0.022 2 :
(538 0.056 0.051 0.051 0.057 0.061 [{ORP3 61 10+ 6 . - 10
- L 0 1 3 4 6
0 1 2 5 6 : » - )
1-Norm Memory 5'+I _ (X;XJ;} 12 <X;Z)> 1
(4 o
Setup QMI (min, max) Negativity Purity wdelity
» Also look at 3—step/7—body processes #1. System Alone (0.298, 0.304)  (0.0179, 0.0181) (0.8900, 0.8904) (0.9423, 0.9427)
. . #2. |+) Nearest Neighbours (NN)  (0.363, 0.369)  (0.0255, 0.0259) (0.7476, 0.7485) (0.7239, 0.7244)
with different backgrounds #3. Periodic CNOTs on NNs in [+) (0.348, 0.358) (0.0240, 0.0246) (0.7796, 0.7811) (0.7264, 0.7272)
#4. |0) NNs with QDD (0.358, 0.373)  (0.0205, 0.0210) (08 .0.861‘2) (0.8034, 0.8045)
#5. |+) Long-range Neighbours (0.329, 0.339) (0.0209, 0.0214) (0.8594, 0.8608) (0.9252, 0.9260)
#6. |+) NN, delay, |+) next-to-NN  (0.322, 0.329) (0.0209, 0.0213) (0 8)51 0.8549) (0.9077, 0.9083)
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Manipulating Processes

» Knowing the process allows you to manipulate the

structure

» Search for operations such that the conditional
processes have desired properties

Characterise

e.g. noise reduction
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Open Simulation: Learning Large non-Markovian Proces
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Filtering Crosstalk From Bath non-Markovianity

» How do you know whether NM came from a nearby qubit or
an inaccessible bath?

» We use classical shadows to erase effects of neighbours and o Q Q O
perform causal testing — reveals the bath

» Also can be used to check which qubits are commonly
coupled to the same bath

to
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arXiv:2210.15333
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Scalability and Self-Consistency
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Exploring Classes of Exotic Quantum Processes

» Whole catalogues of many-body states to source inspiration from

» More general understanding of dynamics — e.g. temporal phase transitio
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Renormalisation Group and Emergent Temporal S
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Quantum Advantage via Learning Properties of Quantum Stochastic Proc

» We have recently shown the
sampling complexity of open
quantum systems to be above
ClaSSical arXiv:2209.10870

» Quantum simulation or
quantum sensing avenues
towards advantage

» Two-time sampling not 7l B N N BN e B
necessarily enough [oe# L
. . N AA HAH HAH AR AR ]
» Exciting recent results in \/j I NI

learning theory readily
generalisable

l Rrocess classically and predict
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Taming Correlated Noise
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» Scope for this info to be fed forward into all parts of the quantum
computing stack: fabrication, error suppression, mitigation, correction
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| @gregswhitenoi

Summary

gwhite1@student.uni

» Quantum stochastic processes are the most general description of open quantu
dynamics

» Generalised CJI shows how many-time physics is as rich as many-body physics

» We develop ‘process tensor tomography’ and its variants to capture different
aspects of the many-time physics

» Estimate contains operational meanings about dynamics
» Demonstrated tomography and applications on IBM Quantum devices

» Plenty of interesting followup problems

Demonstration — Nature Communications 11 (1
Generalised OPT — PRX Quantum 3, 020344 (2
Many-time physics — arXiv:2107.13934
Complexity of OQS — arXiv:2209.10870
Filtering crosstalk with shadows — arXiv:2210.15333

Thanks for Listening!
Any Questions?
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