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Abstract: In this talk, I'll describe new tomographic protocols for efficiently estimating various fermionic quantities, including both local
observables (i.e., expectation values of local fermionic operators) and certain global properties (e.g., inner products between an unknown quantum
state and arbitrary fermionic Gaussian states). Our protocols are based on classical shadows arising from random matchgate circuits. As a concrete

application, they enable us to implement the recently introduced quantum-classical hybrid quantum Monte Carlo agorithm, without the exponential
post-processing cost incurred by the original approach.
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overview

original motivation: remove the exponentially scaling classical post-processing
cost of the quantum-classical quantum Monte Carlo (QC-QMC) algorithm

e QC-QMC is a hybrid algorithm for simulating fermionic systems;
enabled high-accuracy chemistry experiment on 16 qubits (largest to date!)

e idea: use quantum computer to prepare a better “trial wavefunction” |Wyyia1),
which guides (classical) QMC calculation

e crucial step: estimate overlaps (Wyria1|p;) with many “walker states” |¢;)
— do this using (Clifford-based) classical shadows protocol of :
to reduce quantum resources

but classical cost is exponential in n = # qubits (= # fermionic modes)

Unbiasing fermionic quantum Monte Carlo with a quantum computer. arXiv:2106.16235

Predicting many properties of a quantum system from very few measurements. arXiv:2002.08953
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overview

original motivation: remove the exponentially scaling classical post-processing
cost of the quantum-classical quantum Monte Carlo (QC-QMC) algorithm

our results: tomographic protocols for efficiently estimating various proper-
ties of fermionic systems, including

e expectation values of local fermionic operators
e fidelities w.r.t. fermionic Gaussian states

e overlaps required for QC-QMC

our protocols are based on the classical shadows framework of , but we
use different ensembles of random measurements

Unbiasing fermionic quantum Monte Carlo with a quantum computer. arXiv:2106.16235

Predicting many properties of a quantum system from very few measurements. arXiv:2002.08953
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classical shadows [review]

goal: estimate tr(O1p),...,tr(Opp) for observables Oy, ..., Oy,
given any unknown state p

how? decide on a distribution over unitaries, D
procedure: randomly draw a unitary U ~ D

measure p in the basis {UT[b)}peq0,13n

corresponding channel:

= T 1)
M(p)= E_ bg{;}n(b'U"U b)U [b) (b]U

if M is invertible, “classical shadow”
A

E_ MU =

b~UpUT .

o B [ (OMUTBEI))] = tr(0ip)
bw(?pU*

e/ EQO
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classical shadows [review]

E [tr (o.iy-l(UT\b><b|U))] = tr(O;p)

~ J
bNUpUT 3
“classical shadow™

not all classical shadows protocols are efficient!
efficiency depends on Oy,...,O)s and choice of D

log M
=2

e in general, Neamples = O ( max; Var(Oi)) copies of p suffice

D = UnirorM(Cl,) — Var(0O;) small if ||O;||g.g small
D = UN1FORM(CI®"™) —  Var(0;) small for local O;

e but even when Var(O;) small, classical post-processing [computing
tr (O;M~H(UT|b)(b|U))] can still be exponentially costly!

Huang, Kueng, Preskill. Predicting many properties of a quantum system from very few measuremer
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classical shadows [review]

E [tr (o.iy-l(UT\b><b|U))] = tr(O;p)

Lo J
b~UpUT Y
“classical shadow”

not all classical shadows protocols are efficient!
+ . efficiency depends on Oq,...,O); and choice of D

log M
2

e in general, Ngamples = O ( max; Var(O.i)) copies of p suffice

D = UnirorM(Cl,) — Var(0O;) small if ||O;||p.g small

| e.g., relevant observables O; for QC-QMC all have ||O;[|n-s = const.
but can’t efficiently compute tr (O;M~1(U1|b)(b|U)) for Clifford circuits U

.

Huang, Kueng, Preskill. Predicting many properties of a quantum system from very few measuremer

e/ ESO
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classical shadows checklist

for observables of interest {O;}ic[a) and a candidate distribution D, need to

0. efficiently sample unitaries from D, and compile them into small quantum
circuits

1.| determine the measurement channel M (then M~1!) to find the form of
the classical shadow samples associated with D

2.|figure out how to efficiently compute the expectation values of the O;’s
with respect to the classical shadow samples

Le., tr (O;M Y (UT|b)(b|U)) for alli € [M], U € D, be {0,1}"

D,{0:} 3.|evaluate and bound the variance

we’ll do all this for D =UNIFORM(matchgate circuits) and various fermionic
observables O; ~

e/ ESO
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e/ E@O

J-W&
matchgate circuits = fermionic Gaussian unitaries

for n qubits/n fermionic modes, consider the 2n Majorana operators 7y, . . . , Yan:
VYo + YoV = 201

{75 : S C [2n]} forms a (H-S orthogonal) basis for the space of n-qubit operators
Aei=a e dors = J. . ot wath g < - <)
(under the Jordan-Wigner transformation,

N=XQRIQ---Q@I =20 XQIQ---&1
YVo=YRIQ---Q1 Y=24QQYQRIR---®1 etc.)
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e/ BRSO

-\
matchgate circuits = fermionic Gaussian unitaries

for n qubits/n fermionic modes, consider the 2n Majorana operators 7y, . . . , Yan:
VYo + YoV = 2001

{7s : S C [2n]} forms a (H-S orthogonal) basis for the space of n-qubit operators
g

i1y ooy i} (With gy < -0 < pg)

~ “matchgate group”

B a1 R 1 for

for any matchgate circuit Ug € M,,,
2n

U(;;T’YMUQ = Z Qv for some @ € O(2n)

r=1
so each matchgate circuit is specified (up to global phase) by some @ € O(2n)
define the channel Uq () = UL()Uq
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matchgate shadows checklist

e/ BRSO

:= samples of the classical shadow estimator associated with D = UNIFORM(M,,)

. efficiently sample from UNIFORM(M,,), and compile all Ug € M,,

into small quantum circuits

. determine the measurement channel M (then M~1) to find the

form of the matchgate shadows

. figure out how to efficiently compute the expectation values of the

observables of interest with respect to the matchgate shadows

ie., tr (O:M~(UEID) (BlUG) )

. evaluate and bound the variance
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0. compile random matchgate circuits

.3

e "Irl;trtjllg,lttr group

for any matchgate circuit Uy € M,,,

2n
Uoly,Ug = Z G for some @ € O(2n)
v=1

e sample Q € O(2n) according to the Haar measure dp on O(2n)

e decompose () into Givens rotations, followed by a reflection if det(Q) = —1

1- and (nearest-neighbour) 2-qubit e.g., Pauli X on nth qubit
Pauli rotations

any Ug can be implemented using O(n?) 1- and (nearest-neighbour)

2-qubit gates in O(n) depth
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matchgate shadows checklist

e/ ESO

:= samples of the classical shadow estimator associated with D = UNIFORM(M,,)

. efficiently sample from UNIFORM(M,,), and compile all Ug € M,,

into small quantum circuits

. determine the measurement channel M (then M~1) to find the

form of the matchgate shadows

. figure out how to efficiently compute the expectation values of the

observables of interest with respect to the matchgate shadows

ie., tr (O:M~(USID) (BlUQ) )

. evaluate and bound the variance
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1. determine the channel M

_ t
M(p) = E_ > (BlUpUTB)Ub)(B|U
be{0,1}m
= E_ > tr [UB)pUp@UTB)RIU]  U(-) =UT(-)U
be{0,1}m

=B, >t [U(lBelp @ U([b) (b))
be{0,1}»

= 3 [ B U5 (e )]
be{0,1}n i

=: & [“2-fold twirl channel”]

D = UNIFORM(M,,) — & = f dp(Q)UF?
~ 0(2n) )

e/ ESO
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1. determine the channel M

how to evaluate & = / du(Q) ugg?
O(2n)

— observe that & is an orthogonal (super)projector: E2 =&, 8; = &a
— then determine its image, using symmetries of the matchgate group

e.g., lemma: &(ys, ®vs,) = 0 unless S; = S
proof: for S; # S, I € S; such that u ¢ So (wlog)
consider the reflection Ug: : v, — —vu, Y v forall v # pu
o U (15, ®7s:) = —T5, ® s
e but & o L{S),Q = &» by Haar invariance

> 82(’}’5‘1 0%y "YSQ) = *82(781 Y ’YS:a)

e/ ESO
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1. determine the channel M

how to evaluate & = / du(Q) Hg:z?
0(2n)

— observe that & is an orthogonal (super)projector: £ =&, Sg = &n
— then determine its image, using symmetries of the matchgate group
e.g., lemma: &(ys, ®vs,) = 0 unless S; = S
proof: for S; # Sy, I € S such that u ¢ Sy (wlog)
consider the reflection Ug: : v, — —vu, Y v forall v # pu
o UZ (s, ®7s.) = —7s, @ s,
e but & o L{S),Q = &3 by Haar invariance
= &2(7s, ®s,) = —E2(7s;, ® Vs,)
and so on. .. (also use the fact that permutation matrices are in O(2n),

to fully determine &;)

e/ EQO
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e/ EQO

1. determine the channel M

M) =3 (z) @;’") " Paclt)

£=0

where Py, = (super)projector onto I'y := span{vs : S C [2n],|S| = k}

so M is not invertible on the full space of operators!
but invertible on I'eyen, := P 'k

k even
< define the (pseudo)inverse

M =3 (5)(5) Pua

£=0

= matchgate shadows give unbiased estimates for tr(Op) whenever O € T'oyen,
or p € Feven
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matchgate shadows checklist

:= samples of the classical shadow estimator associated with D = UNIFORM(M,,)

0. efficiently sample from UNIFORM(M,,), and compile all Ug € M,
into small quantum circuits

1. determine the measurement channel M (then M~1) to find the
form of the matchgate shadows

2. figure out how to efficiently compute the expectation values of the
observables of interest with respect to the matchgate shadows

ie., tr (O:M~(UEID) (BlUG) )

3. evaluate and bound the variance

Pirsa: 22110086 Page 18/31



2. compute expectation values

recall UIED [tr (OM ™ (UT|b)(|U))] = tr(Op)
b~UpU' ; Y !
“classical shadow”

n ; -1
and M™1(4) = (L;E) C:) Pag(A) for D = UNIFORM(M,,)
£=0

Pa¢ = projector onto span{~yg : |S| = 2¢}

< need to compute

tr (0m W oia) = 3 (3) (7;)_1tr (0PuWhiny0lUa))

=

T
“matchgate shadow” can we eﬁ'iciently evaluate this?

naive approach: expand in {yg} basis

... but exponentially many (i.e., (%’g))
terms to consider!

e/ BRSO
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2. compute expectation values

tr (o MU b) (b|UQ)) = i (22‘2) (?)_1tr (o ng(U(5|b}(b|UQ))

£=0 ( ]

warm-up: consider tr (O sz(ﬁ)@))

recall [0)(0] = ] (I — iv2j-1725)

il
trick: introduce a formal variable z and define

ol = (O Hl (I — ii’)’zj-l’ﬁd))
e

\ J

= Zg:zé’Pze(ll?)(ﬁl)

the coefficient of z¢ in p(z) is tr (O Pzg(ﬁ)((_)'\)) I

C/ EMm®O
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2. compute expectation values

tr (o ML U b) (b|UQ)) = i (22‘2) (?)_1tr (o ng(U(5|b}(b|UQ))

£=0 /

general case: consider tr (O PQE(U(E‘ \( \IJQ)) -

J

mn

. . : - - . 2n
recall U(B| Y(b|Ug = ‘]_[1 %(I—z Yaj—1Y25)s Vo = U(B'}"MUQ = 21 QuvYv
= L

trick: introduce a formal variable z and define

(I — 19 3%2‘7‘1’?23'))

J

[

D= (O li[l

: Y

= ; 2“Pap(UL[5) (b Uq)

the coefficient of 2* in p(2) is tr (O ng(U&b)(b\UQ)) I
but p(z) doesn’t involve the projector Pyy ©

e/ EQO
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e/ ESO

2. compute expectation values

but now, how to efficiently compute
n 1
p(z) =tr (O 11 5 (=0 ﬁzjﬁzj)) ?
=1

two approaches:

(a) exploit structure of the generated by the 7,’s, to obtain
explicit, efficiently evaluable expressions for p(z) for various O

o O =75 =UgsUg, for any Q' € O(2n) — e.g., k-RDMs, local observables
e O = density operator of any fermionic Gaussian state — e.g., fidelities

e O=|p) (6|, for any Slater determinant |p) — e.g., overlaps for QC-QMC
C/2 ~
p(z) = Q?i__,:/gpf(ﬁﬁ + zM>) (¢ := # of particles in |p))

efficiently computable (2n — () x (2n — {) matrices
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2. compute expectation values

e/ EQO

but now, how to efficiently compute

p(Z) — I (O H % (I o i(—l)b-? ;'"‘}:J'zj_]_’"ydgj) ) 2

=1

two approaches:

'(a) exploit structure of the enerated by the v,’s, to obtain
g iy Y
explicit, efficiently evaluable expressions for p(z) for various O

(b) develop a general method for efficiently computing any tr(A; ... Ay,), where
each A; is (i) a linear combination of v,’s, (ii) a Gaussian density operator p,
or (iii) a Gaussian unitary Uy |[this encompasses all cases treated using (a)]
e.g., tr(UQlUnggglUanL L ;(-k 0275)>

tr(Uge102) — overlaps with arbitrary Gaussian states

high-level procedure: convert to an expression in a related, higher-dimensional
, then use Grassmann integral identities
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matchgate shadows checklist

:= samples of the classical shadow estimator associated with D = UNIFORM(M,,)

0. efficiently sample from UNIFORM(M,,), and compile all Ug € M,
into small quantum circuits

1. determine the measurement channel M (then M~1) to find the
form of the matchgate shadows

2. figure out how to efficiently compute the expectation values of the
observables of interest with respect to the matchgate shadows

ie., tr (O:M(USID) (BlUQ) )

3. evaluate and bound the variance
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3. bound the variance

recall M(p) =try | ) UEDz,r@?(|b)(b\®2)(p®1)
be{0,1}n |

-
ol

5 [“2-fold twirl channel”|

S
—. C

variance of classical shadows estimator for tr(Op):

Var<0):tr[ > B USIBOR) (p8 M~ @ MTH(ON)
oz L 1 e

—: &3 [“3-fold twirl channel” |

D = UNntFORM(M,,) — &3 :/ du(@Q)Ug"
O(2n)

e/ EQO
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e/ EQO

3. bound the variance

- D3 _ ®3
how to evaluate &3 :== UéEMn U®? = f0(2n) Q) Uy” ?

just like for &5, use symmetry:

by considering the action of certain reflections and permutations, and
using Haar invariance (€3 o Ug,?’ = &3), can fully determine &3

but this would lead to the same expression if we randomised only over

the discrete group generated by reflections and permutations!

{ J
[

=~ matchgate circuits that are also Clifford
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e/ ESO

3. bound the variance

= D3 _ ®3
how to evaluate &3 == UéEMn U = f()(zn.) Q) Uy” ?

just like for &5, use symmetry:

by considering the action of certain reflections and permutations, and
using Haar invariance (&3 o Ug,?’ = &3), can fully determine &3

but this would lead to the same expression if we randomised only over

the discrete group generated by reflections and permutations!

L J
[

=~ matchgate circuits that are also Clifford

ie.,

E U® = E y®3
UeM, UeM,nNnCl,

< M, NClL, = “matchgate 3-design”
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3. bound the variance

M,, N Cl,, = “matchgate 3-design”
= in the context of classical shadows, doesn’t matter whether we use

D = UnirorM(all matchgate circuits) or UNIFORM(Clifford matchgate circuits)

e practical implications...?

e one mathematical payoff: can use the more explicit symmetry of the
continuous matchgate group to analyse its discrete subgroup M,, N Cl,

— basis-independent variance bound for bath distributions

1 T e
Va,r(O) = 92n Z Qg 8,05 Z |tr(0752 US3 )tr(O7S3U31 )|
£1,62,£3>0 51,582,583 C[2n] disjoint
£1+£€2+€3<n |S:|=2¢;

Ys = U;—Sﬁ/SLTQ for any @ € O(2n)

this lets us analyse the variance for continuous families of fermionic observables

e/ EQO
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3. bound the variance

I S |
e Var(vyy) < (!251) (js1/2) where v5 = UgysUq, for any Q' € O(2n)
= O (nl51/2)  for constant ||
e Var(p) = O(y/nlogn)
where p = density operator of any fermionic Gaussian state

e Var(|p)(0|) for any Slater determinant |¢):

— overlaps with Slater determinants (as required for QC-QMC)

100
R s R e }'Z\Glﬂ[ﬂ)
—_ =0
60 I=0
=10
40 — 5
o =100
£=200
g l; 200 400 600 80O 1000 i
n

e/ EQO
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matchgate shadows checklist

e/ ESO

:= samples of the classical shadow estimator associated with D = UNIFORM(M,,)

. efficiently sample from UNIFORM(M,,), and compile all Ug € M,,

into small quantum circuits

. determine the measurement channel M (then M~1) to find the

form of the matchgate shadows

. figure out how to efficiently compute the expectation values of the

observables of interest with respect to the matchgate shadows

ie., tr (O:M(USID) (BlUQ) )

. evaluate and bound the variance
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sumimary

observable classical post-processing cost variance
1% ;éfgﬁilgéal fermionic observables @(n3) (ﬁ;z‘) (IST/ 2, -
e A 2zl
el o e Ol S
« Ar.. A poly(n, m) i

/" — e.g., overlaps with Gaussian states

auxiliary results:

e Clifford matchgate circuits form a “matchgate 3-design”

= classical shadows from M, are functionally equivalent to those from M,, N Cl,,

e general method for efficiently computing any quantity of the form tr(A4; ... A4,,), where
each A; is a linear combination of 7y,,’s, a Gaussian density operator, or a Gaussian unitary

e/ BRSO
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