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Deep learning

« Computer vision, natural language processing, machine translation, self driving cars,
game playing, physics, chemistry, finance, healthcare, demographics, entertainment,
music, art, robotics.

» Availability of datasets, specialized hardware, and algorithmic developments have
ushered a new generation of large models displaying unprecedented accuracy
across a wide array of technologically and scientifically relevant tasks in artificial

Intelllgence' Prompt: “Cute and adorable ferret wizard, wearing coat and
suit, steampunk, lantern, anthromorphic, Jean paptiste monge,
e i oil painting”
 Example: Diffusion models REY

* |Impressive results

* Art will change dramatically

https://strikingloo.github.io/stable-diffusion-vs-dalle-2
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Deep learning

ﬁa

« Example: “Galactica: A Large Language Model for Science” https://arxiv.org/
abs/2211.09085

* Prompt a scientific topic and the language model writes a manuscript for you.
Surprising results.

» Meta shuts down public test of Galactica, its ‘Al for Science’ because it
produced pseudoscientific papers
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Neural Language models

@&

> A neural network language model is a language model based on neural
networks

> Neural networks are powerful universal function approximators and can in
principle compute any function

» We can ask whether these models represent complex quantum states and use
them for reconstruction or simulation

P(output text|input text) s |a,,d°" aor
P(English|Spanish)

P(Spanish)
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Deep learning

Estelle: “It's really insane!”
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Recurrent Neural Network wavefunctions

We can use a Recurrent Neural Network (RNN) to model the quantum wavefunction of a many-body system.
In this notebook we show how to implement this model and train it on the ground state of the Ising model

For this notebook we will use the TensorFlow Keras API.

The model
The RNN wavefunction has the following structure:
<img src=".ffiguresfrnn_structure.png"” alt="RNN_structure" style="width: 400px;"/>

Each site is represented by a spin variable s; which can take two values, +1.

The wavefunction is parametrized by an RNN, where each spin s, is treated as a time step in the RNN. The hidden state h;
at each time step 1 is updated according to the following rule:

b = f(sW™ + by W@

where £ is an activation function, W) and W) are matrices which parametrize the RNN. The output at each time step is
given by:

¥(ay,. Fhyw?t

The matrices W1l ¥ ') are trained using Varlational Monte Carla (VMC).

Data

We train the RNN on the ground state of the one-dimensional transverse field Ising model:

Page 6/32



Deep learning
Ejaaz: “pretty good honestly”

\oly

Thread x

in % general - Image.png

quantum vodka - Galactica (47 kB) =

Stochastic series expansion

Stochastic series expansion (SSE) is a quantum Monte Carlo method that can be used to simulate quantum spin systems. It
was introduced by Anders W. Sandvik in 1993

It is based on the Taylor series expansion of the partition function of a quantum system, and is closely related to the

Handscomb's method It can be used for the simulation of systems with arbitrary local interactions in any

number of dimensions. The method is free of systematic errors, and its computational cost scales polynomially with system n
size. It can be applied to systems with Frustration and/or disorder, in any dimension.

® palactica.org

The SSE method is a finite-temperature method, but can be used to compute ground state properties by a "simulated
annealing” technique. It can also be used to compute imaginary-time correlation functions, from which real-time correlation e

quantum cheeseburger - Galactica (47 kB) ~
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Schuyler Moss ¢ tays
S The quantum cheeseburger is amazing but

sounds very polsonous
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Deep learning
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Schuyler Moss 6 days ago
typed in "review of variational ansatze for the
anti-ferromagnetic heisenberg model on the
kagome lattice"

@ RN :
Schuyler Moss & days ago
"The Heisenberg antiferromagnet on the kagome
lattice is a paradigmatic example of a frustrated
quantum magnet. Despite a long history of
research, the nature of its ground state remains
elusive. Recent years have seen an explosion of
numerical studies, based on a variety of
techniques, which have unveiled several
unexpected properties. Among the most striking
findings is the absence of magnetic order, which
is not in line with the usual semi-classical picture.
Other features include a large density of low-
lying singlets below the first triplet excitation,
and a very rich phenomenology under applied
magnetic field. While these findings challenge
our understanding of the model, they also raise
new questions, and in particular it is not clear
whether the ground state of the model is a spin
liquid with fractionalized excitations, or a more
conventional state with broken lattice
symmetries.”
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Deep learning

@ Giuseppe Carleo @gppcarleo - Nov 16

" Looks like Galactica knows how to use NetKet to train a neural quantum
state, that's good news :) @NetKetOrg ga

“«

actica.org/?prompt=how+do...

Question: How do | train a neural-network quantum state? X NoLverined
Answer: This tutorial will show you how to train a neural-network quantum state (NQS) using NetKat.

We will use a simple example of a 1D transverse-field Ising model (TFIM) with open boundary conditions

import netket as nk
import numpy as np
import jax

import jax.numpy as jnp

1. Defining the model

The first step is to define the model
In NetKet, a model Is a class that defines the following methods:
+ init_parameters(): initializes the parameters of the model.

« apply(parameters, o):applies the model to a batch of configurations o.
. 10(_.1 _value(parameters, o): computes the log-value of the model for a batch of configurations o.
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But doing this is expensive

._.\if_'ﬁ‘

* These advances crucially depend on the availability of specialized
computational resources such as graphics and tensor processing units, which
demand a high electricity consumption.

* In particular, a set of key but computationally expensive elements in the
modern machine learning (ML) workflow include hyperparameter optimization
and neural architecture search.

* GPT-3’s training costs to be up to $27.6 million

The GPT-3 economy: https://bdtechtalks.com/2020/09/21/gpt-3-economy-business-model/
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Binary Neural networks

'ﬂja

Neural networks with binary weights and activations (BiNNs) partially alleviate these
issues as they are computationally efficient, hardware-friendly, and energy efficient.

32-fold reduction in memory.
Robust to adversarial attacks.

Specialized hardware implementations that simultaneously increase computational
speed and improve their energy efficiency.

Q 000 O

Parameter, hyperparameter, and architectural searches remains computationally
expensive— multiple nested combinatorial optimization problems (training
parameters on training set+ outerloop on hyper parameters and architectural
search on a validation set)
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Binary Neural Networks

ﬂa

* Traditionally, there are two loops: outer optimization loop which searches
through the hyperparameter and architectural state spaces guided by the
model's performance on a validation set, and an inner optimization which
adjusts the weights of the neural network on a training set.

* Such a nested optimization process remains the most computationally
demanding task in the modern ML workflow and entails an unsustainable
carbon footprint, which calls for computationally efficient hardware and
algorithms to train and search for neural architectures
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HyperNetworks

 HyperNetworks: an approach of using a one network, also known as a
hypernetwork, to generate the weights for another network.

HyperNetwork

* Used in natural language processing, computer vision, hyperparmeter tuning,
neural architectural search, meta-learning.

* HyperNetworks. https://arxiv.org/abs/1609.09106
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Quantum HyperNetworks
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Quantum HyperNetworks to train binary neural networks

* We define Quantum HyperNetworks
and use them to unify parameter,
hyperparameter, and architectural
search for binary neural networks in
just one optimization loop

« Can be understood as training binary
neural networks in quantum
superposition

« Superpositions contain exponentially
many binary neural networks with
different parameters, architectural
choices, and hyperparameters

Quantum
HyperNetwork

10 10y 10) 10)

o & 93 O
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Encoding BINNs in a quantum state
M= Z ‘P(al,...,a4)

\JTIa

Consider a quantum state

. IlI’>: Z ‘P(O.]""’GN)IG]""’O-N>

N

« To each basis element |6) = |7y, ..., 6y) We associate
a specific configuration of an augmented model
comprising the weights of a BiNN, its hyperparameters,
and any desired architectural choices to be encoded in
the VQA search.

« Characterized by 2 weights (qubits o, and 6,), a bias

(qubit 65 ), and an activation function (architectural .

choice). The selection of activation function from two Paran_wete_rlzed 5

possibilities f; or f>, we make the activation function LG L

qubit dependent (qubit o, ). f(x) — f(x, 6,) v )

0) [0) [0) 0)
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Encoding BINNs in a quantum state

M

R

o= {560 w00

Hx) if o=1.

» Other architectural choices can be
encoded (skip connections, dimension of
the hidden layer, # of layers, etc), just add
more qubits.

* How can we “nudge” the state so that
when we measure it in an experiment, it

returns neural networks with good Paragjete_;ized b H;I
architectural choices, parameters, and ke -
hyperparameters?

10 10) 10) 10)

o] & 93 9y
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Variational quantum algorithm

Encode the problem in a form suitable to optimization by a variational | ‘P) —
quantum algorithm -
M

\o/y

* One idea: a variational quantum algorithm (VQA).

* A VQA employs a classical optimizer acting on a
parameterized quantum circuit, with the purpose
of finding solutions to a problem encoded in an
objective function.

Objective: C (w) = Z (NNGx; {wh),y;) .

||M2

1
N

* The augmented model parameters

w = {wy, ..., wy}, include the neural network Parameterized
weights, biases, hyperparameters, and Circuit
architectural choices.

10 10) 10) 10)

gl & 23 Of
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Augmented model

ﬁa

Architectural Hyperparameters

choices > l

— NN(W, xi) P (Iabel limage) or P (image)
-

Parameters
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Variational quantum algorithm

Encode the problem in a form suitable to optimization by a variational -
guantum algorithm | ‘P> = 4 (019 vees 0'4)

M, O15..4,04

* Making the objetive function quantum

* Promote the parameters of the BINN to a
set of Pauli matrices

w— 6, = (61,63 ....6%),

c C(w) » ¢ (i.e. go from a Boolean
function to a big 2"V x 2Vdiagonal matrix).

* This encoding is flexible — off-diagonal

: - : Quantum
operators, multi-basis encoding
HyperNetwork
Variational Quantum Optimization with Multi-Basis Encodings. Taylor L. Patti, Jean : (;-" 6-"| 0-)"-| d)”
Kossaifi, Anima Anandkumar, Susanne F. Yelin. https://arxiv.org/abs/2106.13304 | ) | )

O'] 0'2 63 0'4
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Variational quantum algorithm

Encode the problem in a form suitable to optimization by a variational

guantum algorithm |‘P> = Z ¥ (O-l’ e 0-4)
0154440y

M

\oly

» We construct a quantum state | W) through a
parameterized quantum circuit U(@) with continuous Image
parameters @ such that | ¥) — | ¥,) = U(@)]0)®”

* We aim at finding solutions to the training of the BiNN
solving for

L 0F = aig mine B (9),

(7]
E(6) = (Vg|C|Wg) (6)
= Z Walay, 00, -~ an)|“Clai, o0, . . - oN)
oy Parameterized
: pds Circuit
=iy )% 5 D o) -

10y 10) 10) 10)
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Variational quantum algorithm

Encode the problem in a form suitable to optimization by a variational -
guantum algorithm | ‘P> = b 4 (0'1 s eees 04)
@a

E () = (Ug|C|Tp) (6)

N

= Eonju,2 [Clo)] = N > Clay),
¥ ]

 From an ML perspective, this approach can be
understood as a stochastic relaxation of the
discrete optimization problem. This is close to a
Bayesian BiNN with a “quantum” approximating
posterior.

Parameterized
Circuit

* Instead of optimizing binary variables, optimize
continuous parameters 6.

10 10y 10) 10)
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Variational quantum algorithm

Encode the problem in a form suitable to optimization by a variational =
quantum algorithm | ‘P> = ¥ (01 ERP 0'4)

"\‘TI; Gluirtng_l.

» Design of the circuit is important. Depth,
connectivity of the gates etc.

* As a boolean function, we don’t know a
whole lot about C

* We choose a circuit with linear
connectivity and vary its depth.

* Most available quantum computers have
this connectivity

Parameterized
Circuit

10 10y 10) 10)
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Optimization

Encode the problem in a form suitable to optimization by a variational
quantum algorithm
am

Q.

« Use gradient descent to optimize E(0)

Gradients:
OE (0)
00, i

= - [B02,0 - B6:,0].

The shifted parameter vector 8%, is such that

ajk
/35 5/(,[

Thus, the calculation of the gradient Parameterized | —p <
corresponds to the evaluation of a shifted Circuit .

version of the objective function E(Q).

Opi1 = Op,1 % 25

a

10 10y 10) 10)
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Optimization

Encode the problem in a form suitable to optimization by a variational
quantum algorithm
Jm

R

« Use gradient descent to optimize E(0)

Gradients:
OE (0)
aga, Jak

= - [B02,0 - B6:,0].

The shifted parameter vector 8%, is such that

ajk
ﬂ(s 5/(,[

Thus, the calculation of the gradient Parameterized | — a
corresponds to the evaluation of a shifted Circuit :

version of the objective function E(@). ||
10) 10) [0) [0)

gl & 93 04

O = 03, % 25

a
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Results: MNIST, binary logistic regression

* Train weights and bias.

* Run optimization at least 200 times
and evaluate the probabilities of finding

an objective function with value E(@)

« Compute Probability that E(@) is less
than €.

* Optimization is successful frequently

« Optimal circuit depth suggests an
optimal use of entanglement

C —= PSR . e J.f"

0.3268 0.3270 0.3272 0.3274 0.3276 e ; ¢
E( U) ?‘0(3- S\'a\‘"\ \:aﬂe‘e’ ?l\:a.‘ieﬁ’ ‘3\:3.‘{8\5
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Results

» Train weights + architectural choice of non-
linearity.

* Run optimization at least 200 times and
evaluate the probabilities of finding an

objective function with value E(#)

« Compute Probability that E(@) is less than
» Optimization is successful frequently

* Optimal circuit depth— optimal use of
entanglement
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- W, b, Nhld Nonl
Param.y,~3=[(1 2 3 4 5 6(7 8 9} 11 12 13 (14)[15) |
b, b, Nhid Nonl
param.y,, o, = [ (T 2 3 4}5 6) (7 8]@[_0] 1 12)(13) (14) (15] |
0 o0
p. state A 029
VI
1 IayA B
20.281
Ly
2lay A |
= 0.271
3lay A W
ar
L 0.261
C 0.25 '

e‘e' a\]e‘s

{o
?(0(5 ‘5’\6 \;a\le ,L\,’&\]e oY
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Train weights +
architectural choice of
non-linearity + hidden
dimension (2 or 3,
binary choice )

Optimal circuit depth

Success probability a
bit smaller

But overall successful
optimization
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Fourier Analysis

@ N
C= Y 61505,
=1

01,...0y

» Effective Ising model with multi-
variable all-to-all interactions

A

* Fourier coefficients are given b
A A e é N R
6y, ...0y) = 5T [ Qi 01-7 €

. W(S) = Z |f(51a---5N)|255,S(al,...5N)-

~ ~

01,...0y
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“Augmented” model selection

* Augmented model encapsulating the + N-10 4 val
parameters, hyperparameters and i s
architecture of a neural network which 0.30 S ey
we jointly optimize on a training el
dataset. How to choose model usinga

i I = 0.204
validation set? = \ ! .
0.151 1\ AR 20 2T VP UUTOTUTOTIRIITIIN

* The data suggests that these ey 8322000000 ss00cssss0ssssssssannss L
augmented models behave like e s
traditional statistical models which 0.051 P
follow the usual bias-variance ] [ , ] ] .
decomposition. 0 10 20 30 40 50

training iteration
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“Augmented” model selection

o, 4 N=10° 4 Val.
0.35 M+ e+ v
4 N.=6 —4 Val.
0.30- 4+ No=4 4 Val
Validation Error : 4 N;=2 4 Val
0.251
: = 0.20
: =
w
reasing Bias Increasing Variance 015
— —
lraining 0.107
B ERssssns s
0.051
“‘-\_H‘-l.,__ "
I T T T T T T
i 0 10 20 30 40 50
Epochs ==——> training iteration

https://medium.com/@rahuljain13101999/why-early-stopping-works-as-regularization-b9f0a6c2772
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Conclusions

* We havevintroduced HyperNetworks which train binary neural networks in quantum
superposition

* One optimization loop trains parameters, hyperparameters, and architectural choices in
binary neural networks

» Quantum computers are currently reaching the ability to vastly outperform
supercomputers' energy efficiency by many orders of magnitude over classical
computers.

* Binary neural networks save energy at inference time. We are suggesting is that we can
potentially save energy in training, architectural design and hyperparameter search.

* Neural networks perform best when they are large—need better encoding of the problem

e Quantum annealers.
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