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Abstract: The usual quantum mechanical description of measurements, unitary kicks, and other local operations has the potential to produce
pathological causality violations in the relativistic setting of quantum field theory (QFT). While there are some operations that do not violate
causality, those that do cannot be physically realisable. For local observablesin QFT it is an open question whether the projection postulate, or more
specifically the associated ideal measurement operation, is consistent with causality, and hence whether it is physically realisable in principle.

In thistalk | will recap a criteria that distinguishes causal and acausal operationsin real scalar QFT. | will then focus on operations constructed from
smeared field operators - the basic local observables of the theory. For this simple class of operations we can write down a more practical causality
criteria. With this we find that, under certain assumptions - such as there being a continuum spacetime - ideal measurements of smeared fields are
acausal, despite prior heuristic arguments to the contrary. For a discrete spacetime (e.g. a causal set), however, one can evade this result in a'natura’
way, and thus uphold causality while retaining the projection postul ate.

Zoom link: https://pitp.zoom.us/j/944648961612pwd=UKkhPQnJONmMIXY y9pQXJNThpY 314QT09
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Introduction

Textbook measurements in QFT in terms of scattering amplitudes, which are approximations. If we ask
to describe multiple measurements in finite spacetime regions we get causality issues...

Two aspects of measurements to note:
i How to compute probabilities of outcomes, expectation values, variances, etc.

i How to encode the effect of a measurement on the statistics of future measurements: update map. Only needed if
we have multiple measurements. Example: ideal measurement map from projection postulate.

What is the space of causally consistent update maps in QFT? Such maps are physically realisable in
principle.

Other examples of maps include those coming from tracing out probes of main field of interest, e.g.
UDW, or probe quantum fields.
- Probes measured once (traced out), so no need for update map for probe statistics.
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Introduction

Textbook measurements in QFT in terms of scattering amplitudes, which are approximations. If we ask
to describe multiple measurements in finite spacetime regions we get causality issues...

Two aspects of measurements to note:
i How to compute probabilities of outcomes, expectation values, variances, etc.

i How to encode the effect of a measurement on the statistics of future measurements: update map. Only needed if
we have multiple measurements. Example: ideal measurement map from projection postulate.

What is the space of causally consistent update maps in QFT? Such maps are physically realisable in
principle. Is there a principle analogous to the projection postulate in QFT?

Other examples of maps include those coming from tracing out probes of main field of interest, e.g.
UDW, or probe quantum fields.
Probes measured once (traced out), so no need for update map for probe statistics.

Multiple measurements of main field achieved with multiple probes, one measurement per probe.
Probes are effective systems.

Still need update maps at a more fundamental level.
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Background
Kraus operations and Causality

Ideal Measurements of Smeared Fields
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Quantum Field Theory




Quantum Field Theory

* Realscalar field theory in some globally hyperbolic spacetime

* Generate algebra 21 with identity and smeared field operators, ¢(f), for test functions f

alf)= /dt de fit, z) o, z)
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Quantum Field Theory

Real scalar field theory in some globally hyperbolic spacetime

Generate algebra 20 with identity and smeared field operators, ¢(f), for test functions f

e.g. (b(f)(b(g) ‘|‘ 21(46(}1)3 . 41 ’ (f?('b(f) ([)(f) == / (IIL (l'.'l.’ f(f.,.[) d)(t,';l.‘)

Commutation relations:

[(f), P(9)] = iA(f, 9) supp f
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Quantum Field Theory

Real scalar field theory in some globally hyperbolic spacetime

Generate algebra 2 with identity and smeared field operators, ¢(f), for test functions f

eg. &(f)p(g) + 2’2(]%]1)3 — A7 . ) alf) = / dt de [z, w) (i r)

Spacelike commutativity
Commutation relations: (Einstein Causality)

[6(f), #(9)] =0
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Quantum Field Theory

Real scalar field theory in some globally hyperbolic spacetime

Generate algebra 20 with identity and smeared field operators, ¢(f), for test functions f

Dl = / dtdz f(t,x) ot )

eg. O(f)d(g)+2ip(h)® —4T , )

Spacelike commutativity
Commutation relations: (Einstein Causality)

[(f), P(9)] = iA(f, 9) supp f

2-point function

W(f,9) = (Qo(f)e(9)I)
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LocalO per ations Borsten et al, arxiv:1912.06141

1J, arxiv:2106.09027

*  Operation described by completely positive, unitpreservingmap  Ec : A - A |, Ec(1)

Expectation value computed
with
Local observable Ec (B)
B

Ec()

Measure local
observable C
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[ ]
LocalO pe rations Borsten et al, arxiv:1912.06141

1J, arxiv:2106.09027

» Operation described by completely positive, unit preservingmap & : A = A |

Expectation value computed

as
Local observable t‘r(ng (B))
B

Ec(+)

Measure local
observable C
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[ ]
LocalO pe rations Borsten et al, arxiv:1912.06141

1J, arxiv:2106.09027

« Operation described by completely positive, unit preservingmap Eqo : A = A |

* e.g.ldeal/projective measurement: C = Z NaFw @ B=EalB) = Z E.BE,

A
t Expectation value computed

as
Local observable t‘r(ng (B))
B

Ec(-)
Measure local
observable C
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[ ]
LocalO pe rations Borsten et al, arxiv:1912.06141

1J, arxiv:2106.09027

* Operation described by completely positive, trace preserving map Ewc . t,r(gc(p)) =1

* e.g.ldeal/projective measurement: C = Z MaPi . p— Ealp) = Z el
n n

Dual picture

A
1 Expectation value computed

Local observable = tr(éc(p)B)

B

Ec(-)
Measure local
observable C
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[ ]
LocalO pe rations Borsten et al, arxiv:1912.06141

1J, arxiv:2106.09027

* Operation described by completely positive, unit preservingmap Eqo : A = A |

1 _(C—a)® _(c—a)?
* e.g.weak measurement: B Eo(B) = doe”™ 4e2 Be 4o?
R

V21o?

Expectation value computed

as
Local observable t‘r(ng (B))
B

Ec(+)

Weak meas. of

C
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[ ]
LocalO pe rations Borsten et al, arxiv:1912.06141

1J, arxiv:2106.09027

» Operation described by completely positive, unit preservingmap & : A = A |

Commutativity of spacelike observables
{ocal obsetvable ensures the locality of the map, i.e.

= Ec(B) =B

Physically, expectation values are unchanged

Operation
involving C
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LocalO per ations Borsten et al, arxiv:1912.06141

1J, arxiv:2106.09027

*  Operation described by completely positive, unit preservingmap Ec : A=A |, Ec(1) =1

Commutativity of spacelike observables
Local observable ensures the locality of the map, i.e.

_ tr(p€c(B)) = tr(pB)

Sheration Physically, expectation values are unchanged

involving C'
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Multiple Local Operations

Hellwig, Kraus, Phys. Rev. D 1, 566

* Multiple local operations:
A

Local observable
B
Eal&c
al&c( )) Expectation value computed

Operatico'n with = tr(p&q (EC‘ (B) ) )

Operation with & ()
A
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Multiple Local Operations

Hellwig, Kraus, Phys. Rev. D 1, 566

* Multiple local operations:
A

Local observable

B
Ea(€c()) = Ec(€alr))

Expectation value computed as
Operation with

Operation with e tr(pSA (EC(B))) = t'r(pgc(gf-l(B)))

A Spacelike commutativity ensures update
maps commute
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Sorkin’s Scenario

Sorkin arxiv:9302018

* Consider 3 agents, Aoife, Caoimhe, and Beolagh, acting in their respective regions:
* Composition rule says this expectation value given by

tr(p€a(Ec(B)))

* Physically, exp. val’s shouldn’t depend on spacelike
Ea(€c(+)) Local observable operations, so should have

B
tr(pEa(Ec(B))) = tr(pc(B))

[A,B] =0

Operation with

C

Operation with ,
A EA ( )
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Sorkin’s Scenario

Sorkin arxiv:9302018

* Consider 3 agents, Aoife, Caoimhe, and Beolagh, acting in their respective regions:

* Composition rule says this expectation value given by

tr(pEa(€c(B)))

* Physically, exp. val’s shouldn’t depend on spacelike

Ec(:) L°‘a'°b§"’ab'° operations, so should have

[A,B] =0

tr(pEc(B))

Operation with

(&
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Sorkin’s Scenario

Sorkin arxiv:9302018

* Consider 3 agents, Aoife, Caoimhe, and Beolagh, acting in their respective regions:
* Composition rule says this expectation value given by

tr(pEa(&c(B)))

* Physically, exp. val’s shouldn’t depend on spacelike
Ea(€c(+)) Local observable operations, so should have

B
tr(pEa(&c(B))) = tr(pc(B))

(A, B] =0

Operation with

C

Operation with ,
A €A ( )
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Sorkin’s Scenario

Sorkin arxiv:9302018

* Consider 3 agents, Aoife, Caoimhe, and Beolagh, acting in their respective regions:

* Composition rule says this expectation value given by

tr(pEa(Ec(B)))

[A,B] =0

Ea(Ee()) S tr(p&a(&c(B))) # tr(p&c(B))

Operation with then Aoife can send a signal to Beolagh faster
C than light

Operati ith -
pera :4on wi 5 ()
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Sorkin’s Scenario

Sorkin arxiv:9302018

* Consider 3 agents, Aoife, Caoimhe, and Beolagh, acting in their respective regions:

* Composition rule says this expectation value given by

tr(p€a(Ec(B)))

[A,B] =0

Ea(Ee()) S tr(p&a(&c(B))) # tr(p&c(B))

then Aoife can send a signal to Beolagh faster
than light

Non-local Operation

Operation with 84 ( )

A If Caoimhe’s map describes a physical process, then it

must satisfy a further causality condition:

E(Ec(B)) = Ec(B)
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Locality and Causality

1J, arxiv:2106.09027

Operation described by completely positive, unitpreservingmap & : A > A , Ec(1) =1

*  Locality: £ (B) = B forall B spaceliketo C'

Causality: £4(Ec(B)) = Ec(B) forall A notin the future of C', all B not in the past of C', and A spacelike
to B

A

t
Eallc()) Local observable
: B

Operation with

C

Operation with

A 81()
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Locality and Causality

1J, arxiv:2106.09027

Operation described by completely positive, unitpreservingmap & : A > A |, Ec(1) =1

*  Locality: EC'(B) = B forall B spaceliketo C Locality of € 4 assumed,i.e. £E4(B) = B

Causality: £4(Ec(B)) = Ec(B) forall A notin the future of C', all B not in the past of C', and A spacelike
to B

CP + unit-preserving
causal
local
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Locality and Causality

1J, arxiv:2106.09027

Operation described by completely positive, unitpreservingmap & : A > A |, Ec(1) =1

s Locality: SC'(B) = B forall B spacelike to & Locality of £ 4 assumed,ie. EA(B) = B

Causality: £4(Ec(B)) = Ec(B) forall A notin the future of C', all B not in the past of C', and A spacelike
to B

CP + unit-preserving
causal
local

|l'> — (}_f‘ﬂ"’(f ) IJ‘-"{')

Pirsa: 22110098 Page 29/93



Locality and Causality

1J, arxiv:2106.09027

Operation described by completely positive, unitpreservingmap Ec : A=A |, Ec(1) =1

* Locality: E-(B) = B forall B spaceliketo C bocallbiof B dsiuied e EA(B) = F

Causality: £4(Ec(B)) = Ec(B) forall A notin the future of C', all B not in the past of C', and A spacelike
to B

CP + unit-preserving
causal
local

Uy(r)2
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Locality and Causality

1J, arxiv:2106.09027

Operation described by completely positive, unitpreservingmap & : A > A |, Ec(1) =1

*  Locality: EC'(B) = B forall B spaceliketo C Locality of € 4 assumed,i.e. £E4(B) = B

Causality: £4(Ec(B)) = Ec(B) forall A notin the future of C', all B not in the past of C', and A spacelike
to B

CP + unit-preserving
causal
local

Up(r)2

2

) = =380 )
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Locality and Causality

1J, arxiv:2106.09027

Operation described by completely positive, unit preservingmap Ec : A=A | Ec(1) =1

*  Locality: £-(B) = B forall B spaceliketo C sl LB | osstbied le EAB)—F

Causality: £4(Ec(B)) = Ec(B) forall A notin the future of C', all B not in the past of C', and A spacelike
to B

CP + unit-preserving

causal
local

Up.NL

Uy(r)2
W((f:.NL
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Locality and Causality

1J, arxiv:2106.09027

Operation described by completely positive, unitpreservingmap & : A > A |, E(1) =1

*  Locality: EC'(B) = B forall B spaceliketo Locality of € 4 assumed,i.e. £E4(B) = B

Causality: £4(Ec(B)) = Ec(B) forall A notin the future of C', all B not in the past of C', and A spacelike
to B

CP + unit-preserving
causal

local
Z"{q’12 JNL
Up,NL

We e Up(1)?
P,

Pirsa: 22110098 Page 33/93



Locality and Causality

1J, arxiv:2106.09027

Operation described by completely positive, unitpreservingmap & : A > A |, Ec(1) =1
Locality: Ec(B) = B forall B spaceliketo C' Enalitynl © ) sstumed e 5, (B) = B

Causality: £4(Ec(B)) = Ec(B) forall A notin the future of C', all B not in the past of C', and A spacelike
to B

Past support non-increasing (PSNI) CP + unit-preserving

Update map keeps operator in past-lightcone: causal

local
4 u(;’12 JNL

Ecl() B Up NI
Wi nL

t
Up(r)2

Operation with
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Locality and Causality

1J, arxiv:2106.09027

Operation described by completely positive, unit preservingmap  Ec : A > A | Ec(1) =1
Locality: £c(B) = B forall B spaceliketo C' Locality of £ 4 assumed,ie. £4(B) =B

Causality: £ (Ec(B)) = Ec(B) forall A notin the future of C', all B not in the past of C', and A spacelike
to B

Past support non-increasing (PSNI) CP + unit-preserving

Update map keeps operator in past-lightcone: causal
local
A PSNI Up2 NI

&al) B Us,NL
Wi nNL

t
Uy(r)2

Operation with
Wair)?
Ec(B)
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Locality and Causality

1J, arxiv:2106.09027

Operation described by completely positive, unitpreservingmap & : A > A |, Ec(1) =1
Locality: Ec(B) = B forall B spaceliketo C' Endalitnf © | dsstmed fe 5, (B) = B

Causality: £4(Ec(B)) = Ec(B) forall A notin the future of C', all B not in the past of C', and A spacelike
to B

Support non-increasing (SNI) CP + unit-preserving
Update map doesn’t change operator region causal=PSNI
(trivially implies PSNI): local

A uq‘:z.x\r L

t
B, £(B) Up(f)2

Ec(')

Operation with

C
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Locality and Causality

1J, arxiv:2106.09027

Operation described by completely positive, unitpreservingmap & : A > A |, Ec(1) =1
Locality: Ec(B) = B forall B spaceliketo C' acalitynl s | mestmedle B, (B) = B

Causality: £4(Ec(B)) = Ec(B) forall A notin the future of C', all B not in the past of C', and A spacelike
to B

Support non-increasing (SNI) CP + unit-preserving
Update map doesn’t change operator region causal=PSNI

(trivially implies PSNI): local
A SNI u(p? NL
t Up N L
B, £c(B) - Up(1)?
Wi NL

Ec(+)

Operation with

C
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Locality and Causality

1J, arxiv:2106.09027

Operation described by completely positive, unitpreservingmap & : A > A |, Ec(1) =1

Locality: EC'(B) = B forall R cnacalikatn (7 Locality of € 4 assumed,i.e. £4(B) = B

Causality: £4(Ec(f r.+ Wos

. (', all B notin the past of (', and A spacelike
&(f2) »0r nothing
Support non-increasin| CP + unit-preserving
Update map doesn’t chang
(trivially implies PSNI): local

- Up( 1)
B ] Conditional u¢(f)2

We! W¢(f)
g o(f1)
‘C(')

Operation with 2 . T ,02

C - d(f1).¢(f2)

u(;’12 JNL
{

Wair)2
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Locality and Causality

1J, arxiv:2106.09027

Operation described by completely positive, unitpreservingmap & : A > A |, Ec(1) =1

Locality: Ec(B) = B forall B spaceliketo C' Eosality oi.E Gesmedie S4(B) = B
Causality: £4(Ec(B)) = Ec(B) forall A notin the future of C', all B not in the past of C', and A spacelike
to B

CP + unit-preserving

Support non-increasing (SNI)

Update map doesn’t change operator region causal=PSNI

(trivially implies PSNI):

A

t
B, &c(B)

Ec(:)

Operation with

C

Pirsa: 22110098

SNI

U
Us.NL *(f)

SNL Weis)

Ty ,T2
W) 6(52)

local
u(;’12 JNL

Up(r)2
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Locality and Causality

1J, arxiv:2106.09027

Operation described by completely positive, unit preservingmap Eo : A = A |
Locality: £~ (B) = B forall B spaceliketo C' bl oL B Gitied e EA(B) = F

Causality: £4(Ec(B)) = Ec(B) forall A notin the future of C', all B not in the past of C', and A spacelike
to B

Support non-increasing (SNI) CP + unit-preserving
Update map doesn’t change operator region causal=PSNI
(trivially implies PSNI): local

SNI
A U
; Us NL o(f)
B, &c(B)

Z’{(‘ﬁ“?- 4‘\7 In’

. Uy 1)
a
.NL Wan

Ec ()
Operation with ' Wol =
- Where do ideal measurements sit? ¢(f1).9(/2)

Wais)?

>
T
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Backgrouno

ldeal Measurements




Projectors

* Selfadjoint A on C3: A=MP + P+ \3P;
* Ineigenbasis: A1 0 0

A=10 X
g0

e Spectrum:
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Projectors

« Selfadjoint A on C3: A=MP + P+ \3P;

F()\]) For a function

* Ineigenbasis: 0
F(A) = 0 | 0 F:Ro>C

0 F(A3)

* Spectrum:
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Projectors

« Selfadjoint A on C3: A=XM\P + P+ \3P;

Indicator function

* Ineigenbasis: 1g(A\1) 0
0
0

0
1g(A2) 0 =
0 IB(A3) _ X ¢ B

* Spectrum:
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Projectors

* Selfadjoint A on C3: A=MP + P+ \3P;

Indicator function

* Ineigenbasis: 0

0
A2) 0 1, A€EB
0 1g(A3) 13(A) = {

0, A¢B

* Spectrum:
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Projectors

* Selfadjoint A on C3: A=MP + P+ \3P;

Indicator function

13()\):{1‘ \€B

* Ineigenbasis:

0, A¢B

* Spectrum:
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Projectors

« Selfadjoint A on C3: A=X\P + P+ \3P;

Indicator function

* Ineigenbasis: 1g(A1) 0
0
0

0
1g(A2) 0 L R
0 IB(A3) _ X ¢ B

* Spectrum:
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Projectors

« Selfadjoint A on C3: A=MP + P+ \3P;

Indicator function

* Ineigenbasis: 0

0
A2) 0 1, A€EB
0 1g(A3) 13(A) = {

0, A¢B

* Spectrum:
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Projectors

Selfadjoint & on L*(R)  (unbounded)

Can still take indicator function:

Spectrum:
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Projectors

Selfadjoint # on L?(R)  (unbounded)

Can still take indicator function: (1g(2)yY)(x) =

Spectrum:
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Ideal Measurements

* |deal measurementof A = M\ P + o P 4+ \3P5

3
* Update map: calX)= Z 75400, §

n=1

* Spectrum:
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Ideal Measurements

* |deal measurementof A = AP + Ao P + A\3P;

3
* Update map: £a(X) = Z X B

n=1

* Spectrum:

N

1
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Ideal Measurements

* |deal measurementof A = AP + Ao P + A\3P;

* Update map: SA(X) - 1B;(A)XIB’1(A) + 1B.’2(A)X113,’2(A)
=PI XP, + (P, + P3)X(P2 + P3)
* Spectrum:

\

B
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Ideal Measurements

* |deal measurementof I
* Update map:

* Spectrum:

RQSO'ution R= {B'rl}nEI

Pirsa: 22110098 Page 54/93



Ideal Measurements

* |deal measurementof =
* Update map:

* Spectrum:

BH‘

Resolution R = {B,},c1 .Forageneral self adjoint A and some resolution R,
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Ideal Measurements

* |deal measurementof I

* Update map: Eil X)) = Z 15, (£) X 13, (Z)
nel

* Spectrum:

BPI

Resolution R = {B, }.c1 .Forageneral self adjoint A and some resolution R ,

ideal measurement with Ear(X) = Z 1g,(A)X1g,(A)

that resolution gives update map: nel
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Kraus Operations and Causality

ldeal Measurements




Kraus operations

Eap(X) = Z 1g,(A)X1p, (A4)

nel

U=t Xe

_('J“l—n)2 _{',4—(1)2
e 402 € 402

Wals) = /Had“ (2wgz)1/4X (2m02)1/4
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Kraus operations

Eap(X) = Z 1g,(A)X1p, (A4)

nel

U=t Xe

_('J“l—n)2 _{',4—(1)2
e 402 € 402

Wals) = /Had“ (2wgz)1/4X (2m02)1/4

Kraus operation with A . Specify labelling set T’

Pirsa: 22110098 Page 59/93



Kraus operations

I'=1 ,counting measure v,

[ = [l

) = /da (2 7174 ——— I'=R ,Lebesgue measure v,
R o

Kraus operation with A . Specify labelling set I' , non-neg. measure v, func’s x(-,7) :R — C for vy €T
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Kraus operations

SA,R(X) - Z 1B-n (A)Xan (A) I'=1 ,countingmeasure v, k(\,n)= 1, (A)
nel

Uil X = etd X et P ={q1,

_(A-a)? _(A-—a)?
e 402 € 402

2 = ¢ I=R . Lei 7
WS (X) /Ed(k (2W02)1/‘1X(27r02)1/‘1 ebesgue measure 1

Kraus operation with A . Specify labelling set I' , non-neg. measure v, func’s x(-,7) :R— C for y €T
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Kraus operations

['=1 ,countingmeasure v, k(A n)=1g (A)

[ = [l

a(X) = /dﬂ (2 2)1/4 — ; I' =R ,Lebesgue measure v, K(\ «)= —
R To

Kraus operation with A . Specify labelling set I' , non-neg. measure v, func’s x(-,7) :R — C for vy €T

Ean(X) = / du () K(A, 1) X k(4,7
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Causality condition for Kraus operations
with a smeared field

Let R(A ) = [ dv(7) KR = 67)" = (A = t,-), (X)) 120
JT
Condition :

For any smeared field ¢(f)
#(-,t) isaconstant func.forall ¢ N

Eo(f)ok s SNI. No signal for any state

For any smeared field ¢(f)

(-, t) is not a constant func. for some ¢ T FABS (hert &
y o(f).K

signals in the ground state |(2)
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Causality condition for Kraus operations
with a smeared field

Let ’;()\7 t) — /de(’y) H’()\? P)’)h( — & ’7)* - (h()\ -, ')7 H’()\? '))Lg(l‘:u)
Condition :

For any smeared field ¢(f)
%&(-,t) isaconstantfunc.forall ¢ =)

5¢(f),h' is SNI. No signal for any state

For any smeared field ¢(f)
(-, t) is not a constant func. for some ¢ I

If ABS, then &y (1)«

signals in the ground state ()
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Causality condition for Kraus operations
with a smeared field

Let ’;()\7 t) — /de(’y) H’()\? P)’)h( — & ’7)* - (h()\ -, ')7 H’()\? '))Lg(l‘:u)
Condition :

For any smeared field ¢(f)
%&(-,t) isaconstantfunc.forall ¢ =)

5¢(f),h' is SNI. No signal for any state

For any smeared field ¢(f)
(-, t) is not a constant func. for some ¢ I

If ABS, then &y (1)«

signals in the ground state ()
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Causality condition for Kraus operations
with a smeared field

Let R(A ) = [ dv(7) KR = 67)" = (A = t,-), (X)) 120
JT
Condition :

For any smeared field ¢(f)
#(-,t) isaconstant func.forall ¢ N

Eo(f)ok s SNI. No signal for any state

For any smeared field ¢(f)

(-, t) is not a constant func. for some ¢ T AR Thians &
y o(f).K

signals in the ground state |(2)

Example: U, ;) (X) = o) x o —i¢(f)
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Causality condition for Kraus operations
with a smeared field

Let R(A ) = [ dv(7) KR = 67)" = (A = t,-), (X)) 120
JT
Condition :

For any smeared field o(f)
&(-,t) isaconstant func. forall ¢ N ¢

¢é(f).& is SNI. No signal for any state

For any smeared field ¢(f)

(-, t) is not a constant func. for some ¢ T FABS (hert &
y o(f).K

signals in the ground state |(2)

Example: Uy ) (X) = ) X)) o O {’)}} o BN T = e 1At — oit  wmd No signal
(X, y) =¢e
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Causality condition for Kraus operations
with a smeared field

Let ’;()\7 t) — /de(’y) H’()\? P)’)h( — & ’7)* - (h()\ -, ')7 H’()\? '))Lg(l‘:u)
Condition :

For any smeared field ¢(f)
%&(-,t) isaconstantfunc.forall ¢ =)

5¢(f),h' is SNI. No signal for any state

For any smeared field ¢(f)
7(-. 1) is not tant func. f t —
(-, %) is not a constant func. for some If ABS, then &y (1)«

signals in the ground state |()

Example: 1, > (X) = ¢'?)° X e9()°
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Causality condition for Kraus operations
with a smeared field

Let ’;()\7 t) — /de(’y) H’()\? P)’)h( — & ’7)* - (h()\ -, ')7 H’()\? '))Lg(l‘:u)
Condition :

For any smeared field ¢(f)
%&(-,t) isaconstantfunc.forall ¢ =)

5¢(f),h' is SNI. No signal for any state

For any smeared field ¢(f)
(-, t) is not a constant func. for some ¢ I

If ABS, then &y (1)«

signals in the ground state |()

Example: 1(,;):(X) = U X~ 90wy T =0}
k(A7) = e
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Causality condition for Kraus operations
with a smeared field

Let ’;()\7 t) = /de(’y) H’()\? P)’)h( — 1, ’7)* = (h()\ -, ')7 H’()\? '))LQ(I‘:U)
Condition :

For any smeared field ¢(f)
#(-,t) isaconstantfunc.forall ¢ =)

5¢(f),h' is SNI. No signal for any state

For any smeared field ¢(f)
(-, t) is not a constant func. for some ¢ I

If ABS, then S(f,(f'_)ﬁ

signals in the ground state ()

Example: 14, ;:(X) = ¢'9D’ X 19()” mmp I'= 17}

L R
K ."'r —a o
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ldeal Measurements of
Smeared Fields

ldeal Measurements




The case of ideal measurements

Forsome resolution R = {B,}ncr, k(A,n) =15, (N\) , R(At) :f

I
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The case of ideal measurements

Forsome resolution R = {B,}ncr, K(A,n) =15, (A) , RK(At) = 1zp)(N) R(t) = Uner (B, N (Bn + 1))

>
R
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The case of ideal measurements

For some resolution R = {B‘n }nef ’ K,(A, 'n,) = ]-B,, ()\) . I:';(A, t) _ ]-R(t) (/\) R(t) = Uner (B N (B, + 1))
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The case of ideal measurements

For some resolution R = {B‘n }nEI ; R(A, 'n,) = ]-B,, ()\) ; I:';(A, t) —_ ]-R(t) (/\) R(t) = Uner (B, N (B, + 1))

T N W \ O\ F

C
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The case of ideal measurements

For some resolution R = {}3,n }neI A R(/\, n) = e ()\) : E‘,()\, t) = 1R(t_) (/\) R(t) = Uner (Bn N (Bn + 1))

\ O\ F

R(A,t) = 1g)(A) not constant
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The case of ideal measurements

For some msolution R = {B'n;}'nEI : H-()\? n_) — 1B,,, (/\) - E(A1 f) —_ 1R(t) (A) R(t) = Upner (B.n_ N (B.u_ + f))

Ll O\ F

C

(A, 1) = 1) (A) not constant, for any resolution
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The case of ideal measurements

R(t) = Uner (Bn N (B + 1))

\ O\ F

Forsome resolution R = {B,}ncr, K(A,n) =15, (A) , RK(At) = 1z ()

For any smeared field ¢(f)

R(A ) = lR(t)()\) not constant, for any resolution - If ABS, then 5¢>(f),R
signals in the ground state |(2)
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ABS assumptions

A.  Aoife can kick with a smeared field: 1/, is allowed

B. Beolagh can measure a smeared field and determine the exp. val. (e'*(9))

S. Sorkin scenario exists:
Sllppg
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ABS assumptions

A.  Aoife can kick with a smeared field: 1/, is allowed

B. Beolagh can measure a smeared field and determine the exp. val. (e'*(9))

S. Sorkin scenario exists:

Ssu
Does not exist if measurement PP 9

region is transitive. Examples: AL )0
SUPPS A(f,9) #0
* Cylinder spacetime '
supp h
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ABS assumptions

A. Aoife can kick with a smeared ’ f

B. Beolaghcanmeasureasme: [ Y fexp.val. (%)

S. Sorkin scenario exists:

Ssu
Does not exist if measurement PP 9

region is transitive. Examples:

A(f,g) #0

* Cylinder spacetime
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ABS assumptions

A. Aoife can kick with a smeared ’

B. Beolaghcanmeasureasme: [ Y bexp.val. (€*9)

S. Sorkin scenario exists:

Ssu
Does not exist if measurement PP 9

region is transitive. Examples:

A(f,g) #0

* Cylinder spacetime
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ABS assumptions

A. Aoife can kick with a smeared ’

B. Beolaghcanmeasureasme: [ )7 exp.val. (e@)

S. Sorkin scenario exists:

Does not exist if measurement timelike related
region is transitive. Examples:

* Cylinder spacetime
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ABS assumptions

A.  Aoife can kick with a smeared field: 1/, is allowed

B. Beolagh can measure a smeared field and determine the exp. val. (e'?(9))

S. Sorkin scenario exists:

Ssu
Does not exist if measurement PP 9

region is transitive. Examples: Alf,h)£0

' SUBBARD A (f,g) # 0

*  Cylinder spacetime '

supp h

* Single point in discrete
spacetime

Pirsa: 22110098 Page 86/93



ABS assumptions

A.  Aoife can kick with a smeared field: U, is allowed

B.  Beolagh can measure a smeare o

S. Sorkin scenario exists:

Does not exist if measurement
region is transitive. Examples:

* Cylinder spacetime

* Single pointin discrete
spacetime
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ABS assumptions

A.  Aoife can kick with a smeared field: 1/, is allowed

B.  Beolagh can measure a smeare Smeared field: fi¢; + fib;

S. Sorkin scenario exists:

Does not exist if measurement
region is transitive. Examples:

* Cylinder spacetime

* Single pointin discrete
spacetime
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Key points

* Signals appear in causal set case if support is not transititve, e.g. pair of spacelike points

In continuum, there may be operators with ideal measurements that do not signal. We have only
tested smeared fields - the generators of the algebra.

No projection postulate in QFT does not mean no projection postulate in non-relativistic systems.
In those systems, the ideal measurement map may arise from some other (causally consistent)
map on the underlying quantum field.
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Key points

Signals appear in causal set case if support is not transititve, e.g. pair of spacelike points

In continuum, there may be operators with ideal measurements that do not signal. We have only
tested smeared fields - the generators of the algebra.

No projection postulate in QFT does not mean no projection postulate in non-relativistic systems.
In those systems, the ideal measurement map may arise from some other (causally consistent)
map on the underlying quantum field.

In both continuum and discrete spacetimes, there are other ways to describe measurements of
smeared fields that are always causal, e.g. W( ;).

Pirsa: 22110098 Page 90/93



summary




Summary

Operations are described by update maps/quantum channels. In QFT, maps must be local and
causal/PSNI if they are to be physically realisable.

For operations constructed from smeared fields, we have a simple causality condition in terms of
the Kraus functions x(\, 7).

The ideal measurement map, arising from the projection postulate, fails this condition.

Thus, if we have ABS for a smeared field, an ideal measurement of it is prohibited by causality.

The Sorkin scenario in ABS does not exist in certain situations, e.g. single points in a discrete
spacetime.
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Thank you!

Any questions?




