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Abstract: "One of the central challenges in quantum information science is to design quantum algorithms that outperform their classical counterparts
in combinatorial optimization. In thistalk, | will describe a modification of the quantum adiabatic algorithm (QAA) [1] that achieves a Grover-type
speedup in solving a wide class of combinatorial optimization problem instances. The speedup is obtained over classical Markov chain algorithms
including simulated annealing, parallel tempering, and quantum Monte Carlo. | will then introduce a framework to predict the relative performance
of the standard QAA and classical Markov chain algorithms, and show problem instances with quantum speedup and slowdown. Finaly, | will
apply this framework to interpret results from a recent Rydberg atom array experiment [2], which suggest a superlinear speedup in solving the
Maximum Independent Set problem on unit-disk graphs.

[1] Farhi et al. (2001) Science 292, 5516
[2] Ebadi et a. (2022) Science 376, 6598"
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Quantum adiabatic speedup
on a class of combinatorial
optimization problems

------

IIIII

-----

PPPPPPP

1 & 1 & 4 & 4 &

-------

o4 -

lllllllll

lllllllll

irsa: 22110083

Madelyn Cain

New Frontiers in ML and Quantum

November 22, 2022

AR @ ) @ AQD
AP @ @O
L} N [ I S T Ty N T
EXRAD A A D
&\J L T | kj -
- A QYR ©
kj; 1 ( a 1 J’\} ]
] Y (_“‘, Y (ﬁ\
A 18 S EICL R
XD B XD
(- R f\‘ﬁ s 5 B
@F, E @ KB XD
EOwC A e Ny N O N NEONENIN N
(\W - @ ) e (D) |{;§ v L‘\

Page 2/26




Demonstrating near-term quantum speed-up

Control quantum systems with < 1000 qubits, and no error correction.

Can we demonstrate quantum speed-up on useful problems in the near-term?

Classical » Shor’s algorithm
« Grover'’s database search
_ Resources Guantan » Solving linear sygtems
(e.g., time or memory) « Quantum dynamics
> « Combinatorial optimization
Problem hardness etc. ..
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Combinatorial optimization problems

Broad set of problems with the goal: optimize a cost function, subject to constraints.

 NP-hard, intractable to solve in worst-case
* Solving one NP-hard problem is general enough to solve all NP-hard problems

Traveling salesman problem This talk: Maximum Independent Set

Given a graph (nodes connected by edges),

Minimize: total distance traveled Maximize: size of set of nodes
Constraint: path must include all cities Independent set constraint: no nodes
in set are connected by an edge
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Combinatorial optimization problems

Broad set of problems with the goal: optimize a cost function, subject to constraints.

 NP-hard, intractable to solve in worst-case
* Solving one NP-hard problem is general enough to solve all NP-hard problems

Traveling salesman problem This talk: Maximum Independent Set
" o
: e
Maximum i O . -
independent set ?
(MIS) in red LS O\ A
Yo

Given a graph (nodes connected by edges),

Minimize: total distance traveled Maximize: size of set of nodes
Constraint: path must include all cities Independent set constraint: no nodes
in set are connected by an edge
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Hardware-efficient encoding of Maximum
Independent Set

Rydberg atom array platform

Several hundred Rb atoms (qubits) arranged deterministically

" ar L I'-'I = I'I-)/|)(| o xj[(i

Each qubit represents a node in the graph ol : x

In independent set

lllllllllllll

. 4 V) WAL PSP Rydberg blockade:
Out of independent set B AR KK simultaneous Rydberg
-------------- excitation forbidden in
e I S i blockade radius
=<
Rydberg interaction naturally encodes the /2 e
independent set constraint on unit disk graphs < e o
(edge between nodes within a unit radius) e
~O% 0
&
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The Quantum Adiabatic Algorithm

System Hamiltonian

Quantum driver
Hy=QY |gu) (ru| + hec.

ucl

Cost Hamiltonian

Hcost = -9 E Ty + E I'-u"u""'l-'r.'“'r.!

ucV u,v
Favors many Penalizes

nodes in set independent
set violations

Notice that ground state
of H,,s isthe MIS!
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Adiabatically prepare the ground state of Hg

1. Initialize in easy to prepare many-body ground state

2. Slowly change Hamiltonian

3. Final, hard to prepare, ground state encodes MIS

8§ | Closed-loop optimization

to optimize § over time

5§ <0
Q=20

o > 1)
-0

Initialize atoms in atomic
ground state |g)"

Time

Maximize atoms in |r)

subject to blockade
(corresponds to MIS of graph)
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Outline

1. Experimental signatures of a speedup over simulated
annealing on certain problem instances

2. Mechanism for observed experimental performance, and a
new quantum algorithm with guaranteed speedup
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Hard instances for SA

Among states with the same energy, SA dynamics
are a random walk!
Hard MIS unit-disk graphs for SA: exponentially

Expected runtime - g : g
to randomly select MIS Dinas many suboptimal solutions with same energy

Example graph instance: Configuration graph:
Nodes = independent sets
Edges = sets connected by SA update

D;. = Number (degeneracy) of
independent sets of size k

Runtime of any SA algorithm
(no. proposed updates)

Dy
2 max
£ niy

© Out of independent set
@ In independent set

Optimal independent
sets (size [MIS|)
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Hard instances for SA

Among states with the same energy, SA dynamics
are a random walk!
Hard MIS unit-disk graphs for SA: exponentially

Expected runtime - g : g
to randomly select MIS Dinas many suboptimal solutions with same energy

Example graph instance: Configuration graph:
Nodes = independent sets
Edges = sets connected by SA update

D;. = Number (degeneracy) of
independent sets of size k

Runtime of any SA algorithm 158
(no. proposed updates) 2%

Dy
2 max
£ nilhy

= SA hardness parameter

© Out of independent set
@ In independent set

Optimal independent
sets (size [MIS|)
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Hard instances for SA

Expected runtime 0 Eaint
to randomly select MIS Dns

D;. = Number (degeneracy) of
independent sets of size k

Runtime of any SA algorithm
(no. proposed updates)

Dy
2 max
k nDk

= SA hardness parameter
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Runtime

I 4 @ 51

Generate top 2% hardest instances
maximizing SA hardness parameter

| Graph size
® 39

8 65
¢ 80

1ot

100 4 : Tapyty
e SA runtime ~HP"

S R 5 i R L L | 1
10 10° 10°
SA hardness parameter
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Experimentally test for quantum speedup

Quantum performance varies on instances with Generate top 2% hardest instances
similar SA hardness maximizing SA hardness parameter
1 Graph size
- Easy graph for quantum ; .p 39
* Hard graph for quantum 108 2 %
O . 3 T ? N [
o) g
c = ;
E = : )
£ o
28 0.2t *
g % \ 'f\\‘\ - ' -
£ = o S 5 SA runtime ~HP"%
o —@—Experiment : T — T T rrrorrg S T S
Z —MIS SA oo’ 10! 10 10°
1‘ 1‘0 1(']0 SA hardness parameter
Depth Quantum hardness not determined
Quantum depth = evolution time / time to flip spin by SA hardness parameter!
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Quantum performance controlled by minimum
energy gap

N
% 21 Hardness controlled by adiabatic gap
, L T Dependence on gap near-optimal (linear)
Adiabaticity is limited by the = &
Bl 2141 14 ~1.2(2
minimum energy gap § T exp(—1.5(3)01}1‘iﬂ"’)
> 0 Graph size I
2 , , : e $ 80 [
= 4 6 8 3 65 1
Detuning A /27 (MHz) |
B 51 [
| $ 39 I
il I
| . < |
Experiment sensitive to 0.31 I
many-body adiabatic gap
=0.2¢ l
e & Q I
MIS probability increases I
when detuning sweep O 0.014 |
! t : ' |
slowed at gap A s 3 0 |
Slow-down frequency /2w (MHz) e Ay
0.001 0.01 0.1 1

Minimum gap din /27 (MHz)
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Quantum performance controlled by minimum
energy gap

Emergence of superilinear speedup in deep circuit regime Focus on instances we can optimize
S. Ebadi, A. Keesling*, MC* et al, Science 376, 6598 (runtime large enough to stay adiabatic)
e it
| Graph size Minimum gap i, < —
1 s 9 evolution time
1024 m 5 ~ ¢ 80 1
® 65 " 4 65 :
o § 51 |
.g 0.14 $ 39 |
= 8 !
f 3 % l
] I
: el 0o ?
100 4§ % SAruntime ~HP
] Optimized QAA runtime ~H P8 0.014
What controls the minimum energy gap/quantum performance?

U.UUT .U V.l 1

Minimum gap i, /27 (MHZz)

Pirsa: 22110083 Page 14/26



Understanding the minimum gap

Q = Spin-flip energy
& = Cost function energy

£) 1G) = Z Gili) Gap decided by how strongly
—0(|MIS| — 1) |—= i size [MIS)| Hamiltonian connects
1G), |E) via spin-flips
5 G) € = Z Eili)
o —d|MIS| e i size [MIS|-1
L Ay
0 (2/8). < 1
/)

Understand gap from states |G), |€)
Can estimate with perturbation theory for

(o), < 1
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Understanding the minimum gap

|Q>, |5> ground states of spin-
exchange Hamiltonian by
perturbation theory

Gap behavior in two limits:

1. When |G), |€) are localized on certain
independent sets,

gap ~ (Q / 5)i1amming distance
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G) = Z Gili)

Gap decided by how strongly
Hamiltonian connects
1G), |E) via spin-flips

i size |MIS|

=3 &b

i size [MIS|-1

2. When |g>, ’ g) are delocalized (uniform superpositions),

gap _ Dy

Dvis|-1

Optimized Dipas| 1 : Dins|-1
quantum ~ | ——— SA runtime ~
: D |MIS| D IMIS|
runtime

Grover-type quadratic speedup over SA!
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Instance-by-instance performance variation

Estimate |€) perturbatively:

Star graph has b branches of length ¢ A R
at second order in Q/6
(spin-exchange hopping) Domain wall favors
‘g> = unique MIS occupying middle of
branch QQ.
Delocalized Localized
b=6+¢=2 (£=2) (£>2)
o— %9
;e & =t
’5> = superposition of ~ (E + 1)
ALY IMIS|-1 states
Domain walls |§)
(correspond to the movement of b = .
Nodes: independent sets MUP 00 DA
opulation

a domain wall on each branch
) Edges: states connected by spin exchange / flip
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Instance-by-instance performance variation

Localization at large Hamming distance

Estimate |€) perturbatively:
~ b¥ /2 causes quantum slowdown!

minimize driver Hamiltonian
at second order in Q/6

(spin-exchange hopping) Domain wall favors
= occupying middle of
e branch QQ.
~— 2 |
o 10 Delocalized Localized
E (£ =2) =2
S
E 10 = ¢ : }
£ £)
G
g
O 0
10" T T T
102 10" 100 9) .
SA hardness parameter Nodes: independent sets g 008 D

Populati
Edges: states connected by spin exchange / flip OpLiahon
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Understanding experimental observations

Study unit-disk graph instances with large SA hardness parameter

More localized More delocalized
l'_),|2 Overlap w/ uniform superposition (.0
|

10°

1/9)

i 10.‘3 -

198 =

10* 1

Quantum runtime

10" . r
10! 10e 1 0¥
SA hardness parameter
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Understanding experimental observations

Study unit-disk graph instances with large SA hardness parameter

More localized More delocalized
D‘F Overlap w/ uniform superposition (.6

| Hard instance for quantum:

large Hamming distance

10 -
o
=] ©
= 10° g
o a
-E 0 0 30 3
5 16e = Hamming distance d
= .
=) Easy instance for quantum:
5 10! - small Hamming distance
- =
&) kS
_ T
More delocalized: m ' = _ a
quadratic speedup 10! 10¢ 10° g
SA hardness parameter O 10 20 30

Hamming distance d
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We've seen that quantum performance is highly dependent
on the problem instance.

Is there a way to generically guarantee a quadratic speedup?
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Engineering a quadratic speedup

We want to force |G), |€) to be uniform superpositions.

Add a strong “delocalizing Hamiltonian” AH, whose
ground states are uniform superpositions

= 1
b) = o b VIS
,—DZ { MIS|}

Inspiration from single-particle Delocalizing Hamiltonian:

guantum mechanics: kinetic — A Laplacian in spin

energy ~ —V* promotes configuration space
delocalization
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Engineering a quadratic speedup

We want to force |G), |€) to be uniform superpositions.

Add a strong “delocalizing Hamiltonian” AH, whose
ground states are uniform superpositions

= 1
b) = o b VIS
,—DZ { MIS|}

Inspiration from single-particle Delocalizing Hamiltonian:

guantum mechanics: kinetic — A Laplacian in spin

energy ~ —V* promotes configuration space
delocalization

H! o _H—Hpin—('xt‘hung_t‘ 1 Z 1, (1 My ) H (1 ”_:;‘J'

(w,v)EE (y.v)e B y#u

Local terms, no sign problem
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A large: dynamics restricted to H; ground states

b—2)——
o= 1y —}(— Coupling = (b|H[b — 1) ~ Q_\; ”_f
[ L/b—1
By —. is coherently enhanced
Gl
=
B9
0 l
LI|1 0 ~1 4
= f by/Du/Dy-y
I I
0 (6/92). 8
6/

Analytic argument that gap goes as smallest
coupling — quadratic speedup!
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Engineering a quadratic speedup

A large: dynamics restricted to H; ground states

Quadratic speedup obtained on

62—

hard unit-disk graph instances
0 = e,
400 b—1)—f{ - oy e e O T
= 101 | £ U- \/I ‘ > A Coupllﬂg b|11‘b ‘l S”\;I.' l)(‘ |
S P |
= & ‘ - . is coherently enhanced
= ) N :
= z = ;
S N AV~ £
= 10 S o L 200 8 .
E N \C 0 = @ & 4
= G &'a\}..- > =
= Nt 2/ RS
© Q gt aia 9 o
>3 Jen teae g i LQ l
5 e - 100 i il !
100 ¥ = t tb\_-'m. /Dy
T T — () : I
100 102 10¢ 0 (6/9). 8
SA, QMC runtime lower bound 0/Q

Analytic argument that gap goes as smallest
coupling — quadratic speedup!
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Summary

» Modification of the QAA provides quadratic speedup over SA

= Framework to understand instance-by-instance performance of the
standard QAA

= Key factor: localization/delocalization of eigenstates at level crossing

OUtIOOk Superpolynomial speedup with unphysical

Rugged energy landscapes (oracle) Hamiltonians

[Hastings 2020, Gilyen + Vazirani 2020]
Energy

Provably hard to find solution for all local
classical algorithms
(Overlap Gap Property, Gamarnik 2021)

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
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