Title: Entanglement Linear Response â€" Extracting the Quantum Hall Conductance from a Single Bulk Wavefunction and Beyond

Speakers: Ruihua Fan

Series: Quantum Matter

Date: November 21, 2022 - 2:00 PM

URL: https://pirsa.org/22110108

Abstract: In this talk, I will introduce the so-called entanglement linear response, i.e., response under entanglement generated unitary dynamics. As an application, I will show how it can be applied to certain anomalies in 1D CFTs. Moreover, I will apply it to extract the quantum Hall conductance from a wavefunction and how it embraces a previous work on the chiral central charge. This gives a new connection between entanglement, anomaly and topological response. If time permits, I will also talk about how it inspires some generalizations of the real-space Chern number formula in free fermion systems.

Zoom link: https://pitp.zoom.us/j/96535214681?pwd=MldXRkRjZ1J6WS95WXQ0cG03cWdCZz09

Pirsa: 22110108 Page 1/40

Entanglement linear response —

Extracting Quantum Hall Conductance From a Single Wavefunction

and Beyond

Ruihua Fan @ Perimeter Institute (Virtual)

RF, R. Sahay, A. Vishwanath, arXiv: 2208.11710

RF, P. Zhang, Y. Gu, arXiv: 2211.04510

Rahul Sahay Ashvin Vishwanath Pengfei Zhang

Yingfei Gu

Pirsa: 22110108 Page 2/40

 Gapped systems can exhibit a variety of topological phenomena at the zero temperature (ground states). Below are two well-understood examples:

Invertible (short-range entangled) phases

E.g., Kitaev chain, IQH, topological insulators,...

Topological orders

E.g., FQH, gapped spin liquid,...

• It is widely accepted that these phenomena arise from the entanglement of the ground state. But how to quantify this connection?

Pirsa: 22110108 Page 3/40

- The first answer was found for the 2D topological orders [Hamma, Ionicioiu, Zarnardi (2004); Kitaev, Preskill (2005); Levin, Wen (2005)]
 - Topological entanglement entropy => Anyon total quantum dimension
- What about other topological invariants? Such as the quantum Hall conductance, chiral central charge
- One can certainly extend this program to gapless systems, e.g., CFTs, Fermi liquid....

Q: what happened when entanglement met locality?

Pirsa: 22110108 Page 4/40

- The motivation comes from various directions:
- Non-perturbative information/constraints on quantum many-body systems.
- Entanglement-based numerical study, i.e., tensor-networks
 - Compatibility between the TN architecture and the entanglement structure of the many-body wavefunction [Dubail&Read, 13]
- Hamiltonian-free characterization of the quantum orders
 - Notion of topological phases in open systems [Altman, Yimu, RF, Vishwanath, to appear]
- Entanglement in QFTs
 - Distill universal data from the UV divergence and ambiguities

Pirsa: 22110108 Page 5/40

- We want to propose a general idea, entanglement response, to study the above questions systematically.
- It is about understanding an <u>intrinsic</u> dynamics generated by the state itself, known as the modular flow in mathematics and high energy physics.
- As one application, we show how it can be applied to extract the quantum Hall conductance, or more generally, get the following triangle

Pirsa: 22110108 Page 6/40

Outline

- Review
 - topological entanglement entropy
 - entanglement (modular) Hamiltonian
- Entanglement linear response
- Proposal for the Hall conductance (and chiral central charge)
 - Setup, various justifications
 - Wiedemann-Franz law
- Summary & Outlooks

[Kim, Shi, Kato, Albert, arXiv: 2110.06932, 2110.10400]

Pirsa: 22110108 Page 7/40

• Topological entanglement entropy (TEE) $\gamma \ge 0$

$$|\psi\rangle \in H_A \otimes H_D$$
, $\rho_A = \operatorname{Tr}_D |\psi\rangle\langle\psi|$

$$S_A = -\operatorname{Tr}\rho_A \ln \rho_A = \alpha L_A - \gamma$$
 $\gamma = \ln \mathcal{D}$

 A better definition is to consider some linear superposition (not quite just bipartite entanglement)

$$-\gamma = S_A + S_B + S_C - S_{AB} - S_{AC} - S_{BC} + S_{ABC} \le 0$$

- To understand the essence for γ being topological, and for the purpose of generalization, let us take a detour to introduce
- Entanglement Hamiltonian (Half sided modular Hamiltonian)

$$K_A = -\ln \rho_A$$

- The reduced density matrix becomes a thermal state $ho_A = e^{-K_A}$
- The von Neumann entropy becomes the thermal energy

$$S_A = \operatorname{Tr} K_A e^{-K_A} = \alpha L_A - \gamma$$

- To understand the essence for γ being topological, and for the purpose of generalization, let us take a detour to introduce
- Entanglement Hamiltonian (Half sided modular Hamiltonian)

$$K_A = -\ln \rho_A$$

- The reduced density matrix becomes a thermal state $ho_A=e^{-K_A}$
- The von Neumann entropy becomes the thermal energy

$$S_A = \operatorname{Tr} K_A e^{-K_A} = \alpha L_A - \gamma$$

- Entanglement Hamiltonian is rather different from the physical Hamiltonian:
 - Area law => non-uniform in space
 - Pure state => conversion property

It follows from the Schmidt decomposition:

$$|\psi\rangle = \sum_{n} \sqrt{\lambda_n} |n_A\rangle \otimes |n_D\rangle$$

This property is like a symmetry, that has no analogue with physical Hamiltonians.

- Entanglement Hamiltonian also has certain similarity with the physical (edge)
 Hamiltonian
 - Spectrum [Kitaev, Preskill; Li, Haldane; ...]

Dynamics, called the modular flow

$$|\psi\rangle \mapsto |\psi(s)\rangle = e^{-isK_A}|\psi\rangle$$

These are important intuitions for our later discussion.

- TEE can be regarded as the study of thermal energy at this fictitious equilibrium. This quantity is
 - topological: invariant under the change of shapes without changing the topology
 - universal: invariant under local deformation of the state

- The key ingredients for showing these two properties:
 - $K_A | \psi \rangle = K_{\bar{A}} | \psi \rangle$
 - $\langle O_{r_1} O_{r_2} \rangle \approx \langle O_{r_1} \rangle \langle O_{r_1} \rangle$ $(|r_1 r_2| \gg \xi)$
 - $\langle K_{XY} + K_{YZ} \rangle \approx \langle K_{XYZ} + K_{Y} \rangle$ X Y Z

- TEE can be regarded as the study of thermal energy at this fictitious equilibrium. This quantity is
 - topological: invariant under the change of shapes without changing the topology
 - universal: invariant under local deformation of the state

- The key ingredients for showing these two properties:
 - $K_A | \psi \rangle = K_{\bar{A}} | \psi \rangle$
 - $\langle O_{r_1} O_{r_2} \rangle \approx \langle O_{r_1} \rangle \langle O_{r_1} \rangle \quad (|r_1 r_2| \gg \xi)$
 - $\langle K_{XY} + K_{YZ} \rangle \approx \langle K_{XYZ} + K_Y \rangle$ X Y Z

 When the system possesses global symmetries, one can also measure the symmetry defect (in addition to the von Neumann entropy, which is a "geometric defect") [Chen, Tu, Meng, Cheng, arXiv: 2203.08847]

$$\log |\operatorname{Tr} U_A(g)e^{-K_A}| = -\alpha_g L_A + \gamma_g$$

topological disorder parameter

- Again, it is the study of properties at the fictitious thermal equilibrium.
- Generalization becomes clear.

Entanglement linear response

We call this scheme, the entanglement response:

$$|\psi\rangle \mapsto |\psi(s)\rangle = e^{-isK_X}|\psi\rangle$$

 $\langle O_Y(s)\rangle_{\psi(s)} = \langle \psi | e^{isK_X}O_Y(s) e^{-isK_X}|\psi\rangle$

 To start, let us consider the response at the linear order in the modular time s, i.e., entanglement linear response:

$$\left. \frac{d}{ds} \langle O_Y(s) \rangle_{\psi(s)} \right|_{s=0} = ?$$

• Claim: entanglement linear response => physical topological response.

U(1) symmetry defect => quantum Hall conductance geometric defect => chiral central charge

[RF, arXiv: 2206.02823]

Application in 1D: anomaly

- Application: pure 1D CFT calculation => the U(1) chiral anomaly.
- CFT with a U(1) symmetry: $J(x)J(0) \sim \frac{k_L}{x^2}$, $\tilde{J}(x)\tilde{J}(0) \sim \frac{k_R}{x^2}$
- We repeat the entanglement linear response exercise

$$K_{AB} = 4\pi \int_{AB} \frac{\sin \frac{\ell - x}{2} \sin \frac{x}{\pi}}{\sin \frac{\ell}{2}} T_{00}(x) dx$$

$$x' = \ell$$

$$x' = 0 \text{ or } L$$

$$e^{i\mu Q_{BC}} \mapsto V_{\mu}(x) V_{-\mu}(y), \quad h = \frac{k_L \mu^2}{2(2\pi)^2}, \tilde{h} = \frac{k_R \mu^2}{2(2\pi)^2}$$

A simple limit: ABC form the entire circle

$$\left. \frac{d}{ds} \ln \langle e^{i\mu Q_{BC}} \rangle \right|_{s=0} = -\frac{k_L - k_R}{4\pi} \mu^2$$

 $k_L = k_R$ for a genuine 1D system

[RF, arXiv: 2206.02823

RF, R. Sahay, A. Vishwanath, arXiv: 2208.11710

also see Y. Zou, et.al, arXiv: 2206.00027]

Proposal for quantum Hall conductance

- Setup:
 - Divide the plane into four parts: A, B, C and D
 - Apply modular flow on AB:

$$|\psi\rangle \mapsto |\psi(s)\rangle = e^{-isK_{AB}}|\psi\rangle$$

$$\langle \psi | e^{isK_{AB}} Q_{BC}^{\downarrow} e^{-isK_{AB}} | \psi \rangle$$

Proposal: the linear response yields the Hall conductance

$$\sigma_{xy} = \frac{i}{2} \langle \psi | [K_{AB}, Q_{BC}^2] | \psi \rangle$$

[RF, R. Sahay, A. Vishwanath, arXiv: 2208.11710]

chiral central charge

[Kim et. al, arXiv: 2110.06932]

$$\frac{\pi}{3}c_{-} = i\langle\psi|[K_{AB}, K_{BC}]|\psi\rangle$$

Proposal for quantum Hall conductance

- There have been many efforts on quantum Hall conductance
 - Free fermions: TKNN formula [TKNN (1982)]; Fredholm index formula [Bellissard, Elst, Schulz-Baldes (1994), Avron, Seiler, Simon (1990), Kitaev (2005)]
 - Interacting systems: a nontrivial generalization of the Fredholm index formula [Bachmann, Bols, Roeck, Fraas (2020), Kapustin, Sopenko (2020)]
 - A related but different topological invariant: many-body Chern number [Shiozaki, Shapourian, Gomi, Ryu (2017), Dehghani, Cian, Hafezi, Barkeshli (2020)]
- Our formula is superfacially different from all of them, but they should be secretly related.
- E.g., in free-fermion systems, our formula is indeed related to the real-space Chern number formula [RF, P. Zhang, Y. Gu, arXiv: 2211.04510].

$$2\pi i \operatorname{Tr}[(PfP)^n, (PgP)^m] = \nu(P) \oint_C f^n dg^m$$

Pirsa: 22110108 Page 19/40

Proposal for quantum Hall conductance

- There have been many efforts on quantum Hall conductance
 - Free fermions: TKNN formula [TKNN (1982)]; Fredholm index formula [Bellissard, Elst, Schulz-Baldes (1994), Avron, Seiler, Simon (1990), Kitaev (2005)]
 - Interacting systems: a nontrivial generalization of the Fredholm index formula [Bachmann, Bols, Roeck, Fraas (2020), Kapustin, Sopenko (2020)]
 - A related but different topological invariant: many-body Chern number [Shiozaki, Shapourian, Gomi, Ryu (2017), Dehghani, Cian, Hafezi, Barkeshli (2020)]
- Our formula is superfacially different from all of them, but they should be secretly related.
- E.g., in free-fermion systems, our formula is indeed related to the real-space Chern number formula [RF, P. Zhang, Y. Gu, arXiv: 2211.04510].

 $2\pi i \operatorname{Tr}[(PfP)^n, (PgP)^m] = \nu(P) \oint_C f^n dg^m$

Pirsa: 22110108 Page 20/40

Justifications

$$\Sigma(\psi; A, B, C) = \frac{i}{2} \langle \psi | [K_{AB}, Q_{BC}^2] | \psi \rangle$$

- Basic logic:
 - Step I: Our formula $\Sigma(\psi; A, B, C)$ satisfies the same general properties as the quantum Hall conductance: additive, CRT, topological, universal
 - Step II: Provide an examples to show that it is actually nonzero
- We will also provide a mechanism to show that why it gives universal results

[RF, R. Sahay, A. Vishwanath, arXiv: 2208.11710]

$$\Sigma(\psi; A, B, C) = \frac{i}{2} \langle \psi | [K_{AB}, Q_{BC}^2] | \psi \rangle$$

- Our formula $\Sigma(\psi; A, B, C)$ satisfies the same general properties as the quantum Hall conductance:
 - Additivity $\Sigma(\psi_1 \otimes \psi_2; A, B, C) = \Sigma(\psi_1; A, B, C) + \Sigma(\psi_2; A, B, C)$
 - CRT
 - Topological and Universal

- There are three key ingredients to show these:
 - $K_A | \psi \rangle = K_{\bar{A}} | \psi \rangle$
 - $\langle O_{r_1} O_{r_2} \rangle \approx \langle O_{r_1} \rangle \langle O_{r_1} \rangle \quad (|r_1 r_2| \gg \xi)$
 - $K_{XY} + K_{YZ} | \psi \rangle \approx K_{XYZ} + K_Y | \psi \rangle$ \times Y Z

[RF, R. Sahay, A. Vishwanath, arXiv: 2208.11710]

$$\Sigma(\psi; A, B, C) = \frac{i}{2} \langle \psi | [K_{AB}, Q_{BC}^2] | \psi \rangle$$

Example: Reflection property (actually stronger than reflection)

$$\Sigma(\psi; A, B, C) = -\Sigma(\psi; B, A, C)$$

Equivalently, we can show

$$\langle [K_{AB}, Q_{BC}^2 + Q_{AC}^2] \rangle_{\psi} = 0$$

ullet It is important to note that K_{AB} conserves the total charge Q_{ABC}

$$\langle [K_{AB}, Q_{BC}^2 + Q_{AC}^2 - Q_{ABC}^2] \rangle_{\psi} = \langle [K_{AB}, Q_C^2 - 2Q_A Q_B] \rangle_{\psi} = 0$$

QED

$$\Sigma(\psi; A, B, C) = \frac{i}{2} \langle \psi | [K_{AB}, Q_{BC}^2] | \psi \rangle$$

- Our formula $\Sigma(\psi; A, B, C)$ satisfies the same general properties as the quantum Hall conductance:
 - Additivity $\Sigma(\psi_1 \otimes \psi_2; A, B, C) = \Sigma(\psi_1; A, B, C) + \Sigma(\psi_2; A, B, C)$
 - CRT
 - Topological and Universal

- There are three key ingredients to show these:
 - $K_A | \psi \rangle = K_{\bar{A}} | \psi \rangle$
 - $\langle O_{r_1} O_{r_2} \rangle \approx \langle O_{r_1} \rangle \langle O_{r_1} \rangle \quad (|r_1 r_2| \gg \xi)$
 - $K_{XY} + K_{YZ} | \psi \rangle \approx K_{XYZ} + K_Y | \psi \rangle$ \times Y Z

[RF, R. Sahay, A. Vishwanath, arXiv: 2208.11710]

$$\Sigma(\psi; A, B, C) = \frac{i}{2} \langle \psi | [K_{AB}, Q_{BC}^2] | \psi \rangle$$

- Because $\Sigma(\psi; A, B, C)$ is universal, we can deform the state to a nice one without changing its value.
- In particular, we want to consider a state with [Kitaev, Preskill; Li, Haldane, Swingle, Senthil; Chandran, Hermanns, Regnault, Bernevig; Qi, Katsura, Ludwig]

$$K_D = \epsilon H_{CFT}$$

- We consider the expectation value of a U(1) defect operator $\ln\langle e^{i\mu Q_{BC}}\rangle$, and can obtain Q_{BC}^2 from Taylor expansion.
- We want to show that

$$\left. \frac{d}{ds} \ln \langle e^{i\mu Q_{BC}} \rangle \right|_{s=0} = -\sigma_{xy} \mu^2, \quad \sigma_{xy} = \frac{k_L - k_R}{2\pi}$$

Pirsa: 22110108 Page 25/40

 Back to the two-dimensional case, the expectation value of a U(1) defect operator is given by the Charged Cardy formula

$$\ln\langle e^{i\mu Q_D}\rangle = -\frac{(k_L + k_R)\mu^2}{4\pi} \frac{L_D}{\epsilon} + \cdots$$

We can separate the area-law coefficient into two pieces

$$\alpha_{chiral} = \frac{k_L \mu^2}{4\pi\epsilon} \qquad \alpha_{anti-chiral} = \frac{k_R \mu^2}{4\pi\epsilon}$$

 We interpret them as the line density of the chiral and anti-chiral charged modes.

• Their difference is encoded in the motion under modular flow.

- Let us apply the above picture and understand what happens to $\langle e^{i\mu Q_{BC}} \rangle$ under the modular flow generated by K_{AB} .
- Only the two triple contact points make nonzero contributions

$$\left. \frac{d}{ds} \ln \langle e^{i\mu Q_{BC}} \rangle \right|_{s=0} = -2(\alpha_{chiral} - \alpha_{anti-chiral})v$$

$$K_D = \epsilon H_{CFT}$$

$$\alpha_{anti-chiral} = \frac{k_R \mu^2}{4\pi \epsilon}$$

$$\alpha_{chiral} = \frac{k_L \mu^2}{4\pi \epsilon}$$

$$\left. \frac{d}{ds} \ln \langle e^{i\mu Q_{BC}} \rangle \right|_{s=0} = -\frac{k_L - k_R}{2\pi} \mu^2 = -\sigma_{xy} \mu^2$$

Pirsa: 22110108 Page 27/40

$$\Sigma(\psi; A, B, C) = \frac{i}{2} \langle \psi | [K_{AB}, Q_{BC}^2] | \psi \rangle$$

- We also provide numerical justification using free fermion lattice model (the piflux model with weak disorders)
- It vanishes identically in the time-reversal symmetric phase, detects the transition, converges to the quantized value exponentially fast in the subsystem size

Pirsa: 22110108 Page 28/40

- Deforming the shapes of A,B,C does not change the result across the entire phase diagram.
- Note that the size of the blob we add here is comparable with the correlation length.

Pirsa: 22110108 Page 29/40

Changing the topology has a significant effect

Pirsa: 22110108 Page 30/40

Entanglement Wiedemann-Franz law

 In free fermion systems with single-charge fermions, one can combine the result for the chiral central charge and quantum Hall conductance to obtain

$$\langle \psi | [K_{AB}, K_{BC} - \frac{\pi^2}{3} Q_{BC}^2] | \psi \rangle = 0$$

- An entanglement version of the Wiedemann–Franz law
- A numerical calculation on the left-hand side seems to suggest that it holds even at the critical point

Justification 0: free-fermion systems

• In free-fermion systems, 2pt function $P_{jk} = \langle c_k^{\dagger} c_j \rangle$ determines everything, including entanglement

$$\hat{K}_X = \sum_{jk} (K_X)_{jk} c_j^{\dagger} c_k, \quad K_X = \log \frac{1 - P_X}{P_X}, \quad P_X = XPX$$

We need to understand commutators of restricted projectors, e.g.,

$$\langle [\hat{K}_{AB}, \hat{K}_{BC}] \rangle_{\psi} \sim \operatorname{Tr} P_{ABC}[P^m_{AB}, P^n_{BC}]$$

 Up to combinatorial manipulations (and the existence of a gap), it is equivalent to showing the following

$$i\operatorname{Tr}[(PAP)^m, (PBP)^n] = \frac{m!n!}{(m+n)!} \frac{\nu(P)}{2\pi i}$$

• The "smooth" version of this formula (the m = n = 1 case is related to GMP algebra)

 $2\pi i \operatorname{Tr}[(PfP)^n, (PgP)^m] = \nu(P) \oint_C f^n dg^m$

[RF, P. Zhang, Y. Gu, arXiv: 2211.04510; Kitaev, private communication]

Changing the topology has a significant effect

(a2) B A

Annulus

Incomplete disk

Pirsa: 22110108 Page 33/40

Justification 0: free-fermion systems

• In free-fermion systems, 2pt function $P_{jk} = \langle c_k^{\dagger} c_j \rangle$ determines everything, including entanglement

$$\hat{K}_X = \sum_{jk} (K_X)_{jk} c_j^{\dagger} c_k, \quad K_X = \log \frac{1 - i N_X}{P_X}, \quad P_X = XPX$$

We need to understand commutators of restricted projectors, e.g.,

$$\langle [\hat{K}_{AB},\hat{K}_{BC}] \rangle_{\psi} \sim \mathrm{Tr}\, P_{ABC}[P_{AB}^m,P_{BC}^n]$$

 Up to combinatorial manipulations (and the existence of a gap), it is equivalent to showing the following

$$i\operatorname{Tr}[(PAP)^m, (PBP)^n] = \frac{m!n!}{(m+n)!} \frac{\nu(P)}{2\pi i}$$

• The "smooth" version of this formula (the m = n = 1 case is related to GMP algebra)

 $2\pi i \operatorname{Tr}[(PfP)^n, (PgP)^m] = \nu(P) \oint_C f^n dg^m$

[RF, P. Zhang, Y. Gu, arXiv: 2211.04510; Kitaev, private communication]

Summary & Outlook

- New links between transport and entanglement? How to generalize it to other symmetries & higher dimensions?
- What is the implication of such formulas in tensor networks? E.g., can one show that PEPS must give vanishing results?
- Implications in TQFT? Formulating and calculating the formulas require new thoughts.
- Better understanding on the assumptions we used? Important quantum information questions on its own.

Pirsa: 22110108 Page 35/40

Summary & Outlook

- We propose the entanglement linear response, as a systematic framework to understand the topological phenomena and quantum entanglement.
- As an application, we show how to find for the Hall conductance and chiral central charge.
- We can understand them via the bulk-edge correspondence, i.e., the modular flow evolves the edge degrees of freedom.

$$\sigma_{xy} = \frac{i}{2} \langle \psi | [K_{AB}, Q_{BC}^2] | \psi \rangle$$

$$\frac{\pi}{3} c_{-} = i \langle \psi | [K_{AB}, K_{BC}] | \psi \rangle$$

 Back to the two-dimensional case, the expectation value of a U(1) defect operator is given by the Charged Cardy formula

$$\ln\langle e^{i\mu Q_D}\rangle = -\frac{(k_L + k_R)\mu^2}{4\pi} \frac{L_D}{\epsilon} + \cdots$$

We can separate the area-law coefficient into two pieces

$$\alpha_{chiral} = \frac{k_L \mu^2}{4\pi\epsilon}$$
 $\alpha_{anti-chiral} = \frac{k_R \mu^2}{4\pi\epsilon}$

 We interpret them as the line density of the chiral and anti-chiral charged modes.

Their difference is encoded in the motion under modular flow.

- Let us apply the above picture and understand what happens to $\langle e^{i\mu Q_{BC}}\rangle$ under the modular flow generated by K_{AB} .
- Only the two triple contact points make nonzero contributions

$$\left. \frac{d}{ds} \ln \langle e^{i\mu Q_{BC}} \rangle \right|_{s=0} = -2(\alpha_{chiral} - \alpha_{anti-chiral}) v$$

$$K_D = \epsilon H_{CFT}$$

$$\alpha_{anti-chiral} = \frac{k_R \mu^2}{4\pi \epsilon}$$

$$\alpha_{chiral} = \frac{k_L \mu^2}{4\pi \epsilon}$$

$$\left. \frac{d}{ds} \ln \langle e^{i\mu Q_{BC}} \rangle \right|_{s=0} = -\frac{k_L - k_R}{2\pi} \mu^2 = -\sigma_{xy} \mu^2$$

Pirsa: 22110108 Page 38/40

$$\Sigma(\psi; A, B, C) = \frac{i}{2} \langle \psi | [K_{AB}, Q_{BC}^2] | \psi \rangle$$

- Our formula $\Sigma(\psi; A, B, C)$ satisfies the same general properties as the quantum Hall conductance:
 - Additivity $\Sigma(\psi_1 \otimes \psi_2; A, B, C) = \Sigma(\psi_1; A, B, C) + \Sigma(\psi_2; A, B, C)$
 - CRT
 - Topological and Universal

- There are three key ingredients to show these:
 - $K_A | \psi \rangle = K_{\bar{A}} | \psi \rangle$
 - $\langle O_{r_1} O_{r_2} \rangle \approx \langle O_{r_1} \rangle \langle O_{r_1} \rangle \quad (|r_1 r_2| \gg \xi)$
 - $K_{XY} + K_{YZ} | \psi \rangle \approx K_{XYZ} + K_Y | \psi \rangle$ \times Y Z

[RF, R. Sahay, A. Vishwanath, arXiv: 2208.11710]

- Deforming the shapes of A,B,C does not change the result across the entire phase diagram.
- Note that the size of the blob we add here is comparable with the correlation length.

Pirsa: 22110108 Page 40/40