Title: Quantum adiabatic speedup on a class of combinatorial optimization problems

Speakers: Madelyn Cain

Collection: New Frontiers in Machine Learning and Quantum

Date: November 22, 2022 - 9:30 AM

URL: https://pirsa.org/22110083

Abstract: "One of the central challenges in quantum information science is to design quantum algorithms that outperform their classical counterparts in combinatorial optimization. In this talk, I will describe a modification of the quantum adiabatic algorithm (QAA) [1] that achieves a Grover-type speedup in solving a wide class of combinatorial optimization problem instances. The speedup is obtained over classical Markov chain algorithms including simulated annealing, parallel tempering, and quantum Monte Carlo. I will then introduce a framework to predict the relative performance of the standard QAA and classical Markov chain algorithms, and show problem instances with quantum speedup and slowdown. Finally, I will apply this framework to interpret results from a recent Rydberg atom array experiment [2], which suggest a superlinear speedup in solving the Maximum Independent Set problem on unit-disk graphs.

[1] Farhi et al. (2001) Science 292, 5516

[2] Ebadi et al. (2022) Science 376, 6598"

Quantum adiabatic speedup on a class of combinatorial optimization problems

Madelyn Cain
New Frontiers in ML and Quantum
November 22, 2022

Pirsa: 22110083 Page 2/26

Demonstrating near-term quantum speed-up

Control quantum systems with \leq 1000 qubits, and no error correction.

Can we demonstrate quantum speed-up on useful problems in the near-term?

- Shor's algorithm
- Grover's database search
- Solving linear systems
- Quantum dynamics
- Combinatorial optimization etc...

Combinatorial optimization problems

Broad set of problems with the goal: optimize a cost function, subject to constraints.

- NP-hard, intractable to solve in worst-case
- Solving one NP-hard problem is general enough to solve all NP-hard problems

Traveling salesman problem

Minimize: total distance traveled Constraint: path must include all cities This talk: Maximum Independent Set

Given a graph (nodes connected by edges),

Maximize: size of set of nodes
Independent set constraint: no nodes
in set are connected by an edge

Combinatorial optimization problems

Broad set of problems with the goal: optimize a cost function, subject to constraints.

- NP-hard, intractable to solve in worst-case
- Solving one NP-hard problem is general enough to solve all NP-hard problems

Traveling salesman problem

Minimize: total distance traveled Constraint: path must include all cities This talk: Maximum Independent Set

Given a graph (nodes connected by edges),

Maximize: size of set of nodes
Independent set constraint: no nodes
in set are connected by an edge

Hardware-efficient encoding of Maximum Independent Set

Rydberg atom array platform

Several hundred Rb atoms (qubits) arranged deterministically

Each qubit represents a node in the graph

Rydberg blockade: simultaneous Rydberg excitation forbidden in blockade radius

Rydberg interaction naturally encodes the independent set constraint on unit disk graphs

(edge between nodes within a unit radius)

Pirsa: 22110083 Page 6/26

The Quantum Adiabatic Algorithm

System Hamiltonian

Quantum driver

$$H_q = \Omega \sum_{u \in V} |g_u\rangle \langle r_u| + \text{h.c.}$$

Cost Hamiltonian

$$H_{\text{cost}} = -\delta \sum_{u \in V} n_u + \sum_{u,v} V_{uv} n_u n_v$$

Favors many Penalizes nodes in set independent set violations

Notice that ground state of H_{cost} is the MIS!

Adiabatically prepare the ground state of $H_{ m cost}$

- 1. Initialize in easy to prepare many-body ground state
- 2. Slowly change Hamiltonian
- 3. Final, hard to prepare, ground state encodes MIS

Closed-loop optimization to optimize δ over time

 $\delta > 0$ $\Omega = 0$

Initialize atoms in atomic ground state $|g\rangle^N$

Maximize atoms in $|r\rangle$ subject to blockade (corresponds to MIS of graph)

Pirsa: 22110083 Page 7/26

Outline

1. Experimental signatures of a speedup over simulated annealing on certain problem instances

2. Mechanism for observed experimental performance, and a new quantum algorithm with guaranteed speedup

Pirsa: 22110083 Page 8/26

Hard instances for SA

Expected runtime to randomly select MIS $\sim rac{D_{
m |MIS|-1}}{D_{
m |MIS|}}$

 D_k = Number (degeneracy) of independent sets of size k

Runtime of any SA algorithm (no. proposed updates)

$$\gtrsim \max_k rac{D_{k-1}}{nD_k}$$

Among states with the same energy, SA dynamics are a random walk!

Hard MIS unit-disk graphs for SA: exponentially many suboptimal solutions with same energy

Pirsa: 22110083 Page 9/26

Hard instances for SA

Expected runtime to randomly select MIS $\sim \frac{D_{
m |MIS|-1}}{D_{
m |MIS|}}$

 D_k = Number (degeneracy) of independent sets of size k

Runtime of any SA algorithm (no. proposed updates)

$$\gtrsim \max_k rac{D_{k-1}}{nD_k}$$

■ SA hardness parameter

Among states with the same energy, SA dynamics are a random walk!

Hard MIS unit-disk graphs for SA: exponentially many suboptimal solutions with same energy

Pirsa: 22110083 Page 10/26

Hard instances for SA

Expected runtime to randomly select MIS $\sim rac{D_{
m |MIS|-1}}{D_{
m |MIS|}}$

 D_k = Number (degeneracy) of independent sets of size k

Runtime of any SA algorithm (no. proposed updates)

$$\gtrsim \max_k rac{D_{k-1}}{nD_k}$$

 \equiv SA hardness parameter

Generate top 2% hardest instances maximizing SA hardness parameter

Pirsa: 22110083 Page 11/26

Experimentally test for quantum speedup

Quantum performance varies on instances with similar SA hardness

- Easy graph for quantum
- Hard graph for quantum

Quantum depth = evolution time / time to flip spin

Generate top 2% hardest instances maximizing SA hardness parameter

Quantum hardness not determined by SA hardness parameter!

Quantum performance controlled by minimum energy gap

Adiabaticity is limited by the minimum energy gap

Experiment sensitive to many-body adiabatic gap

MIS probability increases when detuning sweep slowed at gap

Hardness controlled by adiabatic gap Dependence on gap near-optimal (linear)

Pirsa: 22110083 Page 13/26

Quantum performance controlled by minimum energy gap

Pirsa: 22110083 Page 14/26

Understanding the minimum gap

 $\Omega = Spin-flip energy$

 $\delta = \mathsf{Cost}$ function energy

$$|\mathcal{E}
angle = \sum_{i ext{ size } | ext{MIS}| ext{-}1} \!\!\! \mathcal{E}_i |i
angle$$

Gap decided by how strongly Hamiltonian connects $|\mathcal{G}\rangle, |\mathcal{E}\rangle$ via spin-flips

Page 15/26

Understand gap from states $|\mathcal{G}\rangle, |\mathcal{E}\rangle$ Can estimate with perturbation theory for $(\Omega/\delta)_\star \ll 1$

Understanding the minimum gap

 $|\mathcal{G}\rangle, |\mathcal{E}\rangle$ ground states of spinexchange Hamiltonian by perturbation theory

$$|\mathcal{E}
angle = \sum_{i ext{ size } | ext{MIS}| ext{-}1} \!\!\! \mathcal{E}_i |i
angle$$

 $|\mathcal{G}
angle = \sum_{i ext{ size } | ext{MIS}|} \mathcal{G}_i |i
angle \hspace{0.5cm} ext{Gap decided by how strongly} \hspace{0.5cm} ext{Hamiltonian connects}$ $|\mathcal{G}
angle, |\mathcal{E}
angle$ via spin-flips

Gap behavior in two limits:

When $|\mathcal{G}\rangle$, $|\mathcal{E}\rangle$ are **localized** on certain independent sets,

gap
$$\sim (\Omega/\delta)_\star^{
m hamming\ distance}$$

2. When $|\mathcal{G}\rangle, |\mathcal{E}\rangle$ are **delocalized** (uniform superpositions),

$$\mathsf{gap}_{\sim} \sqrt{rac{D_{| ext{MIS}|}}{D_{| ext{MIS}|-1}}}$$

Optimized quantum runtime
$$\sim \sqrt{\frac{D_{
m |MIS|-1}}{D_{
m |MIS|}}}$$
 SA runtime $\sim \frac{D_{
m |MIS|-1}}{D_{
m |MIS|}}$

$$ext{SA runtime} \sim rac{D_{| ext{MIS}|-1}}{D_{| ext{MIS}|}}$$

Grover-type quadratic speedup over SA!

Instance-by-instance performance variation

Star graph has b branches of length ℓ

$$|\mathcal{G}\rangle$$
 = unique MIS

$$b = 6$$
, $\ell = 2$

$$|\mathcal{E}\rangle$$
 = superposition of $\sim \left(\frac{\ell}{2} + 1\right)^b$ |MIS|-1 states

Domain walls

(correspond to the movement of a domain wall on each branch)

Estimate $|\mathcal{E}\rangle$ perturbatively: minimize driver Hamiltonian at second order in Ω/δ (spin-exchange hopping)

Edges: states connected by spin exchange / flip

Pirsa: 22110083 Page 17/26

Instance-by-instance performance variation

Localization at large Hamming distance $\approx b\ell/2$ causes quantum slowdown!

Estimate $|\mathcal{E}\rangle$ perturbatively: minimize driver Hamiltonian at second order in Ω/δ (spin-exchange hopping) Domain wall favors occupying middle of branch Delocalized Localized $(\ell > 2)$ $(\ell=2)$ $|\mathcal{E}
angle$ 0.00 0.02 Nodes: independent sets Population

Edges: states connected by spin exchange / flip

Pirsa: 22110083 Page 18/26

Understanding experimental observations

Study unit-disk graph instances with large SA hardness parameter

Pirsa: 22110083 Page 19/26

Understanding experimental observations

Study unit-disk graph instances with large SA hardness parameter

We've seen that quantum performance is highly dependent on the problem instance.

Is there a way to generically guarantee a quadratic speedup?

Pirsa: 22110083 Page 21/26

Engineering a quadratic speedup

We want to force $|\mathcal{G}\rangle, |\mathcal{E}\rangle$ to be uniform superpositions.

Add a strong "delocalizing Hamiltonian" λH_{ℓ} whose ground states are uniform superpositions

$$|ar{b}
angle = rac{1}{\sqrt{D_b}} \sum_{i ext{ size } b} |i
angle \hspace{0.5cm} b \in \{1, \cdots, | ext{MIS}|\}$$

Inspiration from single-particle quantum mechanics: kinetic $energy \sim -\nabla^2$ promotes delocalization

Delocalizing Hamiltonian:

A Laplacian in spin
configuration space

Pirsa: 22110083 Page 22/26

Engineering a quadratic speedup

We want to force $|\mathcal{G}\rangle, |\mathcal{E}\rangle$ to be uniform superpositions.

Add a strong "delocalizing Hamiltonian" λH_{ℓ} whose ground states are uniform superpositions

$$|ar{b}
angle = rac{1}{\sqrt{D_b}} \sum_{i ext{ size } b} |i
angle \hspace{0.5cm} b \in \{1, \cdots, | ext{MIS}|\}$$

Inspiration from single-particle quantum mechanics: kinetic $energy \sim -\nabla^2$ promotes delocalization

Delocalizing Hamiltonian:

A Laplacian in spin
configuration space

$$H_{\ell} = -H_{\text{spin-exchange}} + \sum_{(u,v)\in E} n_u (1 - n_v) \prod_{(y,v)\in E, y\neq u} (1 - n_y)$$

Local terms, no sign problem

 λ large: dynamics restricted to H_ℓ ground states

$$|\overline{b-2}
angle \xrightarrow{\vdots}$$
 $|\overline{b-1}
angle \sim \Omega \sqrt{\frac{D_b}{D_{b-1}}}$ is coherently enhanced

Analytic argument that gap goes as smallest coupling – quadratic speedup!

Engineering a quadratic speedup

Quadratic speedup obtained on hard unit-disk graph instances

 λ large: dynamics restricted to H_ℓ ground states

Analytic argument that gap goes as smallest coupling – quadratic speedup!

Pirsa: 22110083 Page 24/26

Summary

- Modification of the QAA provides quadratic speedup over SA
- Framework to understand instance-by-instance performance of the standard QAA
 - Key factor: localization/delocalization of eigenstates at level crossing

Outlook

Rugged energy landscapes

Provably hard to find solution for *all* local classical algorithms
(Overlap Gap Property, Gamarnik 2021)

Superpolynomial speedup with unphysical (oracle) Hamiltonians [Hastings 2020, Gilyen + Vazirani 2020]

Pirsa: 22110083 Page 25/26

Acknowledgements

Giulia

Alex

Dolev Ahmed Semeghini Keesling Bluvstein Omran

Levine

Wang

Ebadi

M. Lukin V. Vuletić M. Greiner

Beatrice Nash

Leo Zhou

Boaz Barak

Hannes Edward **Pichler**

Sheng-Tao Wang

Jin-Guo

Rhine Samajdar

Xun Gao

Sambuddha Chattopadhyay Sachdev

Subir

Aram Harrow

Soonwon Choi

Roger Luo

Mao Lin

Pirsa: 22110083 Page 26/26