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Introduction

e Gapped systems can exhibit a variety of topological phenomena at the zero
temperature (ground states). Below are two well-understood examples:

Invertible (short-range
entangled) phases

Topological orders
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E.g., Kitaev chain, IQH, E.g., FQH, gapped
topological insulators,... spin liquid, ...

e It is widely accepted that these phenomena arise from the entanglement of the
ground state. But how to quantify this connection?
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Introduction

e The first answer was found for the 2D t0po|ogica| orders [Hamma, lonicioiu, Zarnardi
(2004); Kitaev, Preskill (2005); Levin, Wen (2005)]

. R : :
e Topological entanglement entropy => Anyon total quantum dimension

e What about other topological invariants? Such as the quantum Hall
conductance, chiral central charge ....

e One can certainly extend this program to gapless systems, e.g., CFTs, Fermi
liquid....

Quantum order Entanglement

Q: what happened when entanglement met locality?
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Introduction

The motivation comes from various directions:
Non-perturbative information/constraints on quantum many-body systems.
Entanglement-based numerical study, i.e., tensor-networks

e Compatibility between the TN architecture and the entanglement structure
of the many-body wavefunction [Dubail&Read, 13]

Hamiltonian-free characterization of the quantum orders

e Notion of topological phases in open systems [Altman, Yimu, RF, Vishwanath, to
appear]

Entanglement in QFTs

e Distill universal data from the UV divergence and ambiguities
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Introduction

o We want to propose a general idea, entanglement response, to study the

above questions systematically. R

e It is about understanding an intrinsic dynamics generated by the state itself,
known as the modular flow in mathematics and high energy physics.

e As one application, we show how it can be applied to extract the quantum Hall
conductance, or more generally, get the following triangle

2D topological 1D edge
response anomalies

. 7

Entanglement
linear response
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Outline

Review

e topological entanglement entropy

e entanglement (modular) Hamiltonian

X

Entanglement linear response

e Proposal for the Hall conductance (and chiral central charge)
e Setup, various justifications

e Wiedemann-Franz law

e Summary & Outlooks

[Kim, Shi, Kato, Albert, arXiv: 2110.06932, 2110.10400]
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Review

e Topological entanglement entropy (TEE) y >0

D |W)EHA®I{~D1 pa= Trply)(w|

Sy=—=TrpyInp, = al, — y=Ind

e A better definition is to consider some linear superposition (not quite just
bipartite entanglement)

=Y =S4+ Sg+Sc—Sap— Sac— Spct+ Sapc <0
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Review

e To understand the essence for ¥ being topological, and for the purpose of

generalization, let us take a detour to introduce

e Entanglement Hamiltonian (Half sided modular Hamiltonian)
Ky=—1Inp,
R

e The reduced density matrix becomes a thermal state p, = e ™%

e The von Neumann entropy becomes the thermal energy

SA = TI’KAE_KA = aLA = ¥
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Review

e To understand the essence for ¥ being topological, and for the purpose of

generalization, let us take a detour to introduce

e Entanglement Hamiltonian (Half sided modular Hamiltonian)
Ky=—1Inp,
KA

e The reduced density matrix becomes a thermal state pA~= e”

e The von Neumann entropy becomes the thermal energy

SA = TI’KAE_KA = aLA = ¥
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Review

e Entanglement Hamiltonian is rather different from the physical Hamiltonian:

e Area law => non-uniform in space 5
e Pure state => conversion property
R
Kilw) = Kply)
pa=e

It follows from the Schmidt decomposition:

W) = D /A1) @ [ )

n

This property is like a symmetry, that has no analogue with physical

Hamiltonians.
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Review

e Entanglement Hamiltonian also has certain similarity with the physical (edge)

Hamiltonian
T R
? Spectrum [Kitaev, Preskill; Li, Haldane; ...] ?|||||| Iflh ||]||||
& o : 1 > 92}
e 'y!lllg
ERER 1 L T [ :55’31 |
0 4 8 . 12 24

e Dynamics, called the modular flow

lw) > |y(s)) = e K |y)

e These are important intuitions for our later discussion.
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Review

e TEE can be regarded as the study of thermal energy at this fictitious
equilibrium. This quantity is R

e topological: invariant under the change of shapes without changing the
topology

e universal: invariant under local deformation of the state

e The key ingredients for showing these two properties:

o Kilw)=K;ly)

¢ (Orlorz) ~ (Orl)(orl) ( |rl - r2| > 5)

o (Kyy+Kyz) = (Kxyz + Ky) XY | Z
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Review

TEE can be regarded as the study of thermal energy at this fictitious
equilibrium. This quantity is

e topological: invariant under the change of shapes without changing the
topology

e universal: invariant under local deformation of the state i}?}; A\
The key ingredients for showing these two properties: e A

o K,ly)=K;ly)

¢ (Orlorz) ~ (Orl)(orl) (lrl - r2| > é)

o (Kyy+ Kyz) ~ (Kxyz + Ky) X L 4 Z
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Review

e When the system possesses global symmetries, one can also measure the
symmetry defect (in addition to the von Neumann entropy, which is a
“geometric dE'FECt”) [Chen, Tu, Meng, Cheng, arXiv: 2203.08847]

log | Tr Uy(g)e ™| = — a,L, +

topological disorder parameter

e Again, it is the study of properties at the fictitious thermal equilibrium.

e Generalization becomes clear.
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Entanglement linear response

e We call this scheme, the entanglement response:

lw) = |y(s)) = e K |y)

(OY(S))w(s) = (Wl eiSKX OY(S) e_iSKX | l[/)

e To start, let us consider the response at the linear order in the modular time s,
i.e., entanglement linear response:

d
E(OY('S»[;;(S) B =7 A

e Claim: entanglement linear response => physical topological response.

U(1) symmetry defect => quantum Hall conductance

geometric defect => chiral central charge

[RF, arXiv: 2206.02823]
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Application in 1D: anomaly

e Application: pure 1D CFT calculation => the U(1) chiral anomaly.
: k. . K
o CFT with a U(1) symmetry: Jx)J(0) ~—, Jx)J(0) ~—
X X

e We repeat the entanglement linear response exercise

T = sin f;xsin%
Kyp=4n J . 7 Too(x)dx
AB Sin >
g | $z'=0or L ) )
A : k "
R . e s V. ()V_(»), h= LH - k= RHM 2
gl 2(27) 2(27)
e A simple limit: ABC form the entire circle
i }n(efﬂgﬁc) e Mpz kL = kR fOf a

ds =0 dn genuine 1D system

[RF, arXiv: 2206.02823
RF, R. Sahay, A. Vishwanath, arXiv: 2208.11710
also see Y. Zou, et.al, arXiv: 2206.00027]
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Proposal for quantum Hall conductance

e Setup:

e Divide the plane into four parts: A, B, C and D

e Apply modular flow on AB: (A
|Vf> = |W(S)> — e_iSKAglw) D e

e Measure the charge response in region BC:

(w| eKan QX e~i5Kin | y)

e Proposal: the linear response yields the Hall conductance

_t 2
Oy = S W1 [Kyup Opcl W) chiral central charge

[Kim et. al, arXiv: 2110.06932]

n .
56‘_ = i(y| [Ksp, Kpcl | @)

[RF, R. Sahay, A. Vishwanath, arXiv: 2208.11710]

Pirsa: 22110108 Page 18/40



Proposal for quantum Hall conductance

e There have been many efforts on quantum Hall conductance

e Free fermions: TKNN formula [TknN (1982)]; Fredholm index formula [Bellissard,
Elst, Schulz-Baldes (1994), Avron, Seiler, Simon (1990), Kitaev (2005)]

e Interacting systems: a nontrivial generalization of the Fredholm index
formula [Bachmann, Bols, Roeck, Fraas (2020), Kapustin, Sopenko (2020)]

e A related but different topological invariant: many-body Chern number
[Shiozaki, Shapourian, Gomi, Ryu (2017), Dehghani, Cian, Hafezi, Barkeshli (2020)]

e Our formula is superfacially different from all of them, but they should be

secretly related.

e E.g., in free-fermion systems, our formula is indeed related to the real-space
Chern number formula [RF, P. Zhang, Y. Gu, arXiv: 2211.04510].

27iTr[(PfP)",(PgP)"] = D‘(P)+ frdg™
C
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Proposal for quantum Hall conductance

e There have been many efforts on quantum Hall conductance

e Free fermions: TKNN formula [TknN (1982)]; Fredholm index formula [Bellissard,
Elst, Schulz-Baldes (1994), Avron, Seiler, Simon (1990), Kitaev (2005)]

e Interacting systems: a nontrivial generalization of the Fredholm index
formula [Bachmann, Bols, Roeck, Fraas (2020), Kapustin, Sopenko (2020)]

e A related but different topological invariant: many-body Chern number
[Shiozaki, Shapourian, Gomi, Ryu (2017), Dehghani, Cian, Hafezi, Barkeshli (2020)]

e Our formula is superfacially different from all of them, but they should be

secretly related.

e E.g., in free-fermion systems, our formula is indeed related to the real-space
Chern number formula [RF, P. Zhang, Y. Gu, arXiv: 2211.04510].

2xi Tr[(PfP)",(PgP)"] = U(P)+ frdg™
C
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Justifications
%3 4,8,C) =~ (v | Ky O3l 1)
e Basic logic:

e Step I: Our formula Z(y; A, B, C) satisfies the same general properties as the
quantum Hall conductance: adc'iitive, CRT, topological, universal

e Step Il: Provide an examples to show that it is actually nonzero

e We will also provide a mechanism to show that why it gives universal results

[RF, R. Sahay, A. Vishwanath, arXiv: 2208.11710]
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Justification |: General properties

Fl(w; A,B,C) = %(wl (K5 Q5] w%

e Our formula Z(y; A, B, C) satisfies the same general properties as the quantum
Hall conductance:

® AdditiVity Z(W]_ ® wz; As Ba C) = Z(WI;A) Bs C) T+ Z(qu; As Ba C)
e CRT

e Topological and Universal Kl}

e There are three key ingredients to show these: ~ b

o K |ly)=K;ly)

e (0,0,)~(0,)X0,) (lrp—n|>?

o KN+ Kyz|y) = Kyyz + Kyl y) X Y Z

[RF, R. Sahay, A. Vishwanath, arXiv: 2208.11710]
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Justification |: General properties

#(W;A,B, €)= v Ko Qgcuwﬁ

e Example: Reflection property (actually stronger than reflection)
Sy A, B, O — S(y; B, A, C)

e Equivalently, we can show
([K4ps Q§c + Qchw =0

e It is important to note that K,; conserves the total charge Q,5¢

([Kap Q5 + Qic — Cancldy = ([Kap, OF — 204Q1), = 0

..............

-------------
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Justification |: General properties

Fl(w; A,B,C) = %(wl [Kxp: Q5] w)‘

e Our formula Z(y; A, B, C) satisfies the same general properties as the quantum
Hall conductance:

o Additivity Z(y; ®ys:A,B,C) = Z(y134,B,C) + Z(yy; A, B, C)

e CRT

e Topological and Universal |
e There are three key ingredients to show these: ' D

o K |ly)=K;ly)

e (0,0,)~(0,X0,) (Irp—n|>?

o K‘(Y+KYZ|W>’N"KXYZ+KY|W) X Y Z

[RF, R. Sahay, A. Vishwanath, arXiv: 2208.11710]
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Justification |I: bulk-edge correspondence

Fl(w; A,B,C) = %(wl (K5 Q5] w)‘

e Because Z(y; A, B, C) is universal, we can deform the state to a nice one without
changing its value.

e |In particular, we want to consider a state with [Kitaev, Preskill; Li, Haldane, Swingle,
Senthil; Chandran, Hermanns, Regnault, Bernevig; Qi, Katsura, Ludwig]

Kp = €Hepr

o We consider the expectation value of a U(1) defect operator In{(e*“sc), and can
obtain Q2. from Taylor expansion.

e We want to show that

. k; — k
—1In elﬂQ};C s 2 . 0..= L R
dS ( ) w xyﬂ Xy 2]1_
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Justification |I: bulk-edge correspondence

e Back to the two-dimensional case, the expectation value of a U(1) defect
operator is given by the Charged Cardy formula A

(ke kp)u® Ly, v

In(e#<r) = "
n €

e We can separate the area-law coefficient into two pieces

kyp?

2
_ kit
Achiral = 47[6‘ o

anti—chiral =
dre

e We interpret them as the line density of the chiral and anti-chiral charged
modes. (a) . 12

e Their difference is encoded in the motion under modular flow.
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Justification |I: bulk-edge correspondence

o Let us apply the above picture and understand what happens to (e*#?sc) under

the modular flow generated by K, ;.

e Only the two triple contact points make nonzero contributions

X anti —ckiral)v

d .
— In(e®@rc) | = —2(apira —
(b) I ds =0
4 T «*
3 - kRHZ
R 1! N Qanti—chiral = E
= « R *o Kp = eHcpr 5
N > _ kyp
Xchiral =
C 4re
S d rk k
L] ] D . i
—_ ln(etf‘QB(,*) = — L Rﬂ2 - — nyl"z
s =0 2r

Page 27/40
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Justification Ill: Numerics

#(W;A,B, €)= v Kap Qﬁcnw{

e We also provide numerical justification using free fermion lattice model (the pi-

flux model with weak disorders)

e It vanishes identically in the time-reversal symmetric phase, detects the
transition, converges to the quantized value exponentially fast in the subsystem

size

(a) (b)
1_[] R —— - ..',""‘ s .i {J IO{J -
fady: re-o o ‘a e o = 0797 ¢
B seee "L O 0.8 f e r=5 L] '. 0.010 . 0.995 e
Do 2 0.6} . A 1 0.001 -,
ssemse s 0.4 I - ] = 4 .
fecesseas aF * I & r=15 \ ] 107 T
Thanear- 0.2 : » -5 %
Al | e 10 s
C/ S0 * Annulus ‘“R“ﬂ !
=1 0 1 9 3 3 5 7T 9 11 13 15
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Justification Ill: Numerics

e Deforming the shapes of A,B,C does not change the result across the entire

R

phase diagram.

e Note that the size of the blob we add here is comparable with the correlation

length.
b
(al) (a2) (®)
1_“__ o - gy B -y -
B..., A B::“ A ) m "
et s s
sessss eseesses &) Without deformation
""" 2 0.6}
& = rf -#- Deforming A .
(a3) ~ 04 —+— Deforming B
B.:EE A 0.2 Deforming C B _
siaisiils 00l =8 : __ ®ney
bl -1 0 1 2 3
C
n
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Justification Ill: Numerics

e Changing the topology has a significant effect

Annulus Incomplete disk
(a2) @l .
B 23535032 A B sssetie A ®
. EIOE. 1fe
S I+ S £ 11+ 1
';5;5[} 2 2 ’
o C | "a8 £ El T w 0.8}
(a2) _, . 0.6l
S - i AR | NSR—— v
Ll mmmims "F‘.'l"“lf. """ 1 R 0.0 02 04 06 08 L0 0 1
o ”-f /e r=5 @ ::gg[\r\ A8/6,
T 0.6 [ = r=10 . ] &
i i \ ]
Ct\:j 0.4 II- ° r=15 1: 1
0.2} ; 1
Annul > ]
0.0 o rhis s BRON
=1 0 1 2 3
n
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Entanglement Wiedemann-Franz law

e In free fermion systems with single-charge fermions, one can combine the result
for the chiral central charge and quantum Hall conductance to obtain

2
n
(w|[Kyp Kpc — ?Qﬁcl ly) =0

e An entanglement version of the Wiedemann—Franz law

e A numerical calculation on the left-hand side seems to suggest that it holds

Pirsa: 22110108

even at the critical point
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Justification 0: free-fermion systems

e In free-fermion systems, 2pt function P, = (c/c,) determines everything, including
entanglement X

I%X = Z (Kx)jk CJ-TCk ., Ky=log
ik -

Py = XPX

e We need to understand commutators of restricted projectors, e.g.,
([KAB! KBC])W ~ TrPypcl Py, Pyl
e Up to combinatorial manipulations (and the existence of a gap), it is equivalent

to showing the following

m!n! v(P)

iTr[(PAP)",(PBP)"] = ! 27

e The “smooth” version of this formula (the m =n =1 case is related to GMP

algebra)

27i Tr[(PfP)", (PgP)"] = V(P)CJ; frdg™
C

[RF, P. Zhang, Y. Gu, arXiv: 2211.04510; Kitaev, private communication] g, = o
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Justification ll: Numerics

Changing the topology has a significant effect
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Justification 0: free-fermion systems

e In free-fermion systems, 2pt function P, = (c/c,) determines everything, including

entanglement

A ]. — 1*)
Ky = Z (K c/ce, Ky=log =
jk A

Py = XPX

e We need to understand commutators of restricted projectors, e.g.,
([K 45 Kac])w ~ TrPypc Py, Pyl
e Up to combinatorial manipulations (and the existence of a gap), it is equivalent

to showing the following

m!n! v(P)

iTr[(PAP)",(PBP)"] = m ! 27

e The “smooth” version of this formula (the m =n =1 case is related to GMP

algebra)

27i Tr[(PfP)", (PgP)"] = V(P)CJ; frdg™
C

[RFr P. Zhang, Y. Gu, arXiv: 2211.04510; Kitaev, private communication] M
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Summary & Outlook

e New links between transport and entanglement? How to generalize it to other
symmetries & higher dimensions?

e What is the implication of such formulas in tensor networks? E.g., can one show
that PEPS must give vanish:,pg results?

e Implications in TQFT? Formulating and calculating the formulas require new
thoughts.

e Better understanding on the assumptions we used? Important quantum
information questions on its own.

Physical
response

N\ 4

Entanglement
linear response

<«—— [Anomalies

Thanks for your attention!
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Summary & Outlook

e We propose the entanglement linear response, as a systematic framework to
understand the topological phenomena and quantum entanglement.

e As an application, we show how to find for the Hall conductance and chiral

central charge.

e We can understand them via the bulk-edge correspondence, i.e., the modular

flow evolves the edge degrees of freedom.

Oy = 50| Ky Q) 1¥)

/4 ' ‘0 &
P iy | [Kyp, Kpcl W) C
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Justification |I: bulk-edge correspondence

e Back to the two-dimensional case, the expectation value of a U(1) defect
operator is given by the Charged Cardy formula

(kg kp)u? Ly, era

In{e#Cp) = 7
ys €

e We can separate the area-law coefficient into two pieces

kyp?

2
_ kit
Achiral = Axe o

anti—chiral =
dre

e We interpret them as the line density of the chiral and anti-chiral charged
modes. @& 13

e Their difference is encoded in the motion under modular flow.
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Justification |I: bulk-edge correspondence

o Let us apply the above picture and understand what happens to (e*#?sc) under

the modular flow generated by K, ;.

e Only the two triple contact points make nonzero contributions

Pirsa: 22110108

L -
— A
. N
C
» LY
»

- aanrf—chiral)v

d .
— In(e"@sc) = —2Apirgs
ds s=0
kgp®
Qanti—chiral = E
Kp = €Hcpr
kLﬂ2
Xchiral = e
d . ky — k
. ln(etﬁ"QB(,*) =L Rﬂ2 = — nyl"z
s =0 2r
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Justification |: General properties

Fl(w; A,B,C) = %(wl [Ky5: Q5] w)‘

e Our formula Z(y; A, B, C) satisfies the same general properties as the quantum
Hall conductance:

® AdditiVity Z(W]_ ® wz; As Ba C) = Z(WI;A) Bs C) + Z(Wz; As Ba C)
e CRT

e Topological and Uni\iéersal

e There are three key ingredients to show these:

o K |ly)=K;ly)

e (0,0,)~(0,)X0,) (lrp—n|>?

o Kyy+ Ky |lw) = Ky, + Ky|y) X Y Z

[RF, R. Sahay, A. Vishwanath, arXiv: 2208.11710]
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Justification Ill: Numerics

e Deforming the shapes of A,B,C does not change the result across the entire

phase diagram.

e Note that the size of the blob we add here is comparable with the correlation

length.
) b
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1.0 -8 -1 o
B A NB::“. A ) o n
T A L
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""" 206
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sTe3aiiss 00fs—m & .  Sapy
reisiiat ® 0 ] - :
¥ 7

Pirsa: 22110108 Page 40/40



