Title: Poster Previews

Speakers:

Collection: Quantum Matter Workshop

Date: November 14, 2022 - 3:15 PM

URL: https://pirsa.org/22110067

Abstract: 3:15PM Arnab Adhikary

3:18PM Anjishnu Bose

3:21PM Matthew Duschenes

3:24PM SangEun Han & Daniel Schultz

3:27PM Andrew Hardy

3:30PM Daniel Huerga

3:33PM Vedangi Pathak

3:36PM Shengqi Sang

3:39PM Joseph Tindall

3:42PM Tarun Tummuru

3:45PM Ryohei Weil

3:48PM Rui Wen

3:51PM Ye Weicheng

3:54PM Emily Zhang

Pirsa: 22110067 Page 1/32

CHIRAL BROKEN SYMMETRY DESCENDANTS OF THE KAGOMÉ LATTICE CHIRAL SPIN LIQUID

University of Toronto, 2 McMaster University

Anjishnu Bose¹, Arijit Haldar¹, Erik S. Sørensen², Arun Paramekanti¹

ABSTRACT

- Using Spin-wave theory, ED, MFT, and VMC, we uncover two chiral magnetic orders XYZ and
 Octahedral order near the gapped CSL on the kagomé lattice, which are accessed by tuning a small
 Heisenberg interaction across the bow-ties.
- Our proposed global phase diagram, as we vary spin S, hints at the possibility of unusual QSLs in the chiral model for higher spin, including spin-1 magnets.
- Our work unveils distinct non-coplanar orders on the kagomé lattice, and points to a universal connection between many-body topological order in the gapped CSL and real-space topology, consistent with previous ED and DMRG results.

References

 Anjishnu Bose, Arijit Haldar, Erik S. Sørensen, and Arun Paramekanti, "Chiral Broken Symmetry Descendants of the Kagomé Lattice Chiral Spin Liquid," April 2022, 10.48550/ARXIV.2204.10329

PARTONIC TRIAL WAVE-FUNCTIONS

Express spins using Abrikosov fermions, with the constraint of one fermion/site as

$$S_i = \frac{1}{2} f_i^{\alpha \dagger} \sigma_{\alpha \beta} f_i^{\beta}, \quad f_i^{\alpha \dagger} f_i^{\alpha} = 1.$$
 (2)

Use a trial fermion Hamiltonian consisting of complex hoppings with fluxes, and Weiss fields at every site which are indicative of magnetic ordering when it sets in.

$$\mathcal{H}_{trial} = -\sum_{i,j} t_{ij} \sum_{\alpha} \left(e^{-i\phi_{ij}} f_i^{\alpha\dagger} f_j^{\alpha} + h.c. \right) - \mathcal{B} \sum_i f_i^{\alpha\dagger} \left(\hat{b}_i . \sigma \right)_{\alpha\beta} f_i^{\beta}$$
. (3)

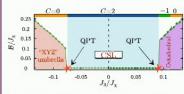


Figure 2: Mean-field theory: phase diagram of the parton theory for a 12×12 lattice, as we vary J_3/J_{χ} showing transition to the Octubelaral state for $J_5 \rightarrow J_5^2$ de J_5 , and the XYZ-unbrella state for $J_3 < J_3^{XYZ} < 0$. Top line depicts the corresponding total Chern number of the half-filled parton bands in various phases.

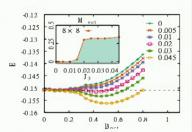
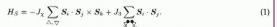


Figure 3: Gutzwiller wavefunction study. Variational energy versus $\mathcal{B}_{\rm bet}$ for an 8×8 lattice for different J_2 , showing a stable CSL state for $J_3=0$ and an instability to Octahedral order for $J_3\gtrsim 0.02$. Inset shows the order parameter $\mathcal{M}_{\rm oct}$.

MODEL

Our spin model on the kagomé lattice hosts a chiral interaction between three spins on every triangle, and a **Heisenberg interaction** between two spins across every bow-tie.



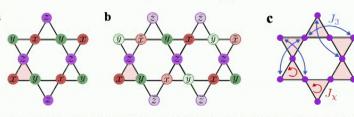


Figure 1: a The XYZ umbrella magnetic ordering. b The Octahedral magnetic ordering. c The chiral three-spin interactions and bow-tie two-spin couplings in H_S .

SPIN-WAVE THEORY

We use the Holstein-Primakoff transformation on locally rotated spins, $\tilde{S}_{n,j} = R_j \cdot S_{n,j}$, and calculate the average quantum correction to $\left\langle \tilde{S}_{n,j}^z \right\rangle$ upto O(1/S).

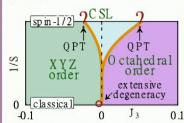


Figure 4: Proposed phase diagram of H_S as we tune J_S and the strength of quantum fluctuations via linear spin-wave theory.

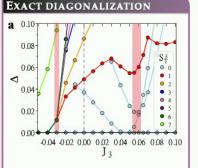
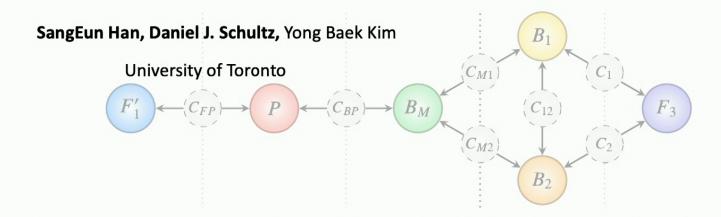


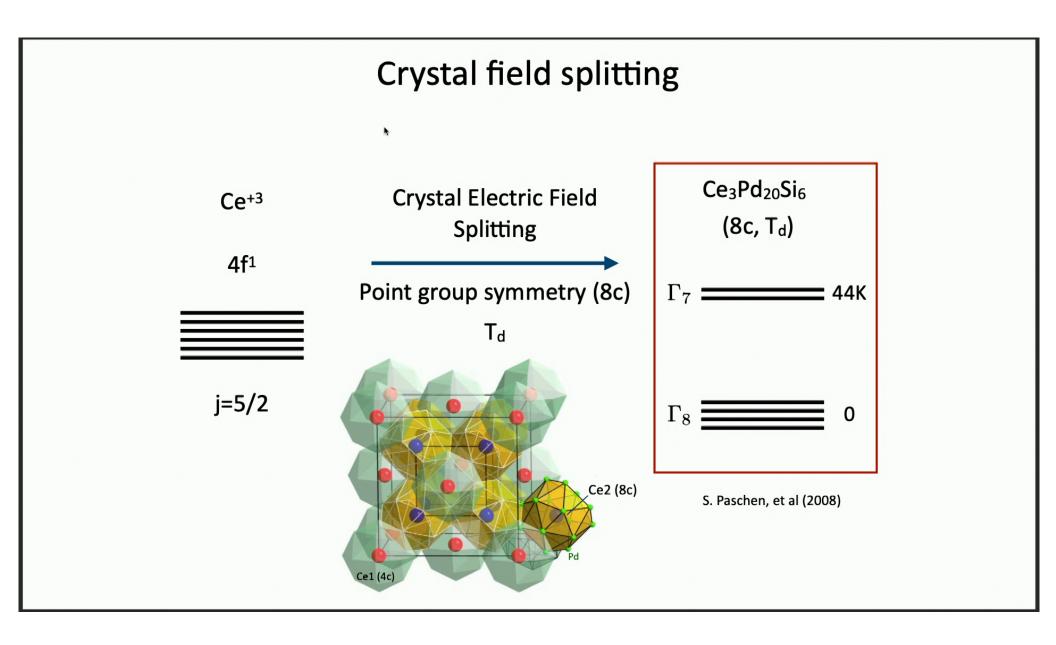
Figure 5: Energy gaps to the lowest lying states in each S_T^2 sector versus J_3 .

Pirsa: 22110067 Page 2/32

Microscopic theory of multi-stage Fermi surface reconstruction



Pirsa: 22110067 Page 3/32



Pirsa: 22110067 Page 4/32

Crystal field splitting

S. Paschen, et al (2008)

Ce+3

Crystal Electric Field Splitting

 $4f^1$

Point group symmetry (8c)

 T_d

$$j=5/2$$

Γ₈ Quartet

$$\Gamma_8^{(1)} = \sqrt{\frac{5}{6}} |+\frac{5}{2}\rangle + \sqrt{\frac{1}{6}} |-\frac{3}{2}\rangle, \quad \Gamma_8^{(3)} = |+\frac{1}{2}\rangle,$$

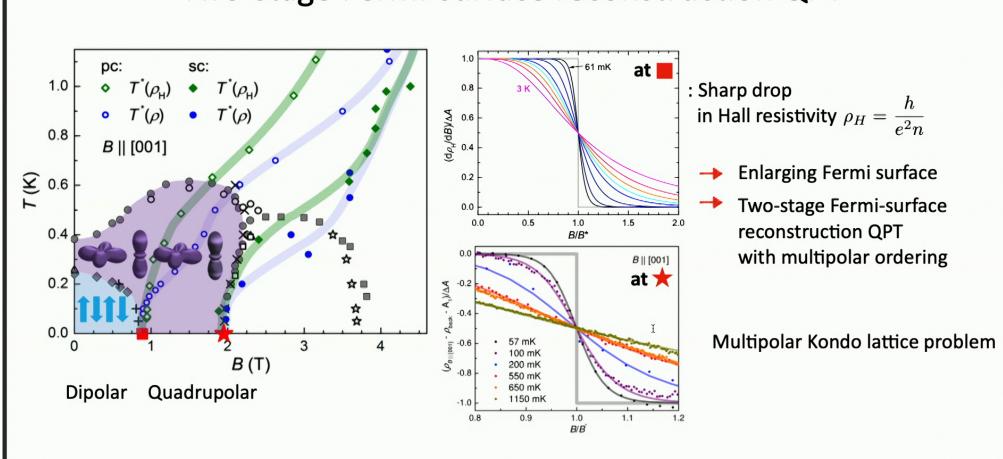
$$\Gamma_8^{(2)} = \sqrt{\frac{5}{6}} |-\frac{5}{2}\rangle + \sqrt{\frac{1}{6}} |+\frac{3}{2}\rangle, \quad \Gamma_8^{(4)} = |-\frac{1}{2}\rangle.$$

 $Ce_3Pd_{20}Si_6$ (8c, T_d)

 Γ_7 44K

MomentsIrrep.Dipolar T_1 : 3Quadrupolar E, T_2 : 5Octupolar A_2, T_1, T_2 : 7

 \rightarrow 15 multipolar moments



Pirsa: 22110067 Page 6/32

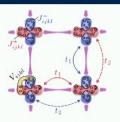
NEMATIC ORDER FROM A MULTIORBITAL STRANGE METAL

ANDREW HARDY, ARIJIT HALDAR, & ARUN PARAMEKANTI

ABSTRACT

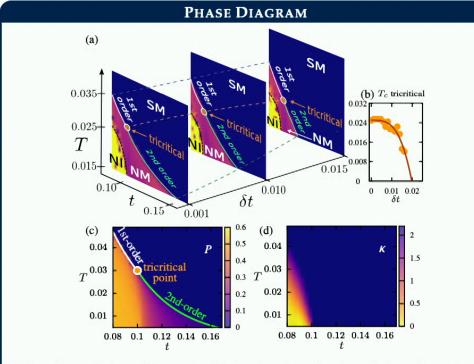
- We study a two-orbital lattice extension of the Sachdev-Ye-Kitaev model in the large-N limit.
- The phase diagram features multicritical nematic ordering.
- We explore the thermodynamic, spectral, and transport properties, including the elastoresitivity.
- Our work offers a useful perspective on nematic phases and transport in correlated multiorbital systems.

THE MODEL



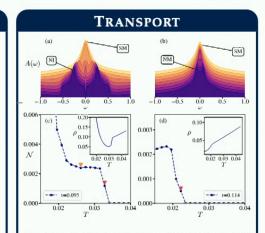
Each square lattice site (r) is occupied by two SYK orbitals (red (+) and blue (-) circles). Each orbital has an SYK-type self-interaction $(J_{ijkl}^{\pm}(\mathbf{r}))$ and an inter-orbital SYK-type interaction $(V_{ijkl}(\mathbf{r}))$. Orbitals on neighboring lattice sites are connected via anisotropic hoppings with an 'easy' axis $(t_1 = t + \delta t)$ and a 'hard' axis $(t_2 = t - \delta t)$.

$$H_{\mathrm{kin}} = \sum_{\mathbf{k}, s, i} \varepsilon_{s}(\mathbf{k}) c_{\mathbf{k}, s, i}^{\dagger} c_{\mathbf{k}, s, i}$$

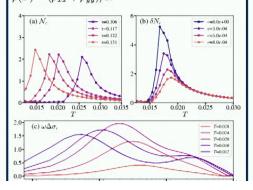


(a) Phase diagram in terms of temperature (T), hopping (t), and hopping anisotropy δt , showing an isotropic strange metal (SM), a nematic metal (NM), and a nematic insulator (NI). The isotropic and nematic phases are separated by first-order or continuous thermal transitions which meet at a tricritical point (filled circle). The NM and NI regimes are separated by a crossover at nonzero T. (b) Temperature at the tricritical point versus δt showing that it could be potentially further tuned to reach a quantum tricritical point with different strain. (c) Polarization ($P = \langle n_+ \rangle - \langle n_- \rangle$), or orbital density imbalance. (d) Compressibility ($\kappa = \langle n \rangle^{-2} \partial \langle n \rangle / \partial \mu$), distinguishing metallic from insulating phases.

DISCUSSION



Evolution of spectral function $A(\omega)$ with temperature T as a function of frequency ω . Resistive nematicity $\mathcal{N}=(\rho_{xx}-\rho_{yy})/(\rho_{xx}+\rho_{yy})$ which is zero in the SM phase, increases and saturates in the NM, and further rapidly increases at low T in the NI regime. Inset shows the average resistivity $\rho(T)=(\rho_{xx}+\rho_{yy})/2$.

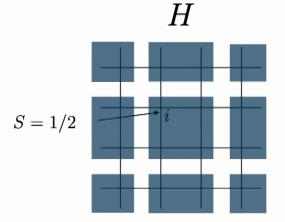


A comprehensive inelastic neutron scattering study on the Kitaev candidate BCAO. We examine two leading theoretical models: the Kitaev-type $JK\Gamma\Gamma'$ model and the XXZ-J1-J3 model.

Felix Desrochers, Emily Z. Zhang, Thomas Halloran, Collin Broholm, Yong Baek Kim

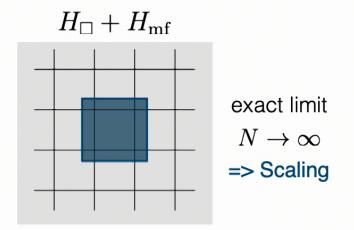
Pirsa: 22110067 Page 8/32

Variational Quantum Simulation of VBS



cluster-Gutzwiller ansatz

$$|\Psi(oldsymbol{ heta})
angle = \prod_{\square} |\psi(oldsymbol{ heta})
angle$$
 equivalent to



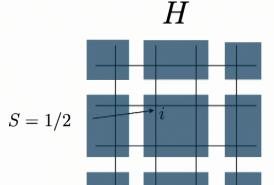
Classically $N_{\rm max} \simeq 30$

Quantum Matter Workshop

daniel.huerga@ubc.ca

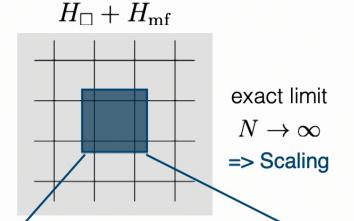
Perimeter Institute, 14 November, 2022

Variational Quantum Simulation of VBS



cluster-Gutzwiller ansatz

$$|\Psi(oldsymbol{ heta})
angle = \prod_{\square} |\psi(oldsymbol{ heta})
angle$$
 equivalent to



Classical optimizer

 $\min_{\boldsymbol{\theta}} \langle \Psi(\boldsymbol{\theta}) | H | \Psi(\boldsymbol{\theta}) \rangle \geq E^{\text{exact}}$

Parameterized Quantum Circuit

$$|\psi(oldsymbol{ heta})
angle = \mathcal{U}(oldsymbol{ heta}) |\psi_0
angle$$

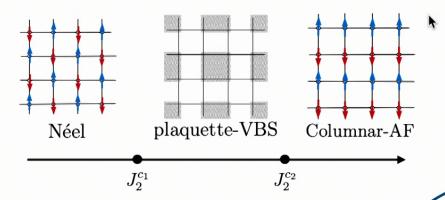
Quantum Matter Workshop

daniel.huerga@ubc.ca

Perimeter Institute, 14 November, 2022

Variational Quantum Simulation of VBS

Benchmark: J1-J2 Heisenberg AFM



Classical optimizer

 $\min_{\boldsymbol{\theta}} \langle \Psi(\boldsymbol{\theta}) | H | \Psi(\boldsymbol{\theta}) \rangle \geq E^{\text{exact}}$

$H_{\square} + H_{\mathrm{mf}}$



Parameterized Quantum Circuit

$$|\psi(oldsymbol{ heta})
angle = \mathcal{U}(oldsymbol{ heta}) |\psi_0
angle$$

Quantum Matter Workshop

daniel.huerga@ubc.ca

Perimeter Institute, 14 November, 2022

Arnab.pdf (page 1 of 5)

Vedengi.pdf (1 page)

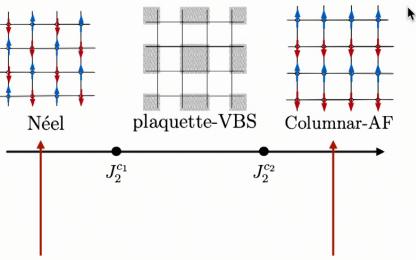
Rio.pdf (1 page)

Rui.pdf (page 1 of 4)

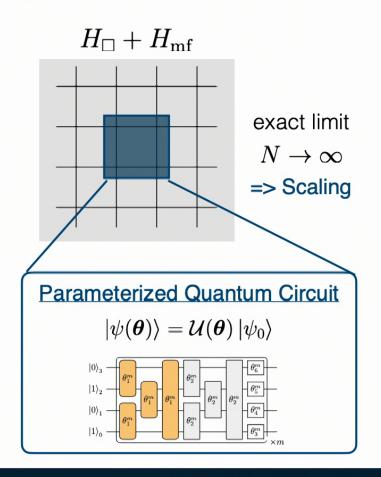
Tarun (page 1 of 5)

Variational Quantum Simulation of VBS

Benchmark: J1-J2 Heisenberg AFM



convergence pushed by LRO



Quantum Matter Workshop

daniel.huerga@ubc.ca

Perimeter Institute, 14 November, 2022

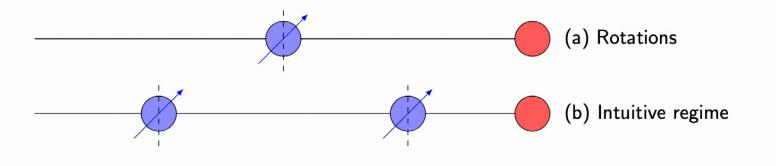
Pirsa: 22110067

Page 12/32

Huerga.pdf (page 5 of 5) Arnab.pdf (page 4 of 5) Vedangi.pdf (1 page) Rio.pdf (1 page) Rio.pdf (1 page) 1 of 4) Tarun (page 1 of 5)

Counter intuitive yet efficient regimes of computation in (finite) SPT ordered chains

- ► Central question: Given a short range entangled symmetric state (supported on a 1D chain), how can we best use it for computation using local measurements?
- ▶ Measurement based quantum computation: proper initial state (resource) + local measurements simulates unitary evolution.

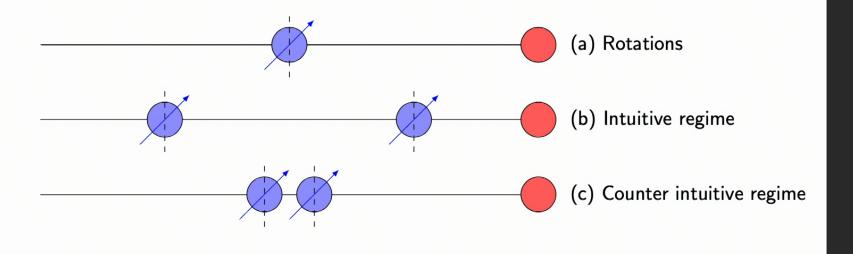


Pirsa: 22110067 Page 13/32

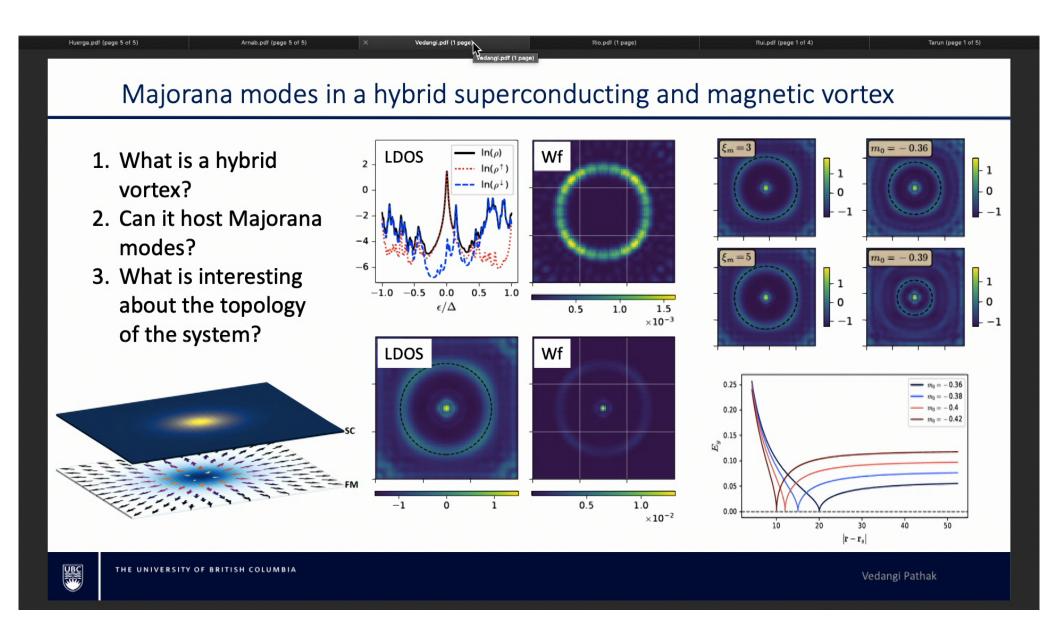
Huerga.pdf (page 5 of 5) Arnab.pdf (page 5 of 5) Vedangi.pdf (1 page) Rio.pdf (1 page) Rio.pdf (1 page) 1 of 4) Tarun (page 1 of 5)

Counter intuitive yet efficient regimes of computation in (finite) SPT ordered chains

- ► Central question: Given a short range entangled symmetric state (supported on a 1D chain), how can we best use it for computation using local measurements?
- ▶ Measurement based quantum computation: proper initial state (resource) + local measurements simulates unitary evolution.

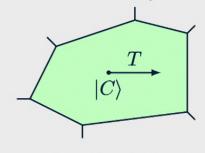


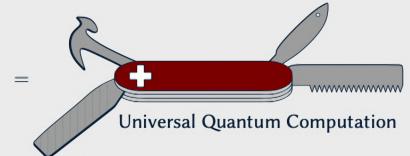
Pirsa: 22110067 Page 14/32

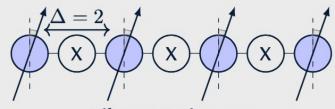


Pirsa: 22110067 Page 15/32

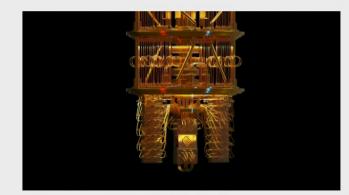
Investigating computational phases of matter on NISQ devices







Efficient Techniques



On NISQ devices

Pirsa: 22110067 Page 16/32

Introduction

- Traditional topological phases of matter are associated with gapped systems where the gap can protect the robustness of topological properties.
- Recent studies have shown rich topological properties could arise in gapless systems with edge modes that can not exsist in gapped systems.(igSPT)
- 3 In igSPT models studied before, there is a gapless sector of the system that possess an anomalous symmetry action U_{IR}^{A} which protects gaplessness.
- The anomaly is lifted by UV DOF so that we can expose the edge of the system and study edge modes.

Page 2 of 4

Pirsa: 22110067 Page 17/32

 Huerga.pdf (page 5 of 5)
 Arnab.pdf (page 5 of 5)
 Vedangi.pdf (page)
 Rio.pdf (page)
 Rio.pdf (page)

igSPT in a 1-d spin chain

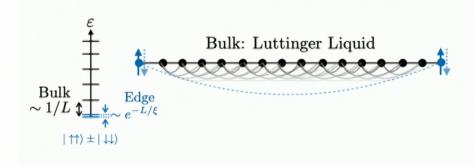
The model:

$$H = H_0 + H_{\Delta}$$

$$H_0 = -J \sum_{i} \left(\tau_{i-1}^x \tau_i^x + \tau_{i-1}^y \tau_i^y \right) \sigma_i^x \quad H_{\Delta} = -\Delta \sum_{i} \sigma_i^z \ \tau_i^z \ \sigma_{i+1}^z$$

Tarun (page 1 of 5)

- Low energy sector described by a gapless Luttinger liquid.
- 2 Non-anomalous exact \mathbb{Z}_4 symmetry.
- 3 Emergent \mathbb{Z}_2 anomaly in the IR, which protects gaplessness.
- 4 2-fold GSD due to topological edge modes.



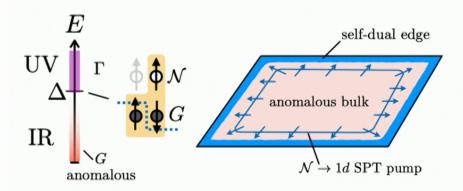
Pirsa: 22110067 Page 18/32

Huerga.pdf (page 5 of 5) Arneb.pdf (page 5 of 5) Vedangi.pdf (1 page) Rio.pdf (1 page) Rui.pdf (page 4 of 4) Tarun (page 1 of 5)

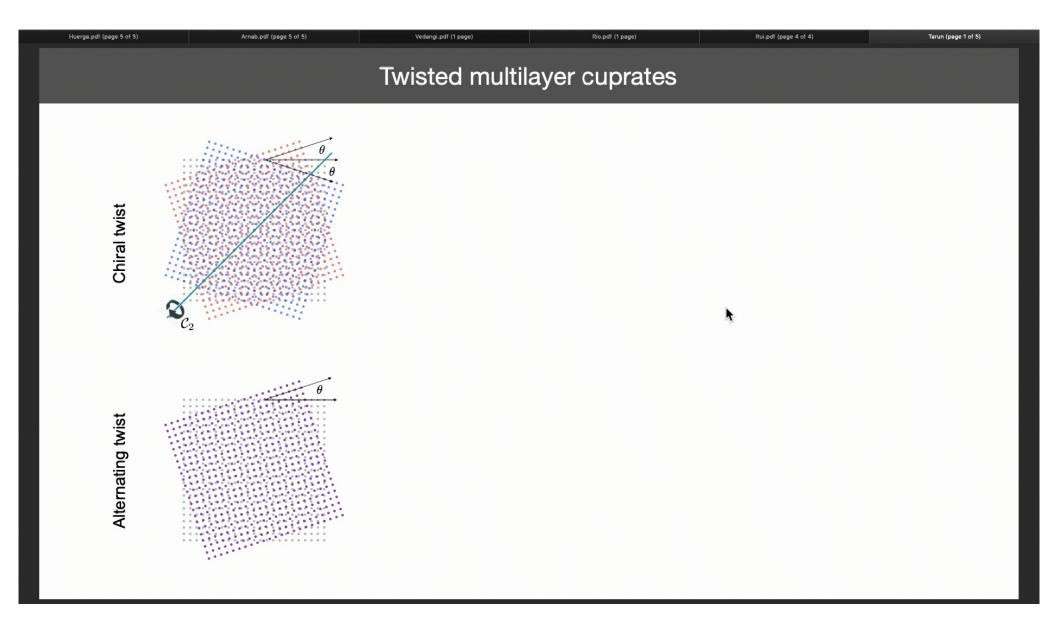
igSPT, Systematical study

Start with an in-cohomogy anomaly characterized by a cocycle $\omega_{D+2} \in H^{D+2}(G, U(1),$ together with a group extension $1 \to \mathcal{N} \to \Gamma \to G \to 1$, we can fractorize the anomaly as $\omega_{D+2} = b_D \cup e_2$ and construct a lattice model in D dimension with

- exact anomalous-free Γ-symmetry,
- 2 IR gapless sector with emergent G-anomaly,
- 3 UV symmetry $U_n, n \in \mathcal{N}$ acts on the edge of the system and pumps a (D-1)d SPT with anomaly $b_D \cup n$.
- 4 Therefore the edge must sits at the critical points of SPT transitions.



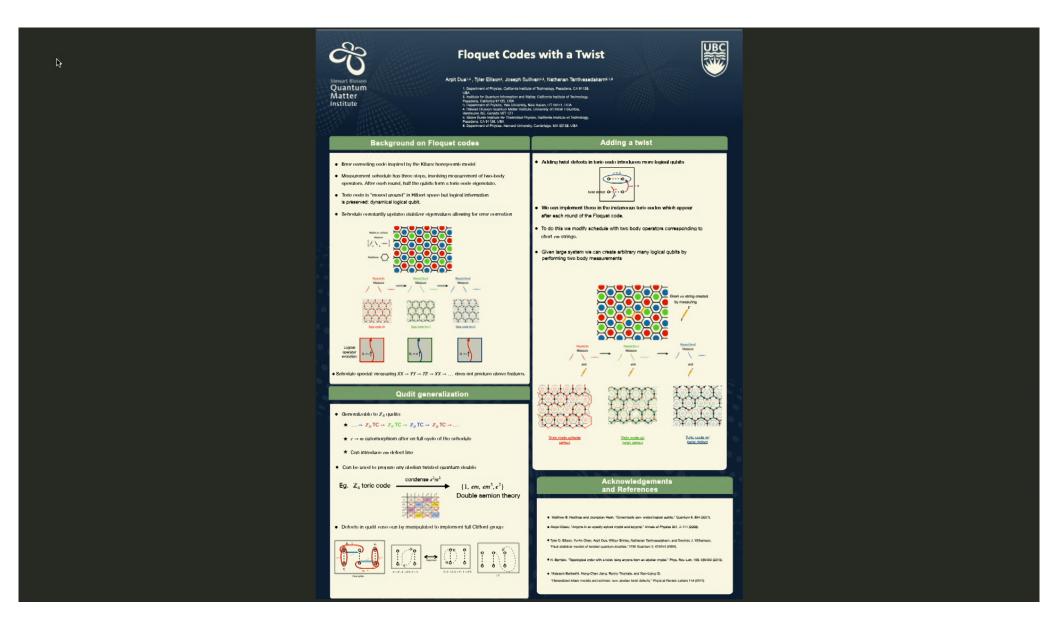
Pirsa: 22110067 Page 19/32



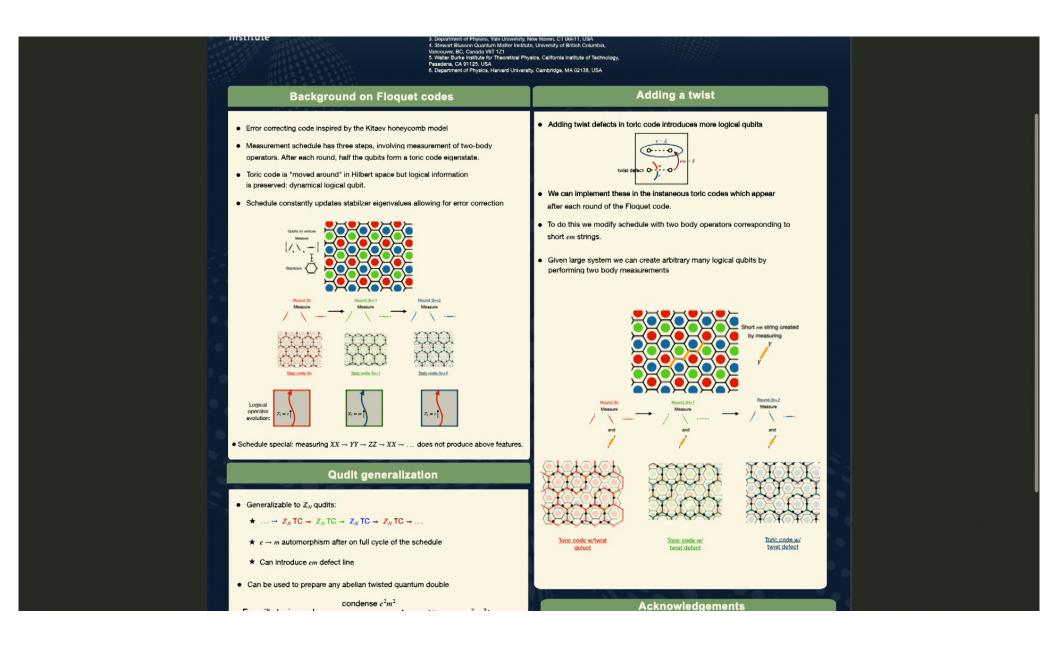
Pirsa: 22110067 Page 20/32

Pirsa: 22110067 Page 21/32

Pirsa: 22110067 Page 22/32



Pirsa: 22110067 Page 23/32



Pirsa: 22110067 Page 24/32

Overparameterization of Realistic Quantum Systems

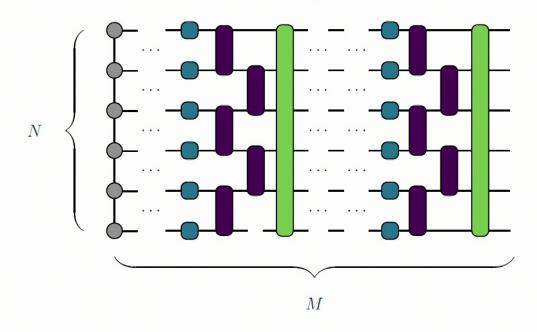
Matthew Duschenes*, Juan Carrasquilla, Raymond Laflamme University of Waterloo, Institute for Quantum Computing, & Vector Institute

November 14, 2022

PI Quantum Matter Workshop 2022

Pirsa: 22110067 Page 25/32

Learning Optimal Quantum Systems

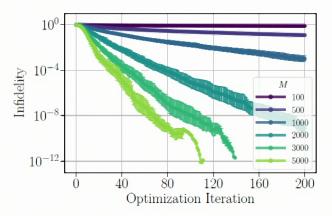


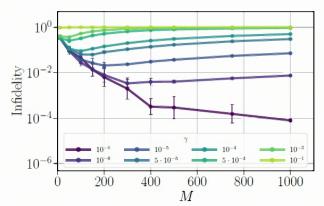
How does the amount of noise γ and the evolution time M of a constrained system $\Lambda_{\theta\gamma}$ affect its optimization and resulting parameters θ ?

VECTOR INSTITUTE

Pirsa: 22110067 Page 26/32

Constrained vs. Noisy Optimization





- (a) Exponential Convergence of Constrained Infidelity
- (b) Critical Depth for Noisy Infidelity

VECTOR INSTITUTE

Pirsa: 22110067 Page 27/32

Ultra-fast Entanglement Dynamics in Monitored Quantum Circuits

Shengqi Sang^{1,2}, Zhi Li¹, Timothy H. Hsieh¹, Beni Yoshida¹

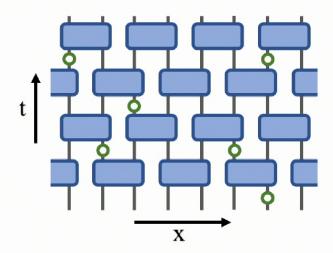
¹ Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada

² Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

Monitored quantum circuit (MQC):

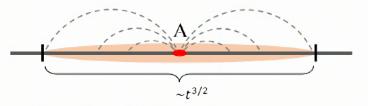
• Unitary operation:

• Projective measurement:

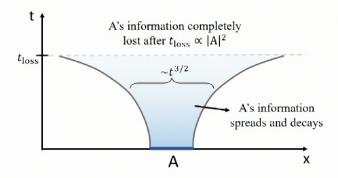


What we find in MQC...

• Entanglement generation:



• Spreading of local information:

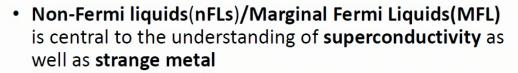


Pirsa: 22110067 Page 28/32

UV/IR Mixing in Marginal Fermi Liquid

Weicheng Ye

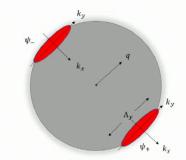
Based on [arXiv: 2109.00004] with Sung-Sik Lee, Liujun Zou

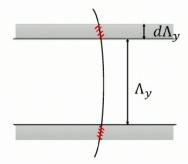


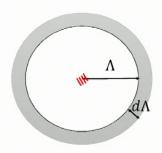
- UV/IR Mixing: Infrared (IR) physics is sensitive to the details of the Ultraviolet (UV) description of the theory
- UV/IR mixing exists in the patch theory description of MFL

$$\Pi(k_{\tau} = 0, k_{y}) \sim \left(\ln\left(\frac{\Lambda_{y}}{k_{y}}\right)\right)^{2}$$

 To capture the low-energy physics of the whole Fermi surface, a natural theoretical framework is potentially the functional renormalization group method







PAGE 1

Quantum Matter Workshop Weicheng Ye

Pirsa: 22110067 Page 29/32

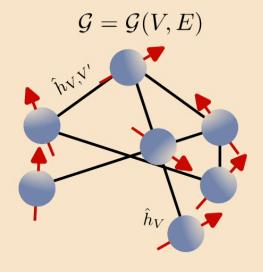
Quantum Physics in Highly Connected Worlds

A top-down graph-theoretic approach to the many-body problem

Joseph Tindall¹, Amy Searle², Abdulla Alhajri² and Dieter Jaksch²

¹Center for Computational Quantum Physics, Flatiron Institute, New York

²Department of Physics, University of Oxford, United Kingdom



$$\hat{H}(\mathcal{G}) = \frac{L}{N_E} \left(\sum_{(v,v') \in E} \hat{h}_{v,v'} \right) + \sum_{v \in V} \hat{h}_v,$$

Free Energy Density:

$$f(\mathcal{G}) = -\frac{1}{L\beta} \ln \left(\text{Tr} \left(\exp(-\beta H(\mathcal{G})) \right) \right)$$

J. Tindall et al, Quantum Physics in Connected Worlds, arXiv:2205.07924 (to appear in Nature Communications)

Pirsa: 22110067 Page 30/32

Quantum Physics in Highly Connected Worlds

A top-down graph-theoretic approach to the many-body problem

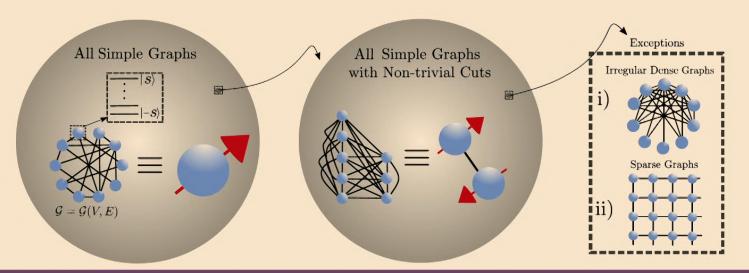
Joseph Tindall¹, Amy Searle², Abdulla Alhajri² and Dieter Jaksch²

¹Center for Computational Quantum Physics, Flatiron Institute, New York

²Department of Physics, University of Oxford, United Kingdom

Theorem 1 Let G(L) be a graph drawn uniformly from the space of all simple, unweighted graphs over L vertices. Let $G_{\text{Complete}}(L)$ be the simple, unweighted graph over L vertices where all edges are present. Then we have

$$\lim_{L \to \infty} f(G(L)) = \lim_{L \to \infty} f(G_{\text{Complete}}(L))$$



J. Tindall et al, Quantum Physics in Connected Worlds, arXiv:2205.07924 (to appear in Nature Communications)

Pirsa: 22110067 Page 31/32

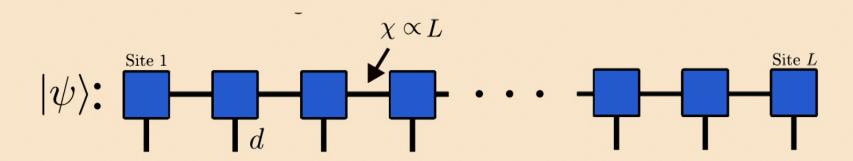
Quantum Physics in Highly Connected Worlds

A top-down graph-theoretic approach to the many-body problem

Joseph Tindall¹, Amy Searle², Abdulla Alhajri² and Dieter Jaksch²

¹Center for Computational Quantum Physics, Flatiron Institute, New York

²Department of Physics, University of Oxford, United Kingdom



J. Tindall et al, Quantum Physics in Connected Worlds, arXiv:2205.07924 (to appear in Nature Communications)

Pirsa: 22110067 Page 32/32