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Abstract: We present broadly applicable nonperturbative results on the behavior of eigenvalues and eigenvectors under the addition of self-adjoint
operators and under the multiplication of unitary operators, in finite-dimensional Hilbert spaces. To this end, we decompose these operations into
elementary 1-parameter processes in which the eigenvalues move similarly to the spheres in Newton's cradle. As special cases, we recover level
repulsion and Cauchy interlacing. We discuss two examples of applications. Applied to adiabatic quantum computing, we obtain new tools to relate
algorithmic complexity to computational slowdown through gap narrowing. Applied to information theory, we obtain a generalization of Shannon
sampling theory, the theory that establishes the equivalence of continuous and discrete representations of information. The new generalization of
Shannon sampling applies to signals of varying information density and finite length.
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What happens when we add two Hamiltonians?

» Suppose we know the eigenvalues and eigenvectors of a Hamiltonian H,.

Hy = Zei les) (e
i
« We also know the eigenvectors and eigenvalues of H' i

H = ij?; f5) {fil
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What happens when we add two Hamiltonians?

« Typically, we approach this problem perturbatively.
* Nonperturbative results:

* Wigner-von Neumann on level repulsion

* Weyl’s inequalities

e _..too few!

New nonperturbative result: Newton’s cradle spectra
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Simpler problem: addition of a projector

 What happens to the eigenvalues when we add a rank-1 projector?

S(u) = So + p|v) (v|

« If we know the answer, we can iteratively add a full interaction Hamiltonian:

S (u) = So+ Zﬂj ;) (vl
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Properties of the Newton cradle of spectra

Nonperturbative: e
Newton cradle spectra //_/‘
2 s3(14) o lm
dp(s) N v |2 X lv |2 . I
= Z m Z ;2 sa() % U
ds L= 5 —Sm — (s — s,) ///,
' Sl(#_l.//
positive i

« Generically: (s;|v) #0,Vi —> “Newton’s cradle” behaviour
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Properties of the Newton cradle of spectra

Nonperturbative:
Newton cradle spectra /,

_9 s3(1) ) s
au(s) _ i [vml” ZN: o, 2 — ——,

ds S (s —s )2 P s
m=1 Ll r=1 T ’/‘_,«'
| S]_(,L’L)fﬂ/
positive

 Generically: (s;|vy #0,Vi —> “Newton’s cradle” behaviour
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Example with 4 eigenvalues.

Animation of eigenvalues of S(u) = Sy + u |v) (v

n o v | 2aly| =

E =

Newton cradle-like motion as a function of the coupling constant K.
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Properties of the Newton cradle of spectra

» The spectra cover the entire real line exactly once :

» Therefore, for any s € R, there is a p for which s is an eigenvalue of S(u):

S(u)ls) = sls)

* We can calculate the p exactly using this formula:

N |U 2\ !
S):(Zs—nsn)
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Coupling constant pas a ( ) B Z "Un|
function of an eigenvalue S: H(S) =

Plot of the dependence: 5 |
i (s) | ’
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Coupling constant pas a ( ) _
function of an eigenvalue S: ) =
1

Plot of the dependence:
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Special case: Cauchy’s interlacing theorem

Theorem paraphrased:

Start with a NxN self-adjoint matrix A, which has eigenvalues s1, ..., SN.

E'g' 11 Q12
i == a1 G22
azr as2

41 Q42

ais
a23
ass
43

Q14
a24
a34
44

has eigenvalues S1, S92, S3, S4.
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Special case: Cauchy’s interlacing theorem

Theorem paraphrased:
Start with a NxN self-adjoint matrix A, which has eigenvalues s1, ..., SN.

" has eigenvalues S1, S92, S3, S4.

If we cross out a row and a column, the new eigenvalues interlace the old ones.

ai1 ai13 0ai4
M = a3l Q33 Q34 has eigenvalues: 8119 :3"2,J 3,3

a41 Q43 Q44

[
18158153258’2S83§8’3§84
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Evolution of eigenvectors

« Assume |s) is an eigenvector corresponding to the eigenvalue s:

S(u)ls) = sls)
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Evolution of eigenvectors

« Assume |s) is an eigenvector corresponding to the eigenvalue s:
S(p)[s) = sls)

« The new eigenvector |s) expressed in the original eigenbasis (of Sy):

=SS
S) = Sn
N = |s— sy
ST _ 0| . . ||
Normalization: N = Z 3 Phase arbitrary: ¢ () Simple: [{s|sn)| o
= (s — sk) |s — s,
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Newton’s cradle of unitary operators

» We start with a unitary matrix Uj.

* We know its eigenvalues and vectors:
Up = E Us |u1) (’U»z|
3 _

» e.g. if it acts on a 3-dim Hilbert space H,
3 eigenvalues u1, ugz, us.

* We get a behaviour analogous to Newton’s cradle when we act with a U(1)
operator family:

Ula) :=(1+ (e —1) jw) (w|) Uy |, @€ 0, 27)
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The connection between two Newton cradles

* The self-adjoint and the unitary Newton cradles are related by Cayley

transforms:
U(a) = (S(u) —al)(S(u) +i1) ™", S(p) = —=i(U(a) + 1)(U(a) - 1)~
S; — 1
« Moebius transform for the eigenvalues: u; = ———
Sj+1
T
» Relationship between (4 and o : S
.»//r-
ol ey epuls) T —
ul@) = Zs,ﬁl—klco (5)_Zs§+1 L
1 k=1 /,
. |
0 o 27

Pirsa: 22110081 Page 18/52



» Addition of self-adjoint operators translates nicely to multiplication of unitaries,

but not the exponentiated ones, instead the Cayley transformed unitaries.

H — (H —il)(H + 1)
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Special case: Level repulsion

Eigenvalues of A + c¢B, where c is the coupling strength, as a function of c:

Plot of eigenvalues of A + ¢B as a function of c.
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* Addition of self-adjoint operators translates nicely to multiplication of unitaries,

but not the exponentiated ones, instead the Cayley transformed unitaries.

H— (H—4l1)(H + 1)
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Special case: Level repulsion

Eigenvalues of A + c¢B, where c is the coupling strength, as a function of c:

Decompose B:
B =Y b;lv) (v

Add projectors b; |v;) (v;]
one by one. QE

o
0
=S

Plot of eigenvalues of A + ¢B as a function of c.
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Special case: Level repulsion

Eigenvalues of A + ¢B, where c is the coupling strength, as a function of c:

Decompose B:

B = Zb@- ;) (v;]

0
. 4

Add projectors b; |v;) (v
(0)

one by one. QE“
0 ¢
2

As long as the overlap: | Iim)

(as(b)|vi) # 0
-> no level crossing! /

Plot of eigenvalues of A + ¢B as a function of c.
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Summary so far

* Newton’s cradle spectra shows how eigenvalues and eigenvectors change when
we add a 1-dimensional projector to a Hamiltonian.

« Eigenvalues move like Newton’s cradle.

» Eigenvector of the highest eigenvalue rotates into the projector
subspace as the coupling constant y — oo.

» We can decompose any Hamiltonian into a sum of 1-dim. projectors ->
-> new strategy for understanding addition of Hamiltonians.

* New understanding of Cauchy interlacing, level repulsion...
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Stimulated Unruh Effect and
Acceleration-Induced Transparency




Acceleration effects in quantum physics

« Acceleration doesn’t fit naturally into quantum physics.
« An example where it does: Unruh effect (extremely small).
* |s there more?

30
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Acceleration effects in quantum physics

« Acceleration doesn’t fit naturally into quantum physics.
« An example where it does: Unruh effect (extremely small).

* |s there more?

Why?

» Acceleration related to gravity, through the equivalence principle.

Here:

 New acceleration-induced phenomena,
* Increased measurability of the Unruh effect,

* Insights into acceleration (gravity).

3
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.
Light-matter interactions

pr ~

The unusual

Resonant Non-resonant

The usual

Absorption, emission Unruh effect, Hawking effect

Weak

Strong

Can be stimulated Activated by acceleration or
(e.g. laser) gravity

3z
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T
Light-matter interactions

i T~

Resonant Non-resonant
* The usual * The unusual
» Absorption, emission » Unruh effect, Hawking effect
« Strong » Weak
e Can be stimulated » Activated by acceleration or
(e.g. laser) gravity
New: Can be modulated with New: Can be stimulated !
acceleration/gravity !
—> “Acceleration-induced —> Non-resonant effects become
transparency” more measurable!
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The Unruh effect can be stimulated

* First we stimulate the Unruh effect by the presence of photons in the
quantum field

 Problem: this also stimulates the resonant terms

34
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The Unruh effect can be stimulated

First we stimulate the Unruh effect by the presence of photons in the
quantum field

Problem: this also stimulates the resonant terms

e Solution: acceleration-induced transparency

e suppresses the resonant terms to zero

* Outcome: we are left with strong non-resonant terms, in particular:
Strong Unruh effect

35
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The standard Unruh effect

* UDW detector: « Scalar quantum field:

g—la) H” =Q ¢, Hy = / Bk wic af.a,

» Interaction Hamiltonian: H;,; = G 6,(7) ® ¢(t(7),x(7))

Hips /dk (U—a;r( +0 " ax + o ax + U+G’L)

RESONANT

36
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The standard Unruh effect

* UDW detector:  Scalar quantum field:

9o ) H® =4, ) = / APk wy ] a,

» Interaction Hamiltonian: H;,; = G 6,(7) ® ¢(t(7),x(7))

H;,: /dk (a“aL +otax + U—ak + U_J’aL)

RESONANT

« Amplitude for |9) ® |0) — le) ® |1) : A(k) = 1k|@/dTHmt 7)19) [0)

1 G
my7 Ja

= | Ak) = I (k), | where I+(Q,k) = / dr TR au(T),

38
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The stimulated Unruh effect (rock state fielq)

* UDW detector: « Scalar quantum field:

9o ) H® =4, H = / &k wi Gy ay,
* Interaction Hamiltonian: H;,; = G 6,(7) ® gﬁ(t(r), x(7))
 The transition: |g) ® |nk) — |e) ® |¢')
 Amplitude for transition: |g,nk) — G[Vn + 111 (k) e, (n + 1)x)

- \/ff_(m e, (n — D) |

40
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Standard vs. stimulated Unruh effect

Standard Stimulated (Fock state)
Transition: |g> ® |0) —% |6> ® |1> |g) ® ‘nk> — |€> ® |(?’L .2 1)k>
—_— G? . & 2 2
Probability: p(k) = (%)%k\h(kw p(k) = 2o (n\I_(k)| + (n+ )11 (k)| )

41
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The resonant terms can be suppressed

Standard: p(k) ‘I-|—(k)|2

Stimulated (Fock state): p(k) o< (n + 1)|I+(k)|2 + n.I_ (k)2 )
* Trajectory-dependent time integrals: .
I+(Q,k) = /d’T AT Fik 2, (T)
« We know how to eliminate 7 (k): in inertial motion 1, (€2, k) = 0,

» Can we get rid of I_ (k) somehow?

43
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T
Acceleration-induced transparency

* Q: Can we tune the trajectory so that for some (2
the time integral 1_(Q, k) = /dT STtk 2u(r) — 9

* Yes! * Proved also true for a smoother trajectory:

t 1
/ (%)) t [ Vg

Uy a9 I

ai (

’UOE
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Acceleration-induced transparency

t

¢ 8 _"'-’Uz
o |

U1
I_(k) = / dr e~k zu(m) — // alf

/ |
/’Uo X 40 A

« The detector with gap € will not get excited due to resonant terms.

* At the same time: |1, (€2, k)| > 0.

* If the detector gets excited, it is due to the non-resonant terms.

46
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Acceleration-induced transparency
I_(Q)]

12|

10:

8

1.75

Blue line =
Non-resonant
Integral

Pirsa: 22110081 Page 39/52



Summary
[1] Also the transitions can be !
Stimulated transitions are 2 times stronger : ey Sy
o'a) o' a
__@ 2 _ @ 2 )
pI) = G AL MP = 29 = s (#ll- 00 + (0 + DL B)F)
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Summary
[1] Also the transitions can be !
Stimulated transitions are n times stronger : 3
ocra
. G? 5 B G? 2
p(k) = m|f+(k)| —  pk)=(n+1) (2r)Pen 11+ (k)|

[2] Acceleration-induced transparency can suppress the resonant terms !

Strong non-resonant terms dominate.
é Strong forward (or time-reversed) Unruh effect.

A new method to measure the Unruh effect in lab.
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 New effects:

[1] Stimulated forward and time-reversed Unruh effects,
[2] Acceleration-induced transparency,

 Combining them leads to improved measurability of the Unruh effect.

Stimulated Unruh effect = ' x Standard Unruh effect

* E.g.for a 100 mW laser pointer: n = 101
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The new effects suggest for gravity:

» Resonant terms are potentially strongly affected by gravity, including the
possibility of gravity-induced translucency or even transparency.

* Non-resonant terms, e.g. of Hawking and other horizon radiation, can be
stimulated (e.g. by accretion disk luminosity?).

Paper: Acceleration-Induced Effects in Stimulated Light-Matter Interactions,
B. Soda, V. Sudhir, and A. Kempf, Phys. Rev. Lett. 128, 163603
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Parametrically Induced
Decoupling




Parametrically induced decoupling

» Acceleration-induced transparency -> parameters controlled by choice of trajectory.

 |dea: use parametric control of interaction Hamiltonian -> turn off transitions.
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Parametrically induced decoupling

» Acceleration-induced transparency -> parameters controlled by choice of trajectory.

 |dea: use parametric control of interaction Hamiltonian -> turn off transitions.
Setup: Total Hamiltonian: H = Hy + H;,+(t)

Hine = p (%) |v (2)) (v (1)]. (simple, gives results)

Interaction picture: Hiy (t) = e"0! Hye "ot
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Parametrically induced decoupling

» Acceleration-induced transparency -> parameters controlled by choice of trajectory.

 |dea: use parametric control of interaction Hamiltonian -> turn off transitions.
Setup: Total Hamiltonian: H = Hy + H;y,:(t)
Hine = p (%) v () (v (1)]. (simple, gives results)

Interaction picture: Hiy (t) = e"0 Hype "ot

N

Ho =) silsj){sjl ———> Hine(t)=p()) e silv())(v () Ise)ls;) (sl
4.k

j=1
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Parametrically induced decoupling

t
5 int (7 : :
Time evolution: U (t) = et oo dTHIn(7) g 1 44 / dTHipt (T) + ..., (Weak coupling approx.)
to

Probability of excitation:  Pexc. = |{e|Ur(t)|g)|”

% 2
Dexc. = | [ dru () vy (1) 0] (7) (gap = Q)
to
! 2
Problem: find f(Z) such that Pexc. = / dre?Y f (1)| =0.
to
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Parametrically induced decoupling

We already know a solution f(t) - from acceleration-induced transparency.

() = ")
=

There, Pexc. | / dre T~k 2u(T)| = 0, for a suitable choice of Z,(T).
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Parametrically induced decoupling

(0)

)

Example. Varying the projector in time. v;(t) = %/ () y




Parametrically induced decoupling

Example. Varying the coupling in time: ()

Projector(s) constant in time: |v1) (v1], [v2) (ve|




Summary

Showed two new tools for interactions:

1) Newton’s cradle spectra

2) Parametrically induced decoupling

(generalization of acceleration-induced transparency in light-matter int.)

Their purpose:
1) New insights into non-perturbative interactions. (Newton’s cradle spectra)

2) A way to turn off (some) transitions using parametric control over

the interaction Hamiltonian.

Pirsa: 22110081 Page 52/52



