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Abstract: Neural networks offer a novel approach to represent wave functions for solving quantum many-body problems. But what kinds of
guantum states are efficiently represented by neural networks? In this talk, we will discuss entanglement properties of an ensemble of neural
network states represented by random restricted Boltzmann machines. Phases with distinct entanglement features are identified and characterized. In
particular, for certain parameters, we will show that these neural network states can look typical in their entanglement profile while still being
distinguishable from a typical state by their fractal dimensions. The obtained phase diagrams may help inform the initialization of neural network
ansatzes for future computational tasks.
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Entanglement features of random neural
network quantum states

Xiaogi Sun

XQ Sun, T Nebabu, X Han, MO Flynn, XL Qj,
Phys. Rev. B 106, 115138 (2022)
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Hard problems:
Many-body 1. Strong interaction

= h
phyS|cs 2. Quantum dynamics
“curse of dimensionality”
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Modern techniques from quantum
information/computation and
machine learning greatly enhance our
computational power in dealing with
problems with high dimensional data.

Hard problems:
Many-body 1. Strong interaction

phyS"CS 2. Quantum dynamics
“curse of dimensionality”

Pirsa: 22110099 Page 5/37



Quantum Neural network quantgm
: . states, qguantum machine
information learning, ete.
science
: Many- :

Machine Yy Hard prolglems. |
| : body 1. Strong interaction
earnin . :

g phyS|cs 2. Highly entangled states

3. Quantum dynamics
“curse of dimensionality”

Pirsa: 22110099 Page 6/37



How much can these modern techniques help?
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Outline:

1. Introduction to neural network quantum states
2. Thermodynamic limit and infinitely wide neural network
3. Properties of random neural network quantum states:
- Wavefunction norm and phase transition
- Second Renyi entanglement entropy and phase transition
- Fractal dimensions
- Entanglement level statistics

4. Conclusion and Outlook
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Neural networks
Lines represent affine combinations of

variables (parameterized by weight w and bias
b).

Each circle represents a non-linear neural
activation function o.

Power of representing arbitrarily complex
functions

Universal approximation theorems

G Cybenko, Mathematics of Control, Signals, and Systems, 2 (4), 303-
314 (1989);K Hornik, et. al. Neural Networks 2, 359 (1989), and
several other papers.
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Neural network quantum states

Using neural networks to parameterize many-body quantum wavefunction.

Probability to probability amplitude, real number to complex number

Generalize weight and bias to be complex, G Carleo, M Troyer, Science, 355,
6325 (2017), ...

Parametrize magnitude and phase by two neural networks, G Tolai, et. al. Nat.
Phys. 14, 447-450 (2018), ...

Auxiliary phase node: R Xia & S Kais, Nat. Comm. 9, 4195 (2018), S Kanno & T
Tada, Quantum Sci. Technol. 6, 025025 (2021) ...;

etc. '
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Neural network quantum states: simple RBM

A class of generative model:

Probability distribution generated by
Boltzmann weight of an energy model on
a graph, marginalized over hidden variable.

Restricted meaning no interaction within
hidden or visible layer.

W) = LM Z e 2 ajs’ =3, bmh™ =3 wWpmjsth™ s) Complexw,a, b
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Neural network quantum states: simple RBM

Quantum preparation and algorithms:
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Ability of encoding highly entangled states

* Polynomial classical resources.
* No known limitations from
conventional measures and can
represent states that are hard for
other ansatz, e.g., volume law
entangled states.

DL Deng, X Li, S Das Sarma, PRX, 7,
021021 (2017)

9) = a7 3 e s b K wnar h g
h,s
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Ability of encoding highly entangled states

Understanding:

An entanglement bound: XQ Sun,
et. al.,, PRB 106, 115138.

Superposition of 2¥ product
states. Entanglement bounded by
M log 2.

Can produce volume
hanwms |4 . 4 @@t 2im PmWm; 1), law if M o< N
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What kinds of states are efficiently represented by by
neural networks?

Can we make some analytic calculation and rigorous
statement?
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Outline:

2. Thermodynamic limit and infinitely wide neural network
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Thermodynamic limit & infinite width

Many-body physics naturally focuses on the thermodynamic limit N — oo.

Likely need the infinite width limit of neural networks. In many situations, it
simplifies in the classical theory.

LeCun initialization: 2 o« 1/N, ensemble of neural networks and statistical
mechanics. N
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Thermodynamic limit & infinite width

Example: Neural tangent kernel theory for inifinitely wide neural networks.

Statistical correlations of preactivations of neurons converge to Gaussian (central
limit theorem).

Training dynamics is analytically described by differential equations (Neural tangent

kernel).
Classical neural network N — oo Free statistical field theory
Classical neural network finite N, Interacting statistical field theory with 1/N coupling
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Similar idea turns out to also work for neural network
quantum states in the thermodynamic limit and help
understand neural network quantum states and the
training dynamics!
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Outline:

3. Properties of random neural network quantum states:
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Setup of the random ensemble

V) = QLM Z e 23 O35 T 2 b P2 wmg TR g Unnormalized
%h,s
M
T = Z cosh Zwmjsj |s) Zero bias, iid Gaussian random weight W ;.
s m=1 j Real part: or, Imaginary part: o
5 U 5 v M
Proper thermodynamic limit OR = 37 0T = A= N
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Setup of the random ensemble

M
W) = Z H cosh Zwmjsj |s)

s m=1 9

u2

Proper thermodynamic limit O'%% = — O'% —

2
N’ N’

* Qualitatively different role of u,v: u modulates the magnitude of the

wavefunction amplitude much more than v, not good for producing large

entanglement.
 Symmetry of the ensemble: The Gaussian iid is symmetric and identical.

Ensemble averaged quantity should have symmetry s/ — —s/.
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Outline:

- Wavefunction norm and phase transition (warm-up exercise)
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Norm fluctuations and ferromagnetic transition

Calculation of
1

5 5 S. Si
V- =% - =)

Zp = tr([UN(V] @ [V)(P]) 7 = —NF () F(p)=E(p)—S
T ; 0 %: e (¢) v(¢) (i@
S1 52 Symmetry ¢ — —¢ Favor ¢ #0 ¢ =0

Wmj ~ —Wm's ™~ Wm!y

Large N solution = find the free-energy minima
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Norm fluctuations and ferromagnetic transition

Calculation of
1

5 5 S. Si
V- =% - =)

Zo = tr([UN(V] @ [V)(P]) 7 = —NF () F(p)=E(p)—S
T ; 0 %: e (¢) v(sb) (fb)
S1 52 Symmetry ¢ — —¢ Favor ¢ #0 ¢ =0

Wmj ~ —Wm's ~ Wm!y

Large N solution = find the free-energy minima
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Norm fluctuations and ferromagnetic transition

Calculation of 1 W) 1 TO[0y2
N 108 Ty N 98 ((w[w))?
9 ) 0.25 10 v
(W|w)? = (U|0) = Zp - (¥|¥) (b) A=15 4
0.20t 0.08} /
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Dashed line: symmetry breaking transition.
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Outline:

- Second Renyi entanglement entropy and phase transition
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5 (A) = —log T KAV @ V) (V)

g
Second Renyi entropy: » r (W) (Y] @ [W)(¥])
Z1
~ —log—=— +... Grainofsalt:
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Entanglement phases

Symmetry of ¢4 <> ¢B.
Symmetric phase at small A and large A.

Symmetry broken phase at intermediate
A.

The symmetry broken phase can have
near-maximal entanglement if variance
of imaginary weight is large and variance
of real weight is 0.
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Entanglement profile
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What bounds the entanglement at large 1?
How to characterize these states for random initialization?
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Intuition:

More localized in the Ising spin basis = cannot have large entangled.

D — 1 logIPR, PR — ZS|\IJ(3)|2‘1
“ Nlog2 1—¢q T ¥ (s)]?)e

Product state in Ising basis: D, = 0, localized states.
Uniform magnitude in Ising basis: Dq = 1, extended states.

Other cases: non-ergodic extended states. g-dependence: multifractality.
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Conclusion and outlook

Open problems including current projects:

Theory of training dynamics at
thermodynamic limit? analogy of neural
tangent kernel theory and generalization to
neural annealing algorithms?

Understanding the condition for the method
’A| to converge to the desired state.
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Intuition:

More localized in the Ising spin basis = cannot have large entangled.

D — 1 logIPR, PR — ZS|\IJ(3)|2‘1
“ Nlog2 1—¢q T ¥ (s)]?)e

Product state in Ising basis: D, = 0, localized states.
Uniform magnitude in Ising basis: Dq = 1, extended states.

Other cases: non-ergodic extended states. g-dependence: multifractality.
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Intuition:

More localized in the Ising spin basis = cannot have large entangled.

D — 1 logIPR, PR — ZS|\IJ(3)|2‘1
“ Nlog2 1—¢q T ¥ (s)]?)e

Product state in Ising basis: D, = 0, localized states.
Uniform magnitude in Ising basis: Dq = 1, extended states.

Other cases: non-ergodic extended states. g-dependence: multifractality.
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Moreover, saturation of the bound at half-system

Sq(A) < D,log?2 Saturation condition is when the reduced density
N — matrix is diagonal in computational basis
G. De Tomasi and I. M. Khaymovich,
PRL, 124, 200602 (2020) 1 g
— > J”o’-zaz-{-...)
gl
P SN P

T

Like MBL Hamiltonian, many conserved
qguantity, no level repulsion in the spectrum
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