Title: An operator-algebraic formulation of self-testing

Speakers: Connor Paul-Paddock

Series: Perimeter Institute Quantum Discussions

Date: November 16, 2022 - 11:00 AM

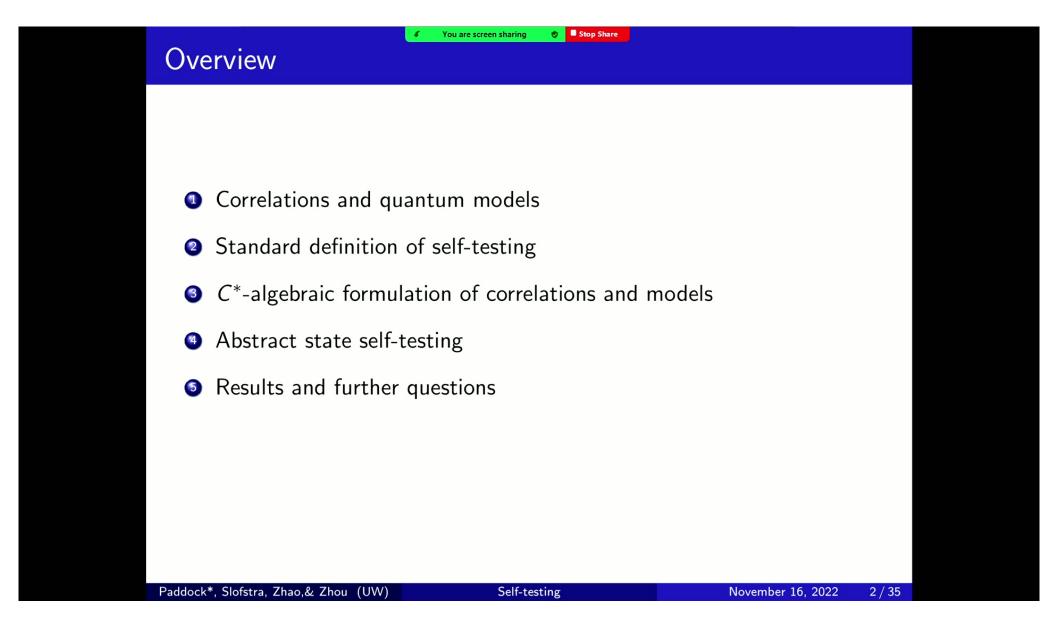
URL: https://pirsa.org/22110100

Abstract: We give a new definition of self-testing for correlations in terms of states on C*-algebras. We show that this definition is equivalent to the standard definition for any class of finite-dimensional quantum models which is closed under submodels and direct sums, provided that the correlation is extremal and has a full-rank model in the class. This last condition automatically holds for the class of POVM quantum models, but does not necessarily hold for the class of projective models by a result of Mancinska and Kaniewski. For extremal binary correlations and for extremal synchronous correlations, we show that any self-test for projective models is a self-test for POVM models. The question of whether there is a self-test for projective models which is not a self-test for POVM models remains open. An advantage of our new definition is that it extends naturally to commuting operator models. We show that an extremal correlation is a self-test for finite-dimensional quantum models if and only if it is a self-test for finite-dimensional commuting operator models, and also observe that many known finite-dimensional self-tests are in fact self-tests for infinite-dimensional commuting operator models.

Zoom link: https://pitp.zoom.us/j/95783943431?pwd=SDFyQVVZR1d4WIVNSDZ4OENzSmJQUT09

Pirsa: 22110100 Page 1/39

Pirsa: 22110100 Page 2/39



Pirsa: 22110100 Page 3/39

You are screen sharing

Bell scenarios

 Two spatially-separated parties (Alice and Bob) are given measurement settings x and y drawn from some finite sets X and Y respectively, and return measurement outcomes a and b drawn from finite sets A and B.

Stop Share

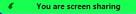
- Alice and Bob's actions are modelled by measurement operators $\{M_a^x: a \in A\}, x \in X \text{ and } \{N_b^y: b \in B\}, y \in Y \text{ on local Hilbert spaces}$ H_A and H_B .
- If the joint system is in the pure state $|\psi\rangle \in H_A \otimes H_B$, then the probability that Alice and Bob measure outcomes a, b on inputs x, y is

$$p(a, b|x, y) = \langle \psi | M_a^x \otimes N_b^y | \psi \rangle.$$

Paddock*, Slofstra, Zhao, & Zhou (UW)

Self-testing

November 16, 2022



Stop Share

Correlations and quantum models

- A collection $p = \{p(a, b|x, y)\}_{x,y,a,b}$, such that $\sum_{a,b} p(a, b|x, y) = 1$, for all $x, y \in X \times Y$ is called a **correlation** (or behaviour).
- The collection

$$S = (H_A, H_B, \{M_a^x : a \in A, x \in X\}, \{N_b^y : b \in B, y \in Y\}, |\psi\rangle)$$

- \bigcirc H_A and H_B are finite dimensional Hilbert spaces,
- $\{N_b^{\overline{y}}:b\in B\}$ is a POVM on H_B for all $y\in Y$, and
- $|\psi\rangle \in H_A \otimes H_B$ is a vector state,
- Such that $p(a, b|x, y) = \langle \psi | M_a^x \otimes N_b^y | \psi \rangle$ for all $(a, b, x, y) \in A \times B \times X \times Y$, is a (POVM) **quantum model** for p.

Paddock*, Slofstra, Zhao, & Zhou (UW)

Self-testing

November 16, 2022

Quantum correlations

- A correlation p is a quantum correlation if it has a quantum model.
- The set of quantum correlations $C_q(X, Y, A, B)$ is a convex subset of $\mathbb{R}^{A \times B \times X \times Y}_{>0}$.
- The sets C_q are not closed in general [Slofstra'19], and the closure of C_q in $\mathbb{R}_{\geq 0}^{A \times B \times X \times Y}$ is denoted by $C_{qa} = C_{qa}(X, Y, A, B)$.
- While a quantum correlation *p* can be directly observed from a Bell scenario, the model *S* cannot.
- In fact, there are typically many different models for a given correlation *p*.

Paddock*, Slofstra, Zhao, & Zhou (UW)

Self-testing

November 16, 2022

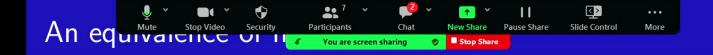


- A correlation p is a quantum correlation if it has a quantum model.
- The set of quantum correlations $C_q(X, Y, A, B)$ is a convex subset of $\mathbb{R}^{A \times B \times X \times Y}_{>0}$.
- The sets C_q are not closed in general [Slofstra'19], and the closure of C_q in $\mathbb{R}^{A\times B\times X\times Y}_{>0}$ is denoted by $C_{qa}=C_{qa}(X,Y,A,B)$.
- While a quantum correlation *p* can be directly observed from a Bell scenario, the model *S* cannot.
- In fact, there are typically many different models for a given correlation *p*.
- Can we hope to learn anything about the model from observing only its correlations?

Paddock*, Slofstra, Zhao, & Zhou (UW)

Self-testing

November 16, 2022



Definition (Local dilation)

A quantum model

$$\widetilde{S} = \left(\widetilde{H}_A, \widetilde{H}_B, \{\widetilde{M}_a^x : a \in A, x \in X\}, \{\widetilde{N}_b^y : b \in B, y \in Y\}, \left|\widetilde{\psi}\right>\right),$$

is a local dilation of another model

$$S = (H_A, H_B, \{M_a^x : a \in A, x \in X\}, \{N_b^y : b \in B, y \in Y\}, |\psi\rangle).$$

If there are finite dimensional Hilbert spaces H_A^{aux} and H_B^{aux} , a vector state $|aux\rangle \in H_A^{aux} \otimes H_B^{aux}$, and isometries

$$I_A:H_A o\widetilde{H}_A\otimes H_A^{aux}$$
 and $I_B:H_B o\widetilde{H}_B\otimes H_B^{aux}$ such that

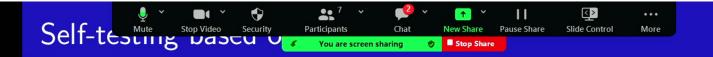
$$(I_A \otimes I_B) \cdot (M_a^x \otimes N_b^y) \ket{\psi} = \left(\widetilde{M}_a^x \otimes \widetilde{N}_b^y \ket{\widetilde{\psi}}\right) \otimes \ket{aux}$$

for all $(a, b, x, y) \in A \times B \times X \times Y$.

Paddock*, Slofstra, Zhao, & Zhou (UW)

Self-testing

November 16, 2022



- We write $S \succeq \widetilde{S}$ to mean that \widetilde{S} is a **local dilation** of S.
- The relation <u>></u> is a preorder i.e. it is transitive and reflexive, but not anti-symmetric.
- The local isometries are necessary to account for the addition of ancilla systems.

Definition (Self-test for quantum models)

A correlation p is a **self-test for the class of quantum models** if there is an **ideal** quantum model \widetilde{S} for p, such that $S \succeq \widetilde{S}$ for any **employed** quantum model S for p.

Paddock*, Slofstra, Zhao, & Zhou (UW)

Self-testing

November 16, 2022

- This definition of a self-test is somewhat ad-hoc: it's clear that some type of equivalence between models is required for the definition, but why exactly this equivalence with local isometries?
- Several definitions of self-testing have appeared since the inception of self-testing in [Mayers-Yao'03], with a rough consensus seeming to form around the above definition only recently, although variants still exist.
- Christandl, Mancinska, and Houghton-Larsen have additionally pointed out a lack of physical or operational interpretation of this definition of self-testing, which they address in their recent work [CMH-L'22].
- Despite this ad-hoc nature, the definition has been very successful [Supic-Bowles'20]. Among other achievements, self-tests have been used in proofs of device-independent cryptography; and self-testing is a key component to the recent proof of MIP* = RE.

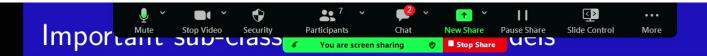
Paddock*, Slofstra, Zhao,& Zhou (UW)

Self-testing

November 16, 2022

8 / 35

Pirsa: 22110100 Page 10/39



- A quantum model S for a correlation p is **projective** (or a **PVM** quantum model) if the operators M_a^x and N_b^y are self-adjoint projections for all x, y, a, b.
- By Naimark dilation, every element of C_q has a projective quantum model, and by restricting to the support projection, every element of C_q also has a full-rank (but not necessarily projective) quantum model.
- A quantum model is **full-rank** if dim $H_A = \dim H_B$, and the Schmidt rank of $|\psi\rangle$ is dim H_A .

Paddock*, Slofstra, Zhao,& Zhou (UW) Self-testing November 16, 2022

Pirsa: 22110100 Page 11/39

- A (unital) C^* -algebra \mathcal{A} is a complex Banach *-algebra for which the C^* -identity $||a^*a|| = ||a||^2$ holds, for all $a \in \mathcal{A}$.
- An **abstract state** is a linear functional $f: \mathcal{A} \to \mathbb{C}$ such that $f(b) \geq 0$ for all positive elements $b = a^*a \in \mathcal{A}$ (positivity) and f(1) = 1 (normalized).
- Given a state $f: \mathcal{A} \to \mathbb{C}$ the Gel'fand-Naimark-Segal (GNS) construction is: a representation π_f of \mathcal{A} , a Hilbert space H_f , and a unique vector state $|\xi_f\rangle \in H_f$ (called the **cyclic vector** for π_f), such that $f(a) = \langle \xi_f | \pi_f(a) | \xi_f \rangle$ for all $a \in \mathcal{A}$.
- Conversely, if π is a representation of \mathcal{A} on Hilbert space H with a cyclic vector $|\xi\rangle \in H$ for \mathcal{A} , then $f(a) = \langle \xi | \pi(a) | \xi \rangle$ is a positive linear functional on \mathcal{A} , and $(\pi, H, |\xi\rangle)$ is unitarily equivalent to the **GNS representation** $(\pi_f, H_f, |\xi_f\rangle)$ of f.

Paddock*, Slofstra, Zhao,& Zhou (UW)

Self-testing

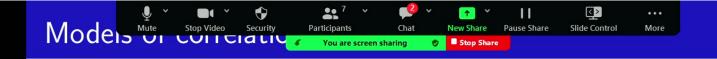
November 16, 2022

- Define the **POVM algebra** $\mathscr{A}_{POVM}^{X,A}$ to be the universal C^* -algebra generated by positive contractions e_a^x , $x \in X$, $a \in A$, subject to the relations: $\sum_{a \in A} e_a^x = 1$ for all $x \in X$.
- Representations $\phi: \mathscr{A}^{X,A}_{POVM} \to \mathscr{B}(H)$ on a Hilbert space H, correspond uniquely to POVMs on H with $\phi(e_a^x) = M_a^x$ for $a \in A$, $x \in X$.
- Let $m_a^{\chi} := e_a^{\chi} \otimes 1$ and $n_b^{\chi} := 1 \otimes e_b^{\chi}$ to be the generators for the algebraic tensor product $\mathscr{A}_{POVM}^{\chi,A} \otimes_{alg} \mathscr{A}_{POVM}^{\gamma,B}$. Completing this using the min construction gives us the bipartite POVM C^* -algebra $\mathscr{A}_{POVM}^{\chi,A} \otimes_{min} \mathscr{A}_{POVM}^{\gamma,B}$.

Paddock*, Slofstra, Zhao,& Zhou (UW)

Self-testing

November 16, 2022



- If S is a quantum model for $p \in C_q$, then there is a unique representation $\phi_A \otimes \phi_B$ of the C^* -algebra $\mathscr{A}_{POVM}^{X,A} \otimes_{min} \mathscr{A}_{POVM}^{Y,B}$ with $\phi_A(m_a^{\times}) = M_a^{\times}$ and $\phi_B(n_b^{y}) = N_b^{y}$ for all $(a,b,x,y) \in A \times B \times X \times Y$.
- Hence, a quantum model S can be equivalently expressed as $S = (\phi_A \otimes \phi_B, H_A \otimes H_B, |\psi\rangle)$.
- The abstract state $f_S: \mathscr{A}^{X,A}_{POVM} \otimes_{min} \mathscr{A}^{X,A}_{POVM} \to \mathbb{C}$ defined by $f_S(x) := \langle \psi | (\phi_A \otimes \phi_B)(x) | \psi \rangle$ satisfies

$$f_{\mathcal{S}}(m_{a}^{\mathsf{x}}\cdot n_{b}^{\mathsf{y}}) = \langle \psi | \pi_{\mathcal{A}}(m_{a}^{\mathsf{x}}) \otimes \pi_{\mathcal{B}}(n_{b}^{\mathsf{y}}) | \psi \rangle = p(a,b|x,y).$$

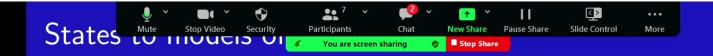
We refer to f_S as the **abstract state defined by** S.

• If $p \in C_q$ then f_S is **finite dimensional**, since $H_A \otimes H_B$ is finite dimensional.

Paddock*, Slofstra, Zhao, & Zhou (UW)

Self-testing

November 16, 2022



- Conversely, if f is a finite dimensional state on $\mathscr{A}_{POVM}^{X,A} \otimes_{min} \mathscr{A}_{POVM}^{X,A}$, then applying the double commutant theorem to a GNS representation of f yields a quantum model S such that $f = f_S$.
- In particular, a correlation $p \in \mathbb{R}_{\geq 0}^{A \times B \times X \times Y}$ belongs to C_q if and only if there is a finite dimensional state f on $\mathscr{A}_{POVM}^{X,A} \otimes_{min} \mathscr{A}_{POVM}^{X,A}$ with $f(m_a^X \cdot n_b^Y) = p(a,b|x,y)$ for all $(a,b,x,y) \in A \times B \times X \times Y$.
- Consequently, a correlation p belongs to C_{qa} if and only if there is a state f on $\mathscr{A}_{POVM}^{X,A} \otimes_{min} \mathscr{A}_{POVM}^{X,A}$ with $f(m_a^x \cdot n_b^y) = p(a,b|x,y)$ for all $(a,b,x,y) \in A \times B \times X \times Y$.

Paddock*, Slofstra, Zhao, & Zhou (UW)

Self-testing

November 16, 2022

• Let $\mathscr{A}_{PVM}^{X,A}$ be the quotient of $\mathscr{A}_{POVM}^{X,A}$ by the relations $(e_a^x)^*=(e_a^x)^2=e_a^x$ for all $x\in X$, $a\in A$. If

$$q: \mathscr{A}^{X,A}_{POVM} \otimes_{min} \mathscr{A}^{Y,B}_{POVM} \to \mathscr{A}^{X,A}_{PVM} \otimes_{min} \mathscr{A}^{Y,B}_{PVM}$$

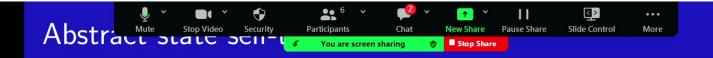
is the quotient homomorphism, and f is a state on $\mathscr{A}_{PVM}^{X,A} \otimes_{min} \mathscr{A}_{PVM}^{Y,B}$, then $f \circ q$ is a state $\mathscr{A}_{POVM}^{X,A} \otimes_{min} \mathscr{A}_{POVM}^{Y,B}$.

- The pullback map $q^*: f \mapsto f \circ q$ is an injection, and hence identifies states on $\mathscr{A}_{PVM}^{X,A} \otimes_{min} \mathscr{A}_{PVM}^{Y,B}$ with a subset of states on $\mathscr{A}_{POVM}^{X,A} \otimes_{min} \mathscr{A}_{POVM}^{Y,B}$.
- We say that a state on $\mathscr{A}_{POVM}^{X,A} \otimes_{min} \mathscr{A}_{POVM}^{Y,B}$ is **projective** if it belongs to the image of q^* .

Paddock*, Slofstra, Zhao, & Zhou (UW)

Self-testing

November 16, 2022



- An abstract state f on $\mathscr{A}_{POVM}^{X,A} \otimes_{min} \mathscr{A}_{POVM}^{Y,B}$ is finite dimensional (resp. projective & finite dimensional) if and only if $f = f_S$ for some quantum model (resp. projective quantum model) S.
- And, if S is a quantum model for $p \in C_q$, then $f_S(m_a^x \cdot n_b^y) = \langle \psi | \pi_A(m_a^x) \otimes \pi_B(n_b^y) | \psi \rangle = p(a, b | x, y)$, for all $a, b, x, y \in A \times B \times X \times Y$.

Definition (Abstract state self-test)

Let S be a subset of states on $\mathscr{A}_{POVM}^{X,A} \otimes_{min} \mathscr{A}_{POVM}^{Y,B}$. A correlation p is an **abstract state self-test for** S if there exists a unique abstract state $f \in S$ with correlation p.

Paddock*, Slofstra, Zhao, & Zhou (UW)

Self-testing

November 16, 2022

Theorem (PSYY'22)

Suppose $p \in C_q(X, Y, A, B)$ is an extreme point. Then:

- p is a self-test for the class of quantum models if and only if p is an abstract state self-test for finite dimensional states.
- If p has a full-rank projective quantum model, then p is a self-test for projective quantum models if and only if p is an abstract state self-test for projective finite dimensional states.
 - In (2), if p is an abstract state self-test for projective finite dimensional states, then p is a self-test for projective quantum models even if p does not have a full-rank projective quantum model.
 - We do not know whether the hypothesis that *p* have a full-rank projective quantum model is required for the "projective self-test implies unique projective abstract state" direction.

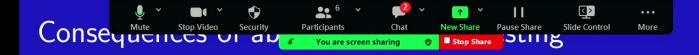
Paddock*, Slofstra, Zhao, & Zhou (UW)

Self-testing

November 16, 2022

16 / 35

Pirsa: 22110100 Page 18/39



Lemma (PSYY'22)

Suppose $p \in C_q(X, Y, A, B)$ is an extreme point in C_q and is a self-test for quantum models. Then:

- the unique state f on $\mathscr{A}_{POVM}^{X,A} \otimes_{min} \mathscr{A}_{POVM}^{Y,A}$ achieving p is projective,
- p is a self-test for projective quantum models,
- any full-rank quantum model for p is projective,

Remark

We do not know whether there is a correlation $p \in C_q$ which is a self-test for projective quantum models but not a self-test for POVM quantum models. Although, the above shows that any such example cannot have a full-rank projective quantum model.

Paddock*, Slofstra, Zhao, & Zhou (UW)

Self-testing

November 16, 2022

7 / 35

Pirsa: 22110100 Page 19/39

- In general, we do not know if being a self-test for the class of projective models implies being a self-test for the class of (POVM) quantum models.
- Mančinska and Kaniewski have recently shown that there are correlations which do not have a full-rank projective models.
- Can this lead to a counterexample? Or perhaps whenever *p* is a self-test amongst projective models, there is always a full-rank projective model. This remains unknown.
- General statements aside, we are able to show that in many known cases it suffices to be a self-test amongst projective models.

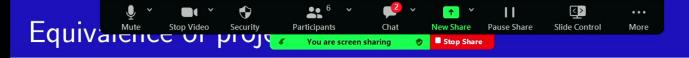
Paddock*, Slofstra, Zhao,& Zhou (UW)

Self-testing

November 16, 2022

18 / 35

Pirsa: 22110100 Page 20/39



- A correlation $p \in C_q(X, Y, A, B)$ is said to be a **synchronous** correlation if A = B, X = Y, and p(a, b|x, x) = 0 whenever $a \neq b$.
- A correlation $p \in C_q(X, Y, A, B)$ is said to a **binary correlation** if |A| = |B| = 2.

Theorem (PSYY'22)

If p is a synchronous or binary correlation and is an extreme point in C_q , then the following statements are equivalent:

- 1 p is a self-test for quantum models.
- 2 p is an abstract state self-test for finite dimensional states.
- p is a self-test for projective quantum models.
- p is an abstract state self-test for projective finite dimensional states.
- This implies that many self-tests for projective models, such as in the CHSH game, Mermin-Peres magic square game, etc. are also self-tests for POVM quantum models.

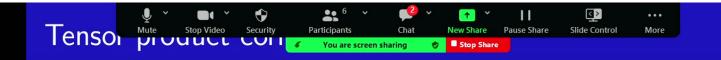
Paddock*, Slofstra, Zhao, & Zhou (UW)

Self-testing

November 16, 2022

19 / 35

Pirsa: 22110100 Page 21/39



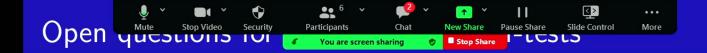
 Recall that a tensor product (POVM) model for a correlation p is a tuple

$$S = (H_A, H_B, \{M_a^x : a \in A, x \in X\}, \{N_b^y : b \in B, y \in Y\}, |\psi\rangle),$$

where the Hilbert spaces H_A and H_B are not restricted to be finite dimensional.

Paddock*, Slofstra, Zhao,& Zhou (UW) Self-testing November 16, 2022 20 / 35

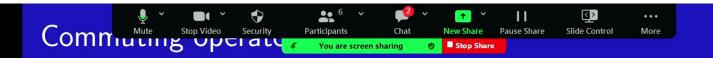
Pirsa: 22110100 Page 22/39



- Additionally, we do not know whether the set of states achieving $p \in C_{qs}$ contains only abstract states with tensor product models
- To our knowledge, it is an open problem to characterize the subset of abstract states on $\mathscr{A}_{POVM}^{X,A} \otimes_{min} \mathscr{A}_{POVM}^{Y,B}$ which achieve correlations $p \in C_{qs}(X,Y,A,B)$. In particular, are these the states with a tensor product representation?

Paddock*, Slofstra, Zhao,& Zhou (UW) Self-testing November 16, 2022 22 / 35

Pirsa: 22110100 Page 23/39



- A commuting operator POVM model for a correlation p is a tuple $(H, \{M_a^x : a \in A, x \in X\}, \{N_b^y : b \in B, y \in Y\}, |\psi\rangle)$, where
 - H is a Hilbert space,
 - $\{M_a^x: a \in A\}, \ x \in X \ \text{and} \ \{N_b^y: b \in B\}, \ y \in Y \ \text{are POVMs on} \ H \ \text{such}$ that

$$M_a^{\scriptscriptstyle X} N_b^{\scriptscriptstyle Y} = N_b^{\scriptscriptstyle Y} M_a^{\scriptscriptstyle X}$$

for all $(a, b, x, y) \in A \times B \times X \times Y$, and

Paddock*, Slofstra, Zhao,& Zhou (UW)

Self-testing

November 16, 2022

- A commuting operator POVM model for a correlation p is a tuple $(H, \{M_a^x : a \in A, x \in X\}, \{N_b^y : b \in B, y \in Y\}, |\psi\rangle)$, where
 - H is a Hilbert space,
 - $\{M_a^x : a \in A\}, x \in X \text{ and } \{N_b^y : b \in B\}, y \in Y \text{ are POVMs on } H \text{ such that }$

$$M_a^{\times} N_b^{y} = N_b^{y} M_a^{\times}$$

for all $(a, b, x, y) \in A \times B \times X \times Y$, and

 $|\psi\rangle \in H$ is a vector state

such that $p(a, b|x, y) = \langle \psi | M_a^x \cdot N_b^y | \psi \rangle$ for all $(a, b, x, y) \in A \times B \times X \times Y$.

Paddock*, Slofstra, Zhao,& Zhou (UW)

Self-testing

November 16, 2022



- A commuting operator POVM model for a correlation p is a tuple $(H, \{M_a^x : a \in A, x \in X\}, \{N_b^y : b \in B, y \in Y\}, |\psi\rangle)$, where
 - H is a Hilbert space,
 - $\{M_a^x : a \in A\}, x \in X \text{ and } \{N_b^y : b \in B\}, y \in Y \text{ are POVMs on } H \text{ such that }$

$$M_a^{\times} N_b^{y} = N_b^{y} M_a^{\times}$$

for all $(a, b, x, y) \in A \times B \times X \times Y$, and

 $|\psi\rangle \in H$ is a vector state

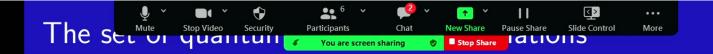
such that $p(a, b|x, y) = \langle \psi | M_a^x \cdot N_b^y | \psi \rangle$ for all $(a, b, x, y) \in A \times B \times X \times Y$.

• Likewise, a projective or **(PVM)** commuting operator model is one where each M_a^{\times} and N_b^{y} is a projection.

Paddock*, Slofstra, Zhao,& Zhou (UW)

Self-testing

November 16, 2022



- We let $C_{qc} = C_{qc}(X, Y, A, B)$ be the set of correlations with a commuting operator model.
- It is well-known that C_{qc} is closed, convex, and contains C_{qa} , that every correlation in C_{qc} has a projective commuting operator model, and that the set of correlations with finite dimensional commuting operator models is equal to C_q .
- It is not apparent from the standard formulation of self-testing, how to give an analogous description of a self-test for correlations with commuting operator models.
- In particular, its not even apparent what a local dilation is for commuting operator models, as there is no longer a tensor product structure.

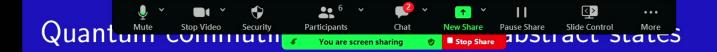
Paddock*, Slofstra, Zhao, & Zhou (UW)

Self-testing

November 16, 2022

24 / 35

Pirsa: 22110100 Page 27/39



• However, correlations in C_{qc} do have a formulation as abstract states on C^* -algebras.

Proposition (Fritz'12, JNPPSW'11)

Let X, Y, A, B be finite sets. A correlation $p \in \mathbb{R}^{A \times B \times X \times Y}_{\geq 0}$ belongs to $C_{qc}(X,Y,A,B)$ if and only if there is a state f on $\mathscr{A}^{X,A}_{POVM} \otimes_{max} \mathscr{A}^{Y,B}_{POVM}$ with

$$p(a, b|x, y) = f(m_a^x \cdot n_b^y)$$

for all $(a, b, x, y) \in A \times B \times X \times Y$.

• Where $\mathscr{A}_{POVM}^{X,A} \otimes_{max} \mathscr{A}_{POVM}^{Y,B}$ is just another way of making the algebraic tensor product of POVM algebras into a C^* -algebra.

Paddock*, Slofstra, Zhao, & Zhou (UW)

Self-testing

November 16, 2022

• The definition of an abstract state self-test on $\mathscr{A}_{POVM}^{X,A} \otimes_{min} \mathscr{A}_{POVM}^{Y,B}$ suggests a notion of self-test for commuting operator models.

Definition

Let S be a subset of states on $\mathscr{A}_{POVM}^{X,A} \otimes_{max} \mathscr{A}_{POVM}^{Y,B}$. A correlation p is an **abstract state self-test for** S if there exists a unique abstract state $f \in S$ with correlation p. We say that p is a **commuting operator self-test** if it is an abstract state self-test for all states on $\mathscr{A}_{POVM}^{X,A} \otimes_{max} \mathscr{A}_{POVM}^{Y,B}$.

• There is a surjective homomorphism $\mathscr{A}_{POVM}^{X,A}\otimes_{max}\mathscr{A}_{POVM}^{Y,B}\to\mathscr{A}_{POVM}^{X,A}\otimes_{min}\mathscr{A}_{POVM}^{Y,B}$, and these means that states on $\mathscr{A}_{POVM}^{X,A}\otimes_{min}\mathscr{A}_{POVM}^{Y,B}$ can be thought of as a subset of states on $\mathscr{A}_{POVM}^{X,A}\otimes_{max}\mathscr{A}_{POVM}^{Y,B}$.

Paddock*, Slofstra, Zhao,& Zhou (UW)

Self-testing

November 16, 2022

Definition

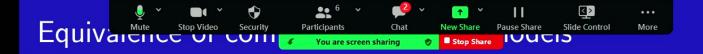
Let S, and \widetilde{S} be two commuting operator models.

- We say S and \widetilde{S} are **equivalent**, and write $S \cong \widetilde{S}$, if there exists a unitary $U: H \to \widetilde{H}$ such that
 - $igotimes U\ket{\psi} = \ket{\widetilde{\psi}}$, and
- S is said to be **degenerate** if there exists a non-trivial projection $\Pi \in \mathcal{B}(H)$ such that $\Pi | \psi \rangle = | \psi \rangle$ and $[\Pi, M_a^\times] = [\Pi, N_b^y] = 0$ for all $(a, b, x, y) \in A \times B \times X \times Y$. In this case, we say \widetilde{S} is a **submodel** of S if $\widetilde{H} = \Pi H, \left| \widetilde{\psi} \right\rangle = \Pi | \psi \rangle$, and $\widetilde{M}_a^\times = \Pi M_a^\times \Pi, \widetilde{N}_b^y = \Pi N_b^y \Pi$ for all $(a, b, x, y) \in A \times B \times X \times Y$. Any commuting operator model is a submodel of itself. A commuting operator model is said to be **nondegenerate** if it is not degenerate.

Paddock*, Slofstra, Zhao, & Zhou (UW)

Self-testing

November 16, 2022



- ullet A class of commuting operator models ${\mathcal C}$ is **closed under submodels** if
 - for any $S \in \mathcal{C}$, if \widetilde{S} is a commuting operator model such that $\widetilde{S} \cong S$ then $\widetilde{S} \in \mathcal{C}$, and
 - for any $S \in \mathcal{C}$, if \widetilde{S} is a submodel of S then $\widetilde{S} \in \mathcal{C}$.

Remark

For any two commuting operator models S and \widetilde{S} , we have $f_S = f_{\widetilde{S}}$ whenever \widetilde{S} is equivalent to S, or \widetilde{S} is a submodel of S.

Moreover, any commuting operator model S has a nondegenerate submodel \widetilde{S} which is the GNS representation for the abstract state f_S .

Paddock*, Slofstra, Zhao,& Zhou (UW)

Self-testing

November 16, 2022

28 / 35

Pirsa: 22110100 Page 31/39

We can then show that this definition of commuting operator self-test is equivalent to having a unique nondegenerate commuting-operator model.

Theorem (PSZZ'22)

Let \mathcal{C} be a class of commuting operator models that is closed under submodels, and let $\mathcal{S}:=\{f_S:S\in\mathcal{C}\}$ be the set of states on $\mathscr{A}_{POVM}^{X,A}\otimes_{max}\mathscr{A}_{POVM}^{Y,B}$ induced by \mathcal{C} . Then $p\in\mathcal{C}_{qc}$ is a self-test for \mathcal{S} if and only if there is a commuting operator model

$$\widetilde{S} = (\widetilde{H}, {\widetilde{M}_{a}^{x} : a \in A, x \in X}, {\widetilde{N}_{b}^{y} : b \in B, y \in Y}, |\widetilde{\psi}\rangle)$$

for p in C, such that for every other commuting operator model

$$S = (H, \{M_a^x : a \in A, x \in X\}, \{N_b^y : b \in B, y \in Y\}, |\psi\rangle),$$

for p in C, there is a submodel of S which is equivalent to \widetilde{S} .

Paddock*, Slofstra, Zhao, & Zhou (UW)

Self-testing

November 16, 2022

- It remains to connect this result to something more analogous to the local dilation definition of self-testing.
- This definition for commuting operator self-tests also gives us a definition of self-testing for non-finite dimensional states on $\mathscr{A}_{POVM}^{X,A}\otimes_{min}\mathscr{A}_{POVM}^{Y,B}$ (i.e. for correlations $p\in C_{qa}$ which do not have a finite dimensional model).
- This is potentially useful in examples of self-tests currently being constructed. For instance, Mancinska and Schmidt recently gave an example of a nonlocal game which is a non-robust self-test, by combining a finite dimensional self-test with a game with a perfect C_{qa} strategy, but no perfect C_q strategy.
- In our language, this nonlocal game is a finite dimensional abstract-state self-test, but not a self-test for all states on $\mathscr{A}_{POVM}^{X,A} \otimes_{min} \mathscr{A}_{POVM}^{Y,B}$.

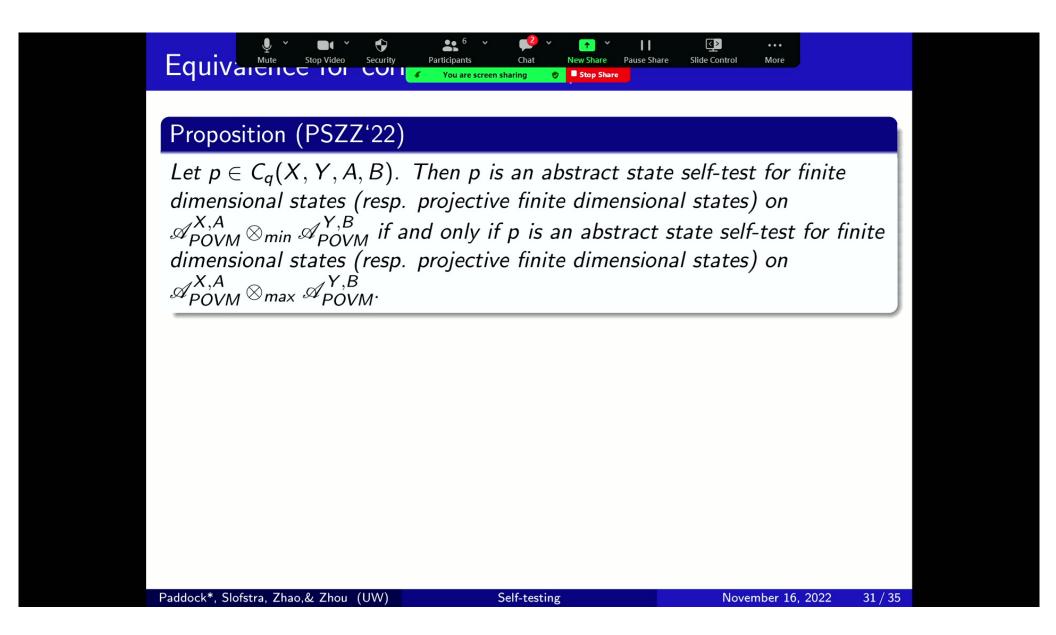
Paddock*, Slofstra, Zhao, & Zhou (UW)

Self-testing

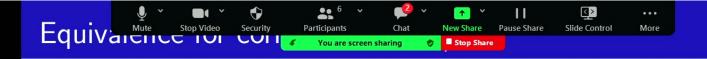
November 16, 2022

30 / 35

Pirsa: 22110100 Page 33/39



Pirsa: 22110100 Page 34/39



Proposition (PSZZ'22)

Let $p \in C_q(X, Y, A, B)$. Then p is an abstract state self-test for finite dimensional states (resp. projective finite dimensional states) on $\mathscr{A}_{POVM}^{X,A} \otimes_{min} \mathscr{A}_{POVM}^{Y,B}$ if and only if p is an abstract state self-test for finite dimensional states (resp. projective finite dimensional states) on $\mathscr{A}_{POVM}^{X,A} \otimes_{max} \mathscr{A}_{POVM}^{Y,B}$.

- As a result, if $p \in C_q$ is an extreme point, then p is a self-test for (POVM) quantum models if and only if p has a unique nondegenerate commuting operator model.
- If, in addition, there exists a projective full-rank quantum model for *p*, then *p* is a self-test for projective quantum models if and only if *p* has a unique nondegenerate commuting operator model.
- This gives a new criterion for $p \in C_q$ to be a self-test in the finite dimensional case.

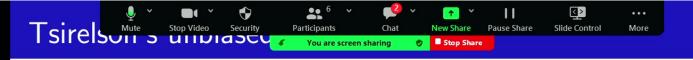
Paddock*, Slofstra, Zhao, & Zhou (UW)

Self-testing

November 16, 2022

31 / 35

Pirsa: 22110100 Page 35/39



- Tsirelson showed that a wide family of correlations in C_q are in fact commuting operator self-tests.
- To state this result, let Cor(X,Y) be the set of matrices $c \in \mathbb{R}^{X \times Y}$ for which there is a Euclidean space V and vectors $\{|u_x\rangle\}_{x \in X}$, $\{|v_y\rangle\}_{y \in Y}$ in V of norm at most 1, such that $c_{x,y} = \langle u_x|v_y\rangle$ for all $x,y \in X \times Y$.
- If $p \in C_{qc}(X, Y, \mathbb{Z}_2, \mathbb{Z}_2)$ then the matrix c defined by

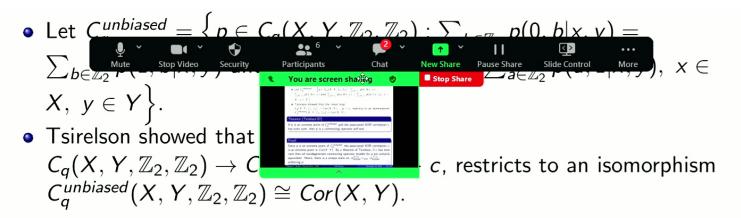
$$c_{x,y} = \sum_{a,b \in \mathbb{Z}_2} (-1)^{a+b} p(a,b|x,y)$$

is in Cor(X,Y), since if $S=\left(H,\{M_a^{\times}:a\in\mathbb{Z}_2,x\in X\},\{N_b^{y}:b\in\mathbb{Z}_2,y\in Y\},|\psi\rangle\right)$ is a commuting operator model for p, then $c_{x,y}=\langle\psi|\,(M_0^{\times}-M_1^{\times})(N_0^{y}-N_1^{y})\,|\psi\rangle$, where $\|M_0^{\times}-M_1^{\times}\|\leq 1$ and $\|N_0^{y}-N_1^{y}\|\leq 1$.

Paddock*, Slofstra, Zhao, & Zhou (UW)

Self-testing

November 16, 2022



Theorem (Tsirelson'87)

If p is an extreme point of $C_q^{unbiased}$ and the associated XOR correlation c has even rank, then p is a commuting operator self-test.

Proof.

Since p is an extreme point of $C_q^{unbiased}$, the associated XOR correlation c is an extreme point in Cor(X,Y). By a theorem of Tsirelson, if c has even rank then all nondegenerate commuting operator models for p are unitarily equivalent. Hence, there is a unique state on $\mathscr{A}_{POVM}^{X,\mathbb{Z}_2}\otimes_{max}\mathscr{A}_{POVM}^{Y,\mathbb{Z}_2}$ achieving p.

Paddock*, Slofstra, Zhao, & Zhou (UW)

Self-testing

November 16, 2022

Example

It is well known that the unique optimal correlation for the CHSH game is an extreme point of $C_q^{unbiased}$ with associated XOR correlation matrix

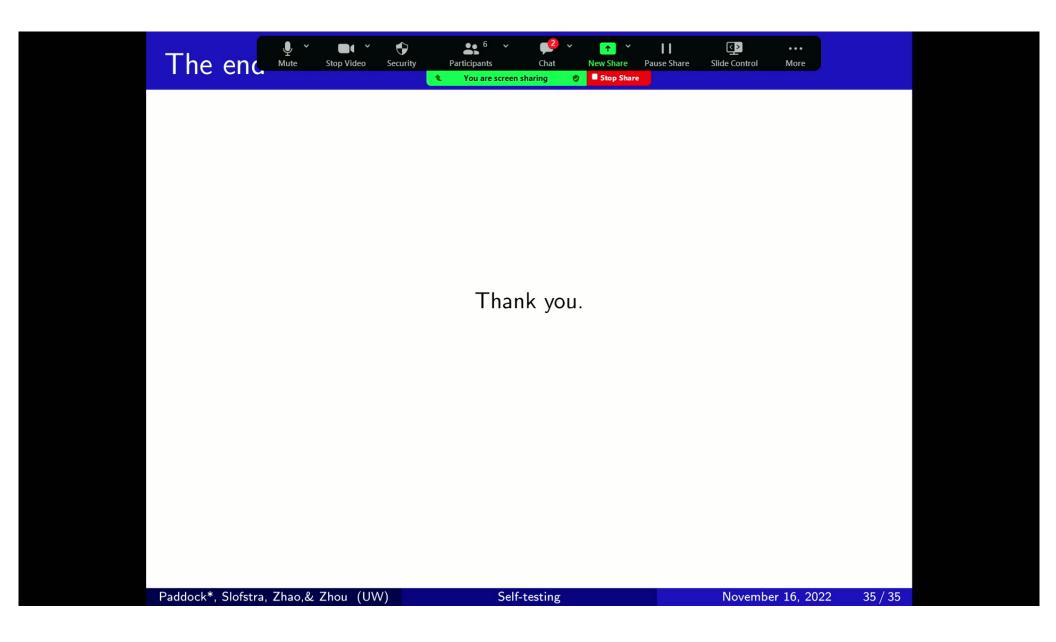
$$\begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{pmatrix}.$$

Since the associated XOR correlation has rank 2, the optimal CHSH correlation is a commuting operator self-test.

Paddock*, Slofstra, Zhao,& Zhou (UW)

Self-testing

November 16, 2022



Pirsa: 22110100 Page 39/39